summaryrefslogtreecommitdiff
path: root/xed25519.cpp
blob: 20d43235c27fe4449035ed8c3f8524746f4cb641 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// xed25519_32.cpp - written and placed in public domain by Jeffrey Walton
//                   Crypto++ specific implementation wrapped around Adam
//                   Langley's curve25519-donna.

#include "pch.h"

#include "cryptlib.h"
#include "asn.h"
#include "integer.h"
#include "filters.h"

#include "xed25519.h"
#include "donna.h"

ANONYMOUS_NAMESPACE_BEGIN

using CryptoPP::byte;

CRYPTOPP_ALIGN_DATA(16)
const byte blacklist[][32] = {
    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
      0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 },
    { 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
      0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 },
    { 0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f },
    { 0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f },
    { 0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f },
    { 0xcd, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
      0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x80 },
    { 0x4c, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
      0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0xd7 },
    { 0xd9, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
    { 0xda, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
    { 0xdb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
  };

ANONYMOUS_NAMESPACE_END

NAMESPACE_BEGIN(CryptoPP)

bool x25519::IsClamped(const byte x[32])
{
    return (x[0] & 248) == x[0] && (x[31] & 127) == x[31] && (x[31] | 64) == x[31];
}

// See the comments for the code in tweetnacl.cpp
bool x25519::IsSmallOrder(const byte y[32])
{
    // The magic 12 is the count of blaklisted points
    byte c[12] = { 0 };
    for (size_t j = 0; j < 32; j++) {
        for (size_t i = 0; i < COUNTOF(blacklist); i++) {
            c[i] |= y[j] ^ blacklist[i][j];
        }
    }

    unsigned int k = 0;
    for (size_t i = 0; i < COUNTOF(blacklist); i++) {
        k |= (c[i] - 1);
    }

    return (bool) ((k >> 8) & 1);
}

void x25519::ClampKey(byte x[32])
{
    x[0] &= 248;
    x[31] &= 127;
    x[31] |= 64;
}

x25519::x25519(const byte y[32], const byte x[32])
{
    std::memcpy(m_pk, y, 32);
    std::memcpy(m_sk, x, 32);

    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);
}

x25519::x25519(const byte x[32])
{
    std::memcpy(m_sk, x, 32);
    GeneratePublicKey(NullRNG(), m_sk, m_pk);

    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);
}

x25519::x25519(const Integer &y, const Integer &x)
{
    ArraySink ys(m_pk, 32);
    y.Encode(ys, 32);

    ArraySink xs(m_sk, 32);
    x.Encode(xs, 32);

    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);
}

x25519::x25519(const Integer &x)
{
    ArraySink xs(m_sk, 32);
    x.Encode(xs, 32);
    GeneratePublicKey(NullRNG(), m_sk, m_pk);

    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);
}

x25519::x25519(RandomNumberGenerator &rng)
{
    GeneratePrivateKey(rng, m_sk);
    GeneratePublicKey(NullRNG(), m_sk, m_pk);

    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);
}

x25519::x25519(BufferedTransformation &params)
{
    // TODO: Fix the on-disk format once we determine what it is.
    BERSequenceDecoder seq(params);

      size_t read; byte unused;

      BERSequenceDecoder sk(seq, BIT_STRING);
      CRYPTOPP_ASSERT(sk.MaxRetrievable() >= 33);

      read = sk.Get(unused);  // unused bits
      CRYPTOPP_ASSERT(read == 1 && unused == 0);

      read = sk.Get(m_sk, 32);
      sk.MessageEnd();

      if (read != 32)
          throw BERDecodeErr();

      if (seq.EndReached())
      {
          GeneratePublicKey(NullRNG(), m_sk, m_pk);
      }
      else
      {
          BERSequenceDecoder pk(seq, OCTET_STRING);
          CRYPTOPP_ASSERT(pk.MaxRetrievable() >= 32);
          read = pk.Get(m_pk, 32);
          pk.MessageEnd();

          if (read != 32)
              throw BERDecodeErr();
      }

    seq.MessageEnd();

    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);
}

void x25519::DEREncode(BufferedTransformation &params) const
{
    // TODO: Fix the on-disk format once we determine what it is.
    DERSequenceEncoder seq(params);

      DERSequenceEncoder sk(seq, BIT_STRING);
      sk.Put((byte)0);   // unused bits
      sk.Put(m_sk, 32);
      sk.MessageEnd();

      DERSequenceEncoder pk(seq, OCTET_STRING);
      pk.Put(m_pk, 32);
      pk.MessageEnd();

    seq.MessageEnd();
}

bool x25519::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
    CRYPTOPP_UNUSED(rng);
    CRYPTOPP_ASSERT(IsClamped(m_sk) == true);
    CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false);

    if (level >= 1 && IsClamped(m_sk) == false)
        return false;
    if (level >= 2 && IsSmallOrder(m_pk) == true)
        return false;

    return true;
}

bool x25519::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
    if (valueType == typeid(ConstByteArrayParameter))
    {
        if (std::strcmp(name, "SecretKey") == 0)
        {
            std::memcpy(pValue, m_sk, 32);
            return true;
        }
        else if (std::strcmp(name, "PublicKey") == 0)
        {
            std::memcpy(pValue, m_pk, 32);
            return true;
        }
    }

    return false;
}

void x25519::AssignFrom(const NameValuePairs &source)
{
    ConstByteArrayParameter val;
    if (source.GetValue("SecretKey", val))
    {
        std::memcpy(m_sk, val.begin(), 32);
    }
    else if (source.GetValue("PublicKey", val))
    {
        std::memcpy(m_pk, val.begin(), 32);
    }
}

void x25519::GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
    rng.GenerateBlock(privateKey, 32);
    ClampKey(privateKey);
}

void x25519::GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
    CRYPTOPP_UNUSED(rng);

    (void)Donna::curve25519(publicKey, privateKey);
}

bool x25519::Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey) const
{
    CRYPTOPP_ASSERT(agreedValue != NULLPTR);
    CRYPTOPP_ASSERT(otherPublicKey != NULLPTR);

    if (validateOtherPublicKey && IsSmallOrder(otherPublicKey))
        return false;

    return Donna::curve25519(agreedValue, privateKey, otherPublicKey) == 0;
}

NAMESPACE_END  // CryptoPP