summaryrefslogtreecommitdiff
path: root/validat6.cpp
blob: 2feb6b7be46315507a64218362822548ed639b84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// validat6.cpp - originally written and placed in the public domain by Wei Dai
//                CryptoPP::Test namespace added by JW in February 2017.
//                Source files split in July 2018 to expedite compiles.

#include "pch.h"

#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1

#include "cryptlib.h"
#include "cpu.h"
#include "validate.h"

#include "asn.h"
#include "oids.h"
#include "blumshub.h"
#include "eccrypto.h"

#include <iostream>
#include <iomanip>
#include <sstream>

// Aggressive stack checking with VS2005 SP1 and above.
#if (_MSC_FULL_VER >= 140050727)
# pragma strict_gs_check (on)
#endif

#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4505 4355)
#endif

NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Test)

bool CryptoSystemValidate(PK_Decryptor &priv, PK_Encryptor &pub, bool thorough)
{
	bool pass = true, fail;

	fail = !pub.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2) || !priv.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2);
	pass = pass && !fail;

	std::cout << (fail ? "FAILED    " : "passed    ");
	std::cout << "cryptosystem key validation\n";

	const byte message[] = "test message";
	const int messageLen = 12;
	SecByteBlock ciphertext(priv.CiphertextLength(messageLen));
	SecByteBlock plaintext(priv.MaxPlaintextLength(ciphertext.size()));

	pub.Encrypt(GlobalRNG(), message, messageLen, ciphertext);
	fail = priv.Decrypt(GlobalRNG(), ciphertext, priv.CiphertextLength(messageLen), plaintext) != DecodingResult(messageLen);
	fail = fail || std::memcmp(message, plaintext, messageLen);
	pass = pass && !fail;

	std::cout << (fail ? "FAILED    " : "passed    ");
	std::cout << "encryption and decryption\n";

	return pass;
}

bool SimpleKeyAgreementValidate(SimpleKeyAgreementDomain &d)
{
	if (d.GetCryptoParameters().Validate(GlobalRNG(), 3))
		std::cout << "passed    simple key agreement domain parameters validation" << std::endl;
	else
	{
		std::cout << "FAILED    simple key agreement domain parameters invalid" << std::endl;
		return false;
	}

	SecByteBlock priv1(d.PrivateKeyLength()), priv2(d.PrivateKeyLength());
	SecByteBlock pub1(d.PublicKeyLength()), pub2(d.PublicKeyLength());
	SecByteBlock val1(d.AgreedValueLength()), val2(d.AgreedValueLength());

	d.GenerateKeyPair(GlobalRNG(), priv1, pub1);
	d.GenerateKeyPair(GlobalRNG(), priv2, pub2);

	std::memset(val1.begin(), 0x10, val1.size());
	std::memset(val2.begin(), 0x11, val2.size());

	if (!(d.Agree(val1, priv1, pub2) && d.Agree(val2, priv2, pub1)))
	{
		std::cout << "FAILED    simple key agreement failed" << std::endl;
		return false;
	}

	if (std::memcmp(val1.begin(), val2.begin(), d.AgreedValueLength()))
	{
		std::cout << "FAILED    simple agreed values not equal" << std::endl;
		return false;
	}

	std::cout << "passed    simple key agreement" << std::endl;
	return true;
}

bool AuthenticatedKeyAgreementValidate(AuthenticatedKeyAgreementDomain &d)
{
	if (d.GetCryptoParameters().Validate(GlobalRNG(), 3))
		std::cout << "passed    authenticated key agreement domain parameters validation" << std::endl;
	else
	{
		std::cout << "FAILED    authenticated key agreement domain parameters invalid" << std::endl;
		return false;
	}

	SecByteBlock spriv1(d.StaticPrivateKeyLength()), spriv2(d.StaticPrivateKeyLength());
	SecByteBlock epriv1(d.EphemeralPrivateKeyLength()), epriv2(d.EphemeralPrivateKeyLength());
	SecByteBlock spub1(d.StaticPublicKeyLength()), spub2(d.StaticPublicKeyLength());
	SecByteBlock epub1(d.EphemeralPublicKeyLength()), epub2(d.EphemeralPublicKeyLength());
	SecByteBlock val1(d.AgreedValueLength()), val2(d.AgreedValueLength());

	d.GenerateStaticKeyPair(GlobalRNG(), spriv1, spub1);
	d.GenerateStaticKeyPair(GlobalRNG(), spriv2, spub2);
	d.GenerateEphemeralKeyPair(GlobalRNG(), epriv1, epub1);
	d.GenerateEphemeralKeyPair(GlobalRNG(), epriv2, epub2);

	std::memset(val1.begin(), 0x10, val1.size());
	std::memset(val2.begin(), 0x11, val2.size());

	if (d.Agree(val1, spriv1, epriv1, spub2, epub2) && d.Agree(val2, spriv2, epriv2, spub1, epub1))
	{
		std::cout << "passed    authenticated key agreement protocol execution" << std::endl;
	}
	else
	{
		std::cout << "FAILED    authenticated key agreement protocol execution" << std::endl;
		return false;
	}

	if (std::memcmp(val1.begin(), val2.begin(), d.AgreedValueLength()))
	{
		std::cout << "FAILED    authenticated agreed values not equal" << std::endl;
		return false;
	}

	std::cout << "passed    authenticated key agreement" << std::endl;
	return true;
}

bool AuthenticatedKeyAgreementWithRolesValidate(AuthenticatedKeyAgreementDomain &initiator, AuthenticatedKeyAgreementDomain &recipient)
{
	if (initiator.GetCryptoParameters().Validate(GlobalRNG(), 3))
		std::cout << "passed    authenticated key agreement domain parameters validation (initiator)" << std::endl;
	else
	{
		std::cout << "FAILED    authenticated key agreement domain parameters invalid (initiator)" << std::endl;
		return false;
	}

	if (recipient.GetCryptoParameters().Validate(GlobalRNG(), 3))
		std::cout << "passed    authenticated key agreement domain parameters validation (recipient)" << std::endl;
	else
	{
		std::cout << "FAILED    authenticated key agreement domain parameters invalid (recipient)" << std::endl;
		return false;
	}

	if (initiator.StaticPrivateKeyLength() != recipient.StaticPrivateKeyLength() ||
	    initiator.EphemeralPrivateKeyLength() != recipient.EphemeralPrivateKeyLength() ||
	    initiator.StaticPublicKeyLength() != recipient.StaticPublicKeyLength() ||
	    initiator.EphemeralPublicKeyLength() != recipient.EphemeralPublicKeyLength() ||
	    initiator.AgreedValueLength() != recipient.AgreedValueLength())
	{
		std::cout << "FAILED    authenticated key agreement domain parameter consistency" << std::endl;
		return false;
	}
	else
	{
		std::cout << "passed    authenticated key agreement domain parameter consistency" << std::endl;
	}

	SecByteBlock spriv1(initiator.StaticPrivateKeyLength()), spriv2(recipient.StaticPrivateKeyLength());
	SecByteBlock epriv1(initiator.EphemeralPrivateKeyLength()), epriv2(recipient.EphemeralPrivateKeyLength());
	SecByteBlock spub1(initiator.StaticPublicKeyLength()), spub2(recipient.StaticPublicKeyLength());
	SecByteBlock epub1(initiator.EphemeralPublicKeyLength()), epub2(recipient.EphemeralPublicKeyLength());
	SecByteBlock val1(initiator.AgreedValueLength()), val2(recipient.AgreedValueLength());

	initiator.GenerateStaticKeyPair(GlobalRNG(), spriv1, spub1);
	recipient.GenerateStaticKeyPair(GlobalRNG(), spriv2, spub2);
	initiator.GenerateEphemeralKeyPair(GlobalRNG(), epriv1, epub1);
	recipient.GenerateEphemeralKeyPair(GlobalRNG(), epriv2, epub2);

	std::memset(val1.begin(), 0x10, val1.size());
	std::memset(val2.begin(), 0x11, val2.size());

	if (initiator.Agree(val1, spriv1, epriv1, spub2, epub2) && recipient.Agree(val2, spriv2, epriv2, spub1, epub1))
	{
		std::cout << "passed    authenticated key agreement protocol execution" << std::endl;
	}
	else
	{
		std::cout << "FAILED    authenticated key agreement protocol execution" << std::endl;
		return false;
	}

	if (std::memcmp(val1.begin(), val2.begin(), initiator.AgreedValueLength()))
	{
		std::cout << "FAILED    authenticated agreed values not equal" << std::endl;
		return false;
	}

	std::cout << "passed    authenticated key agreement shared secret" << std::endl;
	return true;
}

bool SignatureValidate(PK_Signer &priv, PK_Verifier &pub, bool thorough)
{
	bool pass = true, fail;

	fail = !pub.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2) || !priv.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2);
	pass = pass && !fail;

	std::cout << (fail ? "FAILED    " : "passed    ");
	std::cout << "signature key validation\n";

	const byte message[] = "test message";
	const int messageLen = 12;

	SecByteBlock signature(priv.MaxSignatureLength());
	size_t signatureLength = priv.SignMessage(GlobalRNG(), message, messageLen, signature);
	fail = !pub.VerifyMessage(message, messageLen, signature, signatureLength);
	pass = pass && !fail;

	std::cout << (fail ? "FAILED    " : "passed    ");
	std::cout << "signature and verification\n";

	++signature[0];
	fail = pub.VerifyMessage(message, messageLen, signature, signatureLength);
	pass = pass && !fail;

	std::cout << (fail ? "FAILED    " : "passed    ");
	std::cout << "checking invalid signature" << std::endl;

	if (priv.MaxRecoverableLength() > 0)
	{
		signatureLength = priv.SignMessageWithRecovery(GlobalRNG(), message, messageLen, NULLPTR, 0, signature);
		SecByteBlock recovered(priv.MaxRecoverableLengthFromSignatureLength(signatureLength));
		DecodingResult result = pub.RecoverMessage(recovered, NULLPTR, 0, signature, signatureLength);
		fail = !(result.isValidCoding && result.messageLength == messageLen && std::memcmp(recovered, message, messageLen) == 0);
		pass = pass && !fail;

		std::cout << (fail ? "FAILED    " : "passed    ");
		std::cout << "signature and verification with recovery" << std::endl;

		++signature[0];
		result = pub.RecoverMessage(recovered, NULLPTR, 0, signature, signatureLength);
		fail = result.isValidCoding;
		pass = pass && !fail;

		std::cout << (fail ? "FAILED    " : "passed    ");
		std::cout << "recovery with invalid signature" << std::endl;
	}

	return pass;
}

bool ValidateBBS()
{
	std::cout << "\nBlumBlumShub validation suite running...\n\n";

	Integer p("212004934506826557583707108431463840565872545889679278744389317666981496005411448865750399674653351");
	Integer q("100677295735404212434355574418077394581488455772477016953458064183204108039226017738610663984508231");
	Integer seed("63239752671357255800299643604761065219897634268887145610573595874544114193025997412441121667211431");
	BlumBlumShub bbs(p, q, seed);
	bool pass = true, fail;
	int j;

	const byte output1[] = {
		0x49,0xEA,0x2C,0xFD,0xB0,0x10,0x64,0xA0,0xBB,0xB9,
		0x2A,0xF1,0x01,0xDA,0xC1,0x8A,0x94,0xF7,0xB7,0xCE};
	const byte output2[] = {
		0x74,0x45,0x48,0xAE,0xAC,0xB7,0x0E,0xDF,0xAF,0xD7,
		0xD5,0x0E,0x8E,0x29,0x83,0x75,0x6B,0x27,0x46,0xA1};

	byte buf[20];
	std::ostringstream oss;

	bbs.GenerateBlock(buf, 20);
	fail = std::memcmp(output1, buf, 20) != 0;
	pass = pass && !fail;

	oss << (fail ? "FAILED    " : "passed    ");
	for (j=0;j<20;j++)
		oss << std::setw(2) << std::setfill('0') << std::hex << (int)buf[j];
	oss << std::endl;

	bbs.Seek(10);
	bbs.GenerateBlock(buf, 10);
	fail = std::memcmp(output1+10, buf, 10) != 0;
	pass = pass && !fail;

	oss << (fail ? "FAILED    " : "passed    ");
	for (j=0;j<10;j++)
		oss << std::setw(2) << std::setfill('0') << std::hex << (int)buf[j];
	oss << std::endl;

	bbs.Seek(1234567);
	bbs.GenerateBlock(buf, 20);
	fail = std::memcmp(output2, buf, 20) != 0;
	pass = pass && !fail;

	oss << (fail ? "FAILED    " : "passed    ");
	for (j=0;j<20;j++)
		oss << std::setw(2) << std::setfill('0') << std::hex << (int)buf[j];
	oss << std::endl;

	std::cout << oss.str();
	return pass;
}

bool ValidateECP()
{
	// Remove word recommend. Some ECP curves may not be recommended depending
	// on whom you ask. ECP is more descriptive item in this case.
	std::cout << "\nTesting SEC 2, NIST and Brainpool ECP curves...\n\n";
	bool pass = true; OID oid;

	while (!(oid = DL_GroupParameters_EC<ECP>::GetNextRecommendedParametersOID(oid)).GetValues().empty())
	{
		DL_GroupParameters_EC<ECP> params(oid);
		pass = params.Validate(GlobalRNG(), 2);

		// Test addition of identity element
		DL_GroupParameters_EC<ECP>::Element e1;
		e1 = params.GetCurve().Add(e1, e1);
		pass = params.IsIdentity(e1) && pass;

		// Test doubling of identity element
		DL_GroupParameters_EC<ECP>::Element e2;
		e2 = params.GetCurve().Double(e2);
		pass = params.IsIdentity(e2) && pass;

		// Test multiplication of identity element
		DL_GroupParameters_EC<ECP>::Element e3;
		Integer two = Integer::Two();
		e3 = params.GetCurve().Multiply(two, e3);
		pass = params.IsIdentity(e3) && pass;

		std::cout << (pass ? "passed" : "FAILED") << "    " << std::dec << params.GetCurve().GetField().MaxElementBitLength() << " bits\n";
	}

	std::cout << "\nECP validation suite running...\n\n";
	return ValidateECP_Agreement() && ValidateECP_Encrypt() && ValidateECP_NULLDigest_Encrypt() && ValidateECP_Sign() && pass;
}

bool ValidateEC2N()
{
	// Remove word recommend. Binary curves may not be recommended depending
	// on whom you ask. EC2N is more descriptive item in this case.
	std::cout << "\nTesting SEC 2 EC2N curves...\n\n";
	bool pass = true; OID oid;

#if 1	// TODO: turn this back on when I make EC2N faster for pentanomial basis
	while (!(oid = DL_GroupParameters_EC<EC2N>::GetNextRecommendedParametersOID(oid)).GetValues().empty())
	{
		DL_GroupParameters_EC<EC2N> params(oid);
		pass = params.Validate(GlobalRNG(), 2);

		// Test addition of identity element
		DL_GroupParameters_EC<EC2N>::Element e1;
		e1 = params.GetCurve().Add(e1, e1);
		pass = params.IsIdentity(e1) && pass;

		// Test doubling of identity element
		DL_GroupParameters_EC<EC2N>::Element e2;
		e2 = params.GetCurve().Double(e2);
		pass = params.IsIdentity(e2) && pass;

		// Test multiplication of identity element
		DL_GroupParameters_EC<EC2N>::Element e3;
		Integer two = Integer::Two();
		e3 = params.GetCurve().Multiply(two, e3);
		pass = params.IsIdentity(e3) && pass;

		std::cout << (pass ? "passed" : "FAILED") << "    " << params.GetCurve().GetField().MaxElementBitLength() << " bits\n";
	}
#endif

	std::cout << "\nEC2N validation suite running...\n\n";
	return ValidateEC2N_Agreement() && ValidateEC2N_Encrypt() && ValidateEC2N_Sign() && pass;
}

bool ValidateRSA()
{
	std::cout << "\nRSA validation suite running...\n\n";
	return ValidateRSA_Encrypt() && ValidateRSA_Sign();
}

bool ValidateLUC()
{
	std::cout << "\nLUC validation suite running...\n\n";
	return ValidateLUC_Encrypt() && ValidateLUC_Sign();
}

bool ValidateLUC_DL()
{
	// Prologue printed in each function
	return ValidateLUC_DL_Encrypt() && ValidateLUC_DL_Sign();
}

bool ValidateRabin()
{
	std::cout << "\nRabin validation suite running...\n\n";
	return ValidateRabin_Encrypt() && ValidateRabin_Sign();
}

NAMESPACE_END  // Test
NAMESPACE_END  // CryptoPP