summaryrefslogtreecommitdiff
path: root/vmac.cpp
blob: 9f930b4492a94864d4ec305fe54f96df66a82e3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
// vmac.cpp - originally written and placed in the public domain by Wei Dai
// based on Ted Krovetz's public domain vmac.c and draft-krovetz-vmac-01.txt

#include "pch.h"
#include "config.h"

#include "vmac.h"
#include "cpu.h"
#include "argnames.h"
#include "secblock.h"

#if defined(_MSC_VER) && !CRYPTOPP_BOOL_SLOW_WORD64
#include <intrin.h>
#endif

#if defined(CRYPTOPP_DISABLE_VMAC_ASM)
# undef CRYPTOPP_X86_ASM_AVAILABLE
# undef CRYPTOPP_X32_ASM_AVAILABLE
# undef CRYPTOPP_X64_ASM_AVAILABLE
# undef CRYPTOPP_SSE2_ASM_AVAILABLE
#endif

#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4731)
#endif

ANONYMOUS_NAMESPACE_BEGIN

#if defined(CRYPTOPP_WORD128_AVAILABLE) && !defined(CRYPTOPP_X64_ASM_AVAILABLE)
using CryptoPP::word128;
using CryptoPP::word64;
# define VMAC_BOOL_WORD128 1
#else
using CryptoPP::word64;
# define VMAC_BOOL_WORD128 0
#endif

#ifdef __BORLANDC__
#define const	// Turbo C++ 2006 workaround
#endif
const word64 p64   = W64LIT(0xfffffffffffffeff);  /* 2^64 - 257 prime  */
const word64 m62   = W64LIT(0x3fffffffffffffff);  /* 62-bit mask       */
const word64 m63   = W64LIT(0x7fffffffffffffff);  /* 63-bit mask       */
const word64 m64   = W64LIT(0xffffffffffffffff);  /* 64-bit mask       */
const word64 mpoly = W64LIT(0x1fffffff1fffffff);  /* Poly key mask     */
#ifdef __BORLANDC__
#undef const
#endif

#if VMAC_BOOL_WORD128
// workaround GCC Bug 31690: ICE with const __uint128_t and C++ front-end
# if defined(__powerpc__) && defined (CRYPTOPP_GCC_VERSION) && (CRYPTOPP_GCC_VERSION < 50300)
#  define m126				((word128(m62)<<64)|m64)
# else
const word128 m126 = (word128(m62)<<64)|m64;		 /* 126-bit mask      */
# endif
#endif

ANONYMOUS_NAMESPACE_END

NAMESPACE_BEGIN(CryptoPP)

void VMAC_Base::UncheckedSetKey(const byte *userKey, unsigned int keylength, const NameValuePairs &params)
{
	int digestLength = params.GetIntValueWithDefault(Name::DigestSize(), DefaultDigestSize());
	if (digestLength != 8 && digestLength != 16)
		throw InvalidArgument("VMAC: DigestSize must be 8 or 16");
	m_is128 = digestLength == 16;

	m_L1KeyLength = params.GetIntValueWithDefault(Name::L1KeyLength(), 128);
	if (m_L1KeyLength <= 0 || m_L1KeyLength % 128 != 0)
		throw InvalidArgument("VMAC: L1KeyLength must be a positive multiple of 128");

	AllocateBlocks();

	BlockCipher &cipher = AccessCipher();
	cipher.SetKey(userKey, keylength, params);
	const unsigned int blockSize = cipher.BlockSize();
	const unsigned int blockSizeInWords = blockSize / sizeof(word64);
	SecBlock<word64, AllocatorWithCleanup<word64, true> > out(blockSizeInWords);
	AlignedSecByteBlock in;
	in.CleanNew(blockSize);
	size_t i;

	/* Fill nh key */
	in[0] = 0x80;
	cipher.AdvancedProcessBlocks(in, NULLPTR, (byte *)m_nhKey(), m_nhKeySize()*sizeof(word64), cipher.BT_InBlockIsCounter);
	ConditionalByteReverse<word64>(BIG_ENDIAN_ORDER, m_nhKey(), m_nhKey(), m_nhKeySize()*sizeof(word64));

	/* Fill poly key */
	in[0] = 0xC0;
	in[15] = 0;
	for (i = 0; i <= (size_t)m_is128; i++)
	{
		cipher.ProcessBlock(in, out.BytePtr());
		m_polyState()[i*4+2] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr()) & mpoly;
		m_polyState()[i*4+3]  = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr()+8) & mpoly;
		in[15]++;
	}

	/* Fill ip key */
	in[0] = 0xE0;
	in[15] = 0;
	word64 *l3Key = m_l3Key();
	CRYPTOPP_ASSERT(IsAlignedOn(l3Key,GetAlignmentOf<word64>()));

	for (i = 0; i <= (size_t)m_is128; i++)
		do
		{
			cipher.ProcessBlock(in, out.BytePtr());
			l3Key[i*2+0] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr());
			l3Key[i*2+1] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr()+8);
			in[15]++;
		} while ((l3Key[i*2+0] >= p64) || (l3Key[i*2+1] >= p64));

	m_padCached = false;
	size_t nonceLength;
	const byte *nonce = GetIVAndThrowIfInvalid(params, nonceLength);
	Resynchronize(nonce, (int)nonceLength);
}

void VMAC_Base::GetNextIV(RandomNumberGenerator &rng, byte *IV)
{
	SimpleKeyingInterface::GetNextIV(rng, IV);
	IV[0] &= 0x7f;
}

void VMAC_Base::Resynchronize(const byte *nonce, int len)
{
	size_t length = ThrowIfInvalidIVLength(len);
	size_t s = IVSize();
	byte *storedNonce = m_nonce();

	if (m_is128)
	{
		std::memset(storedNonce, 0, s-length);
		std::memcpy(storedNonce+s-length, nonce, length);
		AccessCipher().ProcessBlock(storedNonce, m_pad());
	}
	else
	{
		if (m_padCached && (storedNonce[s-1] | 1) == (nonce[length-1] | 1))
		{
			m_padCached = VerifyBufsEqual(storedNonce+s-length, nonce, length-1);
			for (size_t i=0; m_padCached && i<s-length; i++)
				m_padCached = (storedNonce[i] == 0);
		}
		if (!m_padCached)
		{
			std::memset(storedNonce, 0, s-length);
			std::memcpy(storedNonce+s-length, nonce, length-1);
			storedNonce[s-1] = nonce[length-1] & 0xfe;
			AccessCipher().ProcessBlock(storedNonce, m_pad());
			m_padCached = true;
		}
		storedNonce[s-1] = nonce[length-1];
	}
	m_isFirstBlock = true;
	Restart();
}

void VMAC_Base::HashEndianCorrectedBlock(const word64 *data)
{
	CRYPTOPP_UNUSED(data);
	CRYPTOPP_ASSERT(false);
	throw NotImplemented("VMAC: HashEndianCorrectedBlock is not implemented");
}

unsigned int VMAC_Base::OptimalDataAlignment() const
{
	return
#if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
		HasSSE2() ? 16 :
#endif
		GetCipher().OptimalDataAlignment();
}

#if CRYPTOPP_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4731)	// frame pointer register 'ebp' modified by inline assembly code
#endif

CRYPTOPP_NOINLINE
void VMAC_Base::VHASH_Update_SSE2(const word64 *data, size_t blocksRemainingInWord64, int tagPart)
{
	const word64 *nhK = m_nhKey();
	word64 *polyS = (word64*)(void*)m_polyState();
	word32 L1KeyLength = m_L1KeyLength;

	// These are used in the ASM, but some analysis services miss it.
	CRYPTOPP_UNUSED(data); CRYPTOPP_UNUSED(tagPart);
	CRYPTOPP_UNUSED(L1KeyLength);
	CRYPTOPP_UNUSED(blocksRemainingInWord64);

	// This inline ASM is tricky, and down right difficult on 32-bit when
	// PIC is in effect. The ASM uses all the general purpose registers
	// and all the XMM registers on 32-bit machines. When PIC is in effect
	// on a 32-bit machine, GCC uses EBX as a base register for PLT. Saving
	// EBX with 'mov %%ebx, %0' and restoring EBX with 'mov %0, %%ebx'
	// causes GCC to generate 'mov -0x40(%ebx), %ebx' for the restore. That
	// obviously won't work because EBX is no longer valid. We can push and
	// pop EBX, but that breaks the stack-based references. Attempting to
	// sidestep with clobber lists results in "error: ‘asm’ operand has
	// impossible constraints". Eventually, we found we could save EBX to
	// ESP-20, which is one word below our stack in the frame.
#ifdef __GNUC__
	__asm__ __volatile__
	(
# if CRYPTOPP_BOOL_X86
	// Hack. Save EBX for PIC. Do NOT 'push EBX' here.
	// GCC issues 'mov ESP+8, EBX' to load L1KeyLength.
	// A push breaks the reference to L1KeyLength.
	AS2(	mov 	%%ebx, -20(%%esp))
# endif
	// L1KeyLength into EBX.
	// GCC generates 'mov ESP+8, EBX'.
	AS2(	mov 	%0, %%ebx)
	INTEL_NOPREFIX
#else
	#if defined(__INTEL_COMPILER)
	char isFirstBlock = m_isFirstBlock;
	AS2(	mov 	ebx, [L1KeyLength])
	AS2(	mov 	dl, [isFirstBlock])
	#else
	AS2(	mov 	ecx, this)
	AS2(	mov 	ebx, [ecx+m_L1KeyLength])
	AS2(	mov 	dl, [ecx+m_isFirstBlock])
	#endif
	AS2(	mov 	eax, tagPart)
	AS2(	shl 	eax, 4)
	AS2(	mov 	edi, nhK)
	AS2(	add 	edi, eax)
	AS2(	add 	eax, eax)
	AS2(	add 	eax, polyS)

	AS2(	mov 	esi, data)
	AS2(	mov 	ecx, blocksRemainingInWord64)
#endif

	AS2(	shr 	ebx, 3)
	AS_PUSH_IF86(	bp)
	AS2(	sub 	esp, 12)
	ASL(4)
	AS2(	mov 	ebp, ebx)
	AS2(	cmp 	ecx, ebx)
	AS2(	cmovl	ebp, ecx)
	AS2(	sub 	ecx, ebp)
	AS2(	lea 	ebp, [edi+8*ebp])	// end of nhK
	AS2(	movq	mm6, [esi])
	AS2(	paddq	mm6, [edi])
	AS2(	movq	mm5, [esi+8])
	AS2(	paddq	mm5, [edi+8])
	AS2(	add 	esi, 16)
	AS2(	add 	edi, 16)
	AS2(	movq	mm4, mm6)
	ASS(	pshufw	mm2, mm6, 1, 0, 3, 2)
	AS2(	pmuludq	mm6, mm5)
	ASS(	pshufw	mm3, mm5, 1, 0, 3, 2)
	AS2(	pmuludq	mm5, mm2)
	AS2(	pmuludq	mm2, mm3)
	AS2(	pmuludq	mm3, mm4)
	AS2(	pxor	mm7, mm7)
	AS2(	movd	[esp], mm6)
	AS2(	psrlq	mm6, 32)
	AS2(	movd	[esp+4], mm5)
	AS2(	psrlq	mm5, 32)
	AS2(	cmp 	edi, ebp)
	ASJ(	je,  	1, f)
	ASL(0)
	AS2(	movq	mm0, [esi])
	AS2(	paddq	mm0, [edi])
	AS2(	movq	mm1, [esi+8])
	AS2(	paddq	mm1, [edi+8])
	AS2(	add 	esi, 16)
	AS2(	add 	edi, 16)
	AS2(	movq	mm4, mm0)
	AS2(	paddq	mm5, mm2)
	ASS(	pshufw	mm2, mm0, 1, 0, 3, 2)
	AS2(	pmuludq	mm0, mm1)
	AS2(	movd	[esp+8], mm3)
	AS2(	psrlq	mm3, 32)
	AS2(	paddq	mm5, mm3)
	ASS(	pshufw	mm3, mm1, 1, 0, 3, 2)
	AS2(	pmuludq	mm1, mm2)
	AS2(	pmuludq	mm2, mm3)
	AS2(	pmuludq	mm3, mm4)
	AS2(	movd	mm4, [esp])
	AS2(	paddq	mm7, mm4)
	AS2(	movd	mm4, [esp+4])
	AS2(	paddq	mm6, mm4)
	AS2(	movd	mm4, [esp+8])
	AS2(	paddq	mm6, mm4)
	AS2(	movd	[esp], mm0)
	AS2(	psrlq	mm0, 32)
	AS2(	paddq	mm6, mm0)
	AS2(	movd	[esp+4], mm1)
	AS2(	psrlq	mm1, 32)
	AS2(	paddq	mm5, mm1)
	AS2(	cmp 	edi, ebp)
	ASJ(	jne,	0, b)
	ASL(1)
	AS2(	paddq	mm5, mm2)
	AS2(	movd	[esp+8], mm3)
	AS2(	psrlq	mm3, 32)
	AS2(	paddq	mm5, mm3)
	AS2(	movd	mm4, [esp])
	AS2(	paddq	mm7, mm4)
	AS2(	movd	mm4, [esp+4])
	AS2(	paddq	mm6, mm4)
	AS2(	movd	mm4, [esp+8])
	AS2(	paddq	mm6, mm4)
	AS2(	lea 	ebp, [8*ebx])
	AS2(	sub 	edi, ebp)		// reset edi to start of nhK

	AS2(	movd	[esp], mm7)
	AS2(	psrlq	mm7, 32)
	AS2(	paddq	mm6, mm7)
	AS2(	movd	[esp+4], mm6)
	AS2(	psrlq	mm6, 32)
	AS2(	paddq	mm5, mm6)
	AS2(	psllq	mm5, 2)
	AS2(	psrlq	mm5, 2)

#define a0 [eax+2*4]
#define a1 [eax+3*4]
#define a2 [eax+0*4]
#define a3 [eax+1*4]
#define k0 [eax+2*8+2*4]
#define k1 [eax+2*8+3*4]
#define k2 [eax+2*8+0*4]
#define k3 [eax+2*8+1*4]

	AS2(	test	dl, dl)
	ASJ(	jz,  	2, f)
	AS2(	movd	mm1, k0)
	AS2(	movd	mm0, [esp])
	AS2(	paddq	mm0, mm1)
	AS2(	movd	a0, mm0)
	AS2(	psrlq	mm0, 32)
	AS2(	movd	mm1, k1)
	AS2(	movd	mm2, [esp+4])
	AS2(	paddq	mm1, mm2)
	AS2(	paddq	mm0, mm1)
	AS2(	movd	a1, mm0)
	AS2(	psrlq	mm0, 32)
	AS2(	paddq	mm5, k2)
	AS2(	paddq	mm0, mm5)
	AS2(	movq	a2, mm0)
	AS2(	xor 	edx, edx)
	ASJ(	jmp,	3, f)
	ASL(2)
	AS2(	movd	mm0, a3)
	AS2(	movq	mm4, mm0)
	AS2(	pmuludq	mm0, k3)		// a3*k3
	AS2(	movd	mm1, a0)
	AS2(	pmuludq	mm1, k2)		// a0*k2
	AS2(	movd	mm2, a1)
	AS2(	movd	mm6, k1)
	AS2(	pmuludq	mm2, mm6)		// a1*k1
	AS2(	movd	mm3, a2)
	AS2(	psllq	mm0, 1)
	AS2(	paddq	mm0, mm5)
	AS2(	movq	mm5, mm3)
	AS2(	movd	mm7, k0)
	AS2(	pmuludq	mm3, mm7)		// a2*k0
	AS2(	pmuludq	mm4, mm7)		// a3*k0
	AS2(	pmuludq	mm5, mm6)		// a2*k1
	AS2(	paddq	mm0, mm1)
	AS2(	movd	mm1, a1)
	AS2(	paddq	mm4, mm5)
	AS2(	movq	mm5, mm1)
	AS2(	pmuludq	mm1, k2)		// a1*k2
	AS2(	paddq	mm0, mm2)
	AS2(	movd	mm2, a0)
	AS2(	paddq	mm0, mm3)
	AS2(	movq	mm3, mm2)
	AS2(	pmuludq	mm2, k3)		// a0*k3
	AS2(	pmuludq	mm3, mm7)		// a0*k0
	AS2(	movd	[esp+8], mm0)
	AS2(	psrlq	mm0, 32)
	AS2(	pmuludq	mm7, mm5)		// a1*k0
	AS2(	pmuludq	mm5, k3)		// a1*k3
	AS2(	paddq	mm0, mm1)
	AS2(	movd	mm1, a2)
	AS2(	pmuludq	mm1, k2)		// a2*k2
	AS2(	paddq	mm0, mm2)
	AS2(	paddq	mm0, mm4)
	AS2(	movq	mm4, mm0)
	AS2(	movd	mm2, a3)
	AS2(	pmuludq	mm2, mm6)		// a3*k1
	AS2(	pmuludq	mm6, a0)		// a0*k1
	AS2(	psrlq	mm0, 31)
	AS2(	paddq	mm0, mm3)
	AS2(	movd	mm3, [esp])
	AS2(	paddq	mm0, mm3)
	AS2(	movd	mm3, a2)
	AS2(	pmuludq	mm3, k3)		// a2*k3
	AS2(	paddq	mm5, mm1)
	AS2(	movd	mm1, a3)
	AS2(	pmuludq	mm1, k2)		// a3*k2
	AS2(	paddq	mm5, mm2)
	AS2(	movd	mm2, [esp+4])
	AS2(	psllq	mm5, 1)
	AS2(	paddq	mm0, mm5)
	AS2(	psllq	mm4, 33)
	AS2(	movd	a0, mm0)
	AS2(	psrlq	mm0, 32)
	AS2(	paddq	mm6, mm7)
	AS2(	movd	mm7, [esp+8])
	AS2(	paddq	mm0, mm6)
	AS2(	paddq	mm0, mm2)
	AS2(	paddq	mm3, mm1)
	AS2(	psllq	mm3, 1)
	AS2(	paddq	mm0, mm3)
	AS2(	psrlq	mm4, 1)
	AS2(	movd	a1, mm0)
	AS2(	psrlq	mm0, 32)
	AS2(	por 	mm4, mm7)
	AS2(	paddq	mm0, mm4)
	AS2(	movq	a2, mm0)

#undef a0
#undef a1
#undef a2
#undef a3
#undef k0
#undef k1
#undef k2
#undef k3

	ASL(3)
	AS2(	test	ecx, ecx)
	ASJ(	jnz,	4, b)
	AS2(	add 	esp, 12)
	AS_POP_IF86(	bp)
	AS1(	emms)
#ifdef __GNUC__
	ATT_PREFIX
# if CRYPTOPP_BOOL_X86
	// Restore EBX for PIC
	AS2(	mov 	-20(%%esp), %%ebx)
# endif
		:
		: "m" (L1KeyLength), "c" (blocksRemainingInWord64), "S" (data),
		  "D" (nhK+tagPart*2), "d" (m_isFirstBlock), "a" (polyS+tagPart*4)
		: "memory", "cc"
	);
#endif
}
#endif

#if VMAC_BOOL_WORD128
	#define DeclareNH(a) word128 a=0
	#define MUL64(rh,rl,i1,i2) {word128 p = word128(i1)*(i2); rh = word64(p>>64); rl = word64(p);}
	#define AccumulateNH(a, b, c) a += word128(b)*(c)
	#define Multiply128(r, i1, i2) r = word128(word64(i1)) * word64(i2)
#else
	#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) && (defined(_M_IX86) || defined(_M_X64) || defined(_M_IA64))
		#define MUL32(a, b) __emulu(word32(a), word32(b))
	#else
		#define MUL32(a, b) ((word64)((word32)(a)) * (word32)(b))
	#endif
	#if defined(CRYPTOPP_X64_ASM_AVAILABLE)
		#define DeclareNH(a)			word64 a##0=0, a##1=0
		#define MUL64(rh,rl,i1,i2)		asm ("mulq %3" : "=a"(rl), "=d"(rh) : "a"(i1), "g"(i2) : "cc");
		#define AccumulateNH(a, b, c)	asm ("mulq %3; addq %%rax, %0; adcq %%rdx, %1" : "+r"(a##0), "+r"(a##1) : "a"(b), "g"(c) : "%rdx", "cc");
		#define ADD128(rh,rl,ih,il)     asm ("addq %3, %1; adcq %2, %0" : "+r"(rh),"+r"(rl) : "r"(ih),"r"(il) : "cc");
	#elif defined(_MSC_VER) && !CRYPTOPP_BOOL_SLOW_WORD64
		#define DeclareNH(a) word64 a##0=0, a##1=0
		#define MUL64(rh,rl,i1,i2)   (rl) = _umul128(i1,i2,&(rh));
		#define AccumulateNH(a, b, c)	{\
			word64 ph, pl;\
			pl = _umul128(b,c,&ph);\
			a##0 += pl;\
			a##1 += ph + (a##0 < pl);}
	#else
		#define VMAC_BOOL_32BIT 1
		#define DeclareNH(a) word64 a##0=0, a##1=0, a##2=0
		#define MUL64(rh,rl,i1,i2)                                               \
			{   word64 _i1 = (i1), _i2 = (i2);                                 \
				word64 m1= MUL32(_i1,_i2>>32);                                 \
				word64 m2= MUL32(_i1>>32,_i2);                                 \
				rh         = MUL32(_i1>>32,_i2>>32);                             \
				rl         = MUL32(_i1,_i2);                                     \
				ADD128(rh,rl,(m1 >> 32),(m1 << 32));                             \
				ADD128(rh,rl,(m2 >> 32),(m2 << 32));                             \
			}
		#define AccumulateNH(a, b, c)	{\
			word64 p = MUL32(b, c);\
			a##1 += word32((p)>>32);\
			a##0 += word32(p);\
			p = MUL32((b)>>32, c);\
			a##2 += word32((p)>>32);\
			a##1 += word32(p);\
			p = MUL32((b)>>32, (c)>>32);\
			a##2 += p;\
			p = MUL32(b, (c)>>32);\
			a##1 += word32(p);\
			a##2 += word32(p>>32);}
	#endif
#endif
#ifndef VMAC_BOOL_32BIT
	#define VMAC_BOOL_32BIT 0
#endif
#ifndef ADD128
	#define ADD128(rh,rl,ih,il)                                          \
		{   word64 _il = (il);                                         \
			(rl) += (_il);                                               \
			(rh) += (ih) + ((rl) < (_il));                               \
		}
#endif

template <bool T_128BitTag>
void VMAC_Base::VHASH_Update_Template(const word64 *data, size_t blocksRemainingInWord64)
{
	CRYPTOPP_ASSERT(IsAlignedOn(m_polyState(),GetAlignmentOf<word64>()));
	CRYPTOPP_ASSERT(IsAlignedOn(m_nhKey(),GetAlignmentOf<word64>()));

	#define INNER_LOOP_ITERATION(j)	{\
		word64 d0 = ConditionalByteReverse(LITTLE_ENDIAN_ORDER, data[i+2*j+0]);\
		word64 d1 = ConditionalByteReverse(LITTLE_ENDIAN_ORDER, data[i+2*j+1]);\
		AccumulateNH(nhA, d0+nhK[i+2*j+0], d1+nhK[i+2*j+1]);\
		if (T_128BitTag)\
			AccumulateNH(nhB, d0+nhK[i+2*j+2], d1+nhK[i+2*j+3]);\
		}

	size_t L1KeyLengthInWord64 = m_L1KeyLength / 8;
	size_t innerLoopEnd = L1KeyLengthInWord64;
	const word64 *nhK = m_nhKey();
	word64 *polyS = (word64*)(void*)m_polyState();
	bool isFirstBlock = true;
	size_t i;

	#if !VMAC_BOOL_32BIT
		#if VMAC_BOOL_WORD128
			word128 a1=0, a2=0;
		#else
			word64 ah1=0, al1=0, ah2=0, al2=0;
		#endif
		word64 kh1, kl1, kh2, kl2;
		kh1=(polyS+0*4+2)[0]; kl1=(polyS+0*4+2)[1];
		if (T_128BitTag)
		{
			kh2=(polyS+1*4+2)[0]; kl2=(polyS+1*4+2)[1];
		}
	#endif

	do
	{
		DeclareNH(nhA);
		DeclareNH(nhB);

		i = 0;
		if (blocksRemainingInWord64 < L1KeyLengthInWord64)
		{
			if (blocksRemainingInWord64 % 8)
			{
				innerLoopEnd = blocksRemainingInWord64 % 8;
				for (; i<innerLoopEnd; i+=2)
					INNER_LOOP_ITERATION(0);
			}
			innerLoopEnd = blocksRemainingInWord64;
		}
		for (; i<innerLoopEnd; i+=8)
		{
			INNER_LOOP_ITERATION(0);
			INNER_LOOP_ITERATION(1);
			INNER_LOOP_ITERATION(2);
			INNER_LOOP_ITERATION(3);
		}
		blocksRemainingInWord64 -= innerLoopEnd;
		data += innerLoopEnd;

		#if VMAC_BOOL_32BIT
			word32 nh0[2],  nh1[2];
			word64 nh2[2];

			nh0[0] = word32(nhA0);
			nhA1 += (nhA0 >> 32);
			nh1[0] = word32(nhA1);
			nh2[0] = (nhA2 + (nhA1 >> 32)) & m62;

			if (T_128BitTag)
			{
				nh0[1] = word32(nhB0);
				nhB1 += (nhB0 >> 32);
				nh1[1] = word32(nhB1);
				nh2[1] = (nhB2 + (nhB1 >> 32)) & m62;
			}

			#define a0 (((word32 *)(polyS+i*4))[2+NativeByteOrder::ToEnum()])
			#define a1 (*(((word32 *)(polyS+i*4))+3-NativeByteOrder::ToEnum()))		// workaround for GCC 3.2
			#define a2 (((word32 *)(polyS+i*4))[0+NativeByteOrder::ToEnum()])
			#define a3 (*(((word32 *)(polyS+i*4))+1-NativeByteOrder::ToEnum()))
			#define aHi ((polyS+i*4)[0])
			#define k0 (((word32 *)(polyS+i*4+2))[2+NativeByteOrder::ToEnum()])
			#define k1 (*(((word32 *)(polyS+i*4+2))+3-NativeByteOrder::ToEnum()))
			#define k2 (((word32 *)(polyS+i*4+2))[0+NativeByteOrder::ToEnum()])
			#define k3 (*(((word32 *)(polyS+i*4+2))+1-NativeByteOrder::ToEnum()))
			#define kHi ((polyS+i*4+2)[0])

			if (isFirstBlock)
			{
				isFirstBlock = false;
				if (m_isFirstBlock)
				{
					m_isFirstBlock = false;
					for (i=0; i<=(size_t)T_128BitTag; i++)
					{
						word64 t = (word64)nh0[i] + k0;
						a0 = (word32)t;
						t = (t >> 32) + nh1[i] + k1;
						a1 = (word32)t;
						aHi = (t >> 32) + nh2[i] + kHi;
					}
					continue;
				}
			}
			for (i=0; i<=(size_t)T_128BitTag; i++)
			{
				word64 p, t;
				word32 t2;

				p = MUL32(a3, 2*k3);
				p += nh2[i];
				p += MUL32(a0, k2);
				p += MUL32(a1, k1);
				p += MUL32(a2, k0);
				t2 = (word32)p;
				p >>= 32;
				p += MUL32(a0, k3);
				p += MUL32(a1, k2);
				p += MUL32(a2, k1);
				p += MUL32(a3, k0);
				t = (word64(word32(p) & 0x7fffffff) << 32) | t2;
				p >>= 31;
				p += nh0[i];
				p += MUL32(a0, k0);
				p += MUL32(a1, 2*k3);
				p += MUL32(a2, 2*k2);
				p += MUL32(a3, 2*k1);
				t2 = (word32)p;
				p >>= 32;
				p += nh1[i];
				p += MUL32(a0, k1);
				p += MUL32(a1, k0);
				p += MUL32(a2, 2*k3);
				p += MUL32(a3, 2*k2);
				a0 = t2;
				a1 = (word32)p;
				aHi = (p >> 32) + t;
			}

			#undef a0
			#undef a1
			#undef a2
			#undef a3
			#undef aHi
			#undef k0
			#undef k1
			#undef k2
			#undef k3
			#undef kHi
		#else		// #if VMAC_BOOL_32BIT
			if (isFirstBlock)
			{
				isFirstBlock = false;
				if (m_isFirstBlock)
				{
					m_isFirstBlock = false;
					#if VMAC_BOOL_WORD128
						#define first_poly_step(a, kh, kl, m)	a = (m & m126) + ((word128(kh) << 64) | kl)

						first_poly_step(a1, kh1, kl1, nhA);
						if (T_128BitTag)
							first_poly_step(a2, kh2, kl2, nhB);
					#else
						#define first_poly_step(ah, al, kh, kl, mh, ml)		{\
							mh &= m62;\
							ADD128(mh, ml, kh, kl);	\
							ah = mh; al = ml;}

						first_poly_step(ah1, al1, kh1, kl1, nhA1, nhA0);
						if (T_128BitTag)
							first_poly_step(ah2, al2, kh2, kl2, nhB1, nhB0);
					#endif
					continue;
				}
				else
				{
					#if VMAC_BOOL_WORD128
						a1 = (word128((polyS+0*4)[0]) << 64) | (polyS+0*4)[1];
					#else
						ah1=(polyS+0*4)[0]; al1=(polyS+0*4)[1];
					#endif
					if (T_128BitTag)
					{
						#if VMAC_BOOL_WORD128
							a2 = (word128((polyS+1*4)[0]) << 64) | (polyS+1*4)[1];
						#else
							ah2=(polyS+1*4)[0]; al2=(polyS+1*4)[1];
						#endif
					}
				}
			}

			#if VMAC_BOOL_WORD128
				#define poly_step(a, kh, kl, m)	\
				{   word128 t1, t2, t3, t4;\
					Multiply128(t2, a>>64, kl);\
					Multiply128(t3, a, kh);\
					Multiply128(t1, a, kl);\
					Multiply128(t4, a>>64, 2*kh);\
					t2 += t3;\
					t4 += t1;\
					t2 += t4>>64;\
					a = (word128(word64(t2)&m63) << 64) | word64(t4);\
					t2 *= 2;\
					a += m & m126;\
					a += t2>>64;}

				poly_step(a1, kh1, kl1, nhA);
				if (T_128BitTag)
					poly_step(a2, kh2, kl2, nhB);
			#else
				#define poly_step(ah, al, kh, kl, mh, ml)					\
				{   word64 t1h, t1l, t2h, t2l, t3h, t3l, z=0;				\
					/* compute ab*cd, put bd into result registers */       \
					MUL64(t2h,t2l,ah,kl);                                   \
					MUL64(t3h,t3l,al,kh);                                   \
					MUL64(t1h,t1l,ah,2*kh);                                 \
					MUL64(ah,al,al,kl);                                     \
					/* add together ad + bc */                              \
					ADD128(t2h,t2l,t3h,t3l);                                \
					/* add 2 * ac to result */                              \
					ADD128(ah,al,t1h,t1l);                                  \
					/* now (ah,al), (t2l,2*t2h) need summing */             \
					/* first add the high registers, carrying into t2h */   \
					ADD128(t2h,ah,z,t2l);                                   \
					/* double t2h and add top bit of ah */                  \
					t2h += t2h + (ah >> 63);                                \
					ah &= m63;                                              \
					/* now add the low registers */                         \
					mh &= m62;												\
					ADD128(ah,al,mh,ml);                                    \
					ADD128(ah,al,z,t2h);                                    \
				}

				poly_step(ah1, al1, kh1, kl1, nhA1, nhA0);
				if (T_128BitTag)
					poly_step(ah2, al2, kh2, kl2, nhB1, nhB0);
			#endif
		#endif		// #if VMAC_BOOL_32BIT
	} while (blocksRemainingInWord64);

	#if VMAC_BOOL_WORD128
		(polyS+0*4)[0]=word64(a1>>64); (polyS+0*4)[1]=word64(a1);
		if (T_128BitTag)
		{
			(polyS+1*4)[0]=word64(a2>>64); (polyS+1*4)[1]=word64(a2);
		}
	#elif !VMAC_BOOL_32BIT
		(polyS+0*4)[0]=ah1; (polyS+0*4)[1]=al1;
		if (T_128BitTag)
		{
			(polyS+1*4)[0]=ah2; (polyS+1*4)[1]=al2;
		}
	#endif
}

inline void VMAC_Base::VHASH_Update(const word64 *data, size_t blocksRemainingInWord64)
{
#if CRYPTOPP_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
	if (HasSSE2())
	{
		VHASH_Update_SSE2(data, blocksRemainingInWord64, 0);
		if (m_is128)
			VHASH_Update_SSE2(data, blocksRemainingInWord64, 1);
		m_isFirstBlock = false;
	}
	else
#endif
	{
		if (m_is128)
			VHASH_Update_Template<true>(data, blocksRemainingInWord64);
		else
			VHASH_Update_Template<false>(data, blocksRemainingInWord64);
	}
}

size_t VMAC_Base::HashMultipleBlocks(const word64 *data, size_t length)
{
	size_t remaining = ModPowerOf2(length, m_L1KeyLength);
	VHASH_Update(data, (length-remaining)/8);
	return remaining;
}

word64 L3Hash(const word64 *input, const word64 *l3Key, size_t len)
{
    word64 rh, rl, t, z=0;
	word64 p1 = input[0], p2 = input[1];
	word64 k1 = l3Key[0], k2 = l3Key[1];

    /* fully reduce (p1,p2)+(len,0) mod p127 */
    t = p1 >> 63;
    p1 &= m63;
    ADD128(p1, p2, len, t);
    /* At this point, (p1,p2) is at most 2^127+(len<<64) */
    t = (p1 > m63) + ((p1 == m63) & (p2 == m64));
    ADD128(p1, p2, z, t);
    p1 &= m63;

    /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
    t = p1 + (p2 >> 32);
    t += (t >> 32);
    t += (word32)t > 0xfffffffeU;
    p1 += (t >> 32);
    p2 += (p1 << 32);

    /* compute (p1+k1)%p64 and (p2+k2)%p64 */
    p1 += k1;
    p1 += (0 - (p1 < k1)) & 257;
    p2 += k2;
    p2 += (0 - (p2 < k2)) & 257;

    /* compute (p1+k1)*(p2+k2)%p64 */
    MUL64(rh, rl, p1, p2);
    t = rh >> 56;
    ADD128(t, rl, z, rh);
    rh <<= 8;
    ADD128(t, rl, z, rh);
    t += t << 8;
    rl += t;
    rl += (0 - (rl < t)) & 257;
    rl += (0 - (rl > p64-1)) & 257;
    return rl;
}

void VMAC_Base::TruncatedFinal(byte *mac, size_t size)
{
	CRYPTOPP_ASSERT(IsAlignedOn(DataBuf(),GetAlignmentOf<word64>()));
	CRYPTOPP_ASSERT(IsAlignedOn(m_polyState(),GetAlignmentOf<word64>()));
	size_t len = ModPowerOf2(GetBitCountLo()/8, m_L1KeyLength);

	if (len)
	{
		std::memset(m_data()+len, 0, (0-len)%16);
		VHASH_Update(DataBuf(), ((len+15)/16)*2);
		len *= 8;	// convert to bits
	}
	else if (m_isFirstBlock)
	{
		// special case for empty string
		m_polyState()[0] = m_polyState()[2];
		m_polyState()[1] = m_polyState()[3];
		if (m_is128)
		{
			m_polyState()[4] = m_polyState()[6];
			m_polyState()[5] = m_polyState()[7];
		}
	}

	if (m_is128)
	{
		word64 t[2];
		t[0] = L3Hash(m_polyState(), m_l3Key(), len) + GetWord<word64>(true, BIG_ENDIAN_ORDER, m_pad());
		t[1] = L3Hash(m_polyState()+4, m_l3Key()+2, len) + GetWord<word64>(true, BIG_ENDIAN_ORDER, m_pad()+8);
		if (size == 16)
		{
			PutWord(false, BIG_ENDIAN_ORDER, mac, t[0]);
			PutWord(false, BIG_ENDIAN_ORDER, mac+8, t[1]);
		}
		else
		{
			t[0] = ConditionalByteReverse(BIG_ENDIAN_ORDER, t[0]);
			t[1] = ConditionalByteReverse(BIG_ENDIAN_ORDER, t[1]);
			std::memcpy(mac, t, size);
		}
	}
	else
	{
		word64 t = L3Hash(m_polyState(), m_l3Key(), len);
		t += GetWord<word64>(true, BIG_ENDIAN_ORDER, m_pad() + (m_nonce()[IVSize()-1]&1) * 8);
		if (size == 8)
			PutWord(false, BIG_ENDIAN_ORDER, mac, t);
		else
		{
			t = ConditionalByteReverse(BIG_ENDIAN_ORDER, t);
			std::memcpy(mac, &t, size);
		}
	}
}

NAMESPACE_END