1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// siphash.h - written and placed in public domain by Jeffrey Walton.
/// \file siphash.h
/// \brief Classes for SipHash message authentication code
/// \details SipHash computes a 64-bit or 128-bit message authentication code from a variable-length
/// message and 128-bit secret key. It was designed to be efficient even for short inputs, with
/// performance comparable to non-cryptographic hash functions.
/// \details To create a SipHash-2-4 object with a 64-bit MAC use code similar to the following.
/// <pre> SecByteBlock key(16);
/// prng.GenerateBlock(key, key.size());
///
/// SipHash<2,4,false> hash(key, key.size());
/// hash.Update(...);
/// hash.Final(...);</pre>
/// \details To create a SipHash-2-4 object with a 128-bit MAC use code similar to the following.
/// <pre> SecByteBlock key(16);
/// prng.GenerateBlock(key, key.size());
///
/// SipHash<2,4,true> hash(key, key.size());
/// hash.Update(...);
/// hash.Final(...);</pre>
/// \sa Jean-Philippe Aumasson and Daniel J. Bernstein <A HREF="http://131002.net/siphash/siphash.pdf">SipHash:
/// a fast short-input PRF</A>
/// \since Crypto++ 6.0
#ifndef CRYPTOPP_SIPHASH_H
#define CRYPTOPP_SIPHASH_H
#include "cryptlib.h"
#include "secblock.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief SipHash message authentication code information
/// \tparam T_128bit flag indicating 128-bit (true) versus 64-bit (false) digest size
template <bool T_128bit>
class SipHash_Info : public FixedKeyLength<16>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "SipHash";}
CRYPTOPP_CONSTANT(DIGESTSIZE = (T_128bit ? 16 : 8))
};
/// \brief SipHash message authentication code base class
/// \tparam C the number of compression rounds
/// \tparam D the number of finalization rounds
/// \tparam T_128bit flag indicating 128-bit (true) versus 64-bit (false) digest size
template <unsigned int C, unsigned int D, bool T_128bit>
class SipHash_Base : public MessageAuthenticationCode, public SipHash_Info<T_128bit>
{
public:
static std::string StaticAlgorithmName() {
return std::string(SipHash_Info<T_128bit>::StaticAlgorithmName())+"-"+IntToString(C)+"-"+IntToString(D);
}
virtual ~SipHash_Base() {}
SipHash_Base() : m_idx(0) {}
virtual unsigned int DigestSize() const
{return SipHash_Info<T_128bit>::DIGESTSIZE;}
virtual size_t MinKeyLength() const
{return SipHash_Info<T_128bit>::MIN_KEYLENGTH;}
virtual size_t MaxKeyLength() const
{return SipHash_Info<T_128bit>::MAX_KEYLENGTH;}
virtual size_t DefaultKeyLength() const
{return SipHash_Info<T_128bit>::DEFAULT_KEYLENGTH;}
virtual size_t GetValidKeyLength(size_t keylength) const
{CRYPTOPP_UNUSED(keylength); return SipHash_Info<T_128bit>::DEFAULT_KEYLENGTH;}
virtual IV_Requirement IVRequirement() const
{return SimpleKeyingInterface::NOT_RESYNCHRONIZABLE;}
virtual unsigned int IVSize() const
{return 0;}
virtual unsigned int OptimalBlockSize() const
{return sizeof(word64);}
virtual unsigned int OptimalDataAlignment () const
{return GetAlignmentOf<word64>();}
virtual void Update(const byte *input, size_t length);
virtual void TruncatedFinal(byte *digest, size_t digestSize);
protected:
virtual void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms);
virtual void Restart();
inline void SIPROUND()
{
m_v[0] += m_v[1];
m_v[1] = rotlConstant<13>(m_v[1]);
m_v[1] ^= m_v[0];
m_v[0] = rotlConstant<32>(m_v[0]);
m_v[2] += m_v[3];
m_v[3] = rotlConstant<16>(m_v[3]);
m_v[3] ^= m_v[2];
m_v[0] += m_v[3];
m_v[3] = rotlConstant<21>(m_v[3]);
m_v[3] ^= m_v[0];
m_v[2] += m_v[1];
m_v[1] = rotlConstant<17>(m_v[1]);
m_v[1] ^= m_v[2];
m_v[2] = rotlConstant<32>(m_v[2]);
}
private:
FixedSizeSecBlock<word64, 4> m_v;
FixedSizeSecBlock<word64, 2> m_k;
FixedSizeSecBlock<word64, 2> m_b;
// Tail bytes
FixedSizeSecBlock<byte, 8> m_acc;
size_t m_idx;
};
/// \brief SipHash message authentication code
/// \tparam C the number of compression rounds
/// \tparam D the number of finalization rounds
/// \tparam T_128bit flag indicating 128-bit (true) versus 64-bit (false) digest size
/// \details SipHash computes a 64-bit or 128-bit message authentication code from a variable-length
/// message and 128-bit secret key. It was designed to be efficient even for short inputs, with
/// performance comparable to non-cryptographic hash functions.
/// \details To create a SipHash-2-4 object with a 64-bit MAC use code similar to the following.
/// <pre> SecByteBlock key(16);
/// prng.GenerateBlock(key, key.size());
///
/// SipHash<2,4,false> hash(key, key.size());
/// hash.Update(...);
/// hash.Final(...);</pre>
/// \details To create a SipHash-2-4 object with a 128-bit MAC use code similar to the following.
/// <pre> SecByteBlock key(16);
/// prng.GenerateBlock(key, key.size());
///
/// SipHash<2,4,true> hash(key, key.size());
/// hash.Update(...);
/// hash.Final(...);</pre>
/// \sa Jean-Philippe Aumasson and Daniel J. Bernstein <A HREF="http://131002.net/siphash/siphash.pdf">SipHash:
/// a fast short-input PRF</A>
/// \since Crypto++ 6.0
template <unsigned int C=2, unsigned int D=4, bool T_128bit=false>
class SipHash : public SipHash_Base<C, D, T_128bit>
{
public:
/// \brief Create a SipHash
SipHash()
{this->UncheckedSetKey(NULLPTR, 0, g_nullNameValuePairs);}
/// \brief Create a SipHash
/// \param key a byte array used to key the cipher
/// \param length the size of the byte array, in bytes
SipHash(const byte *key, unsigned int length)
{this->UncheckedSetKey(key, length, g_nullNameValuePairs);}
};
template <unsigned int C, unsigned int D, bool T_128bit>
void SipHash_Base<C,D,T_128bit>::Update(const byte *input, size_t length)
{
CRYPTOPP_ASSERT((input && length) || !length);
if (!length) return;
if (m_idx)
{
size_t head = STDMIN(size_t(8U-m_idx), length);
memcpy(m_acc+m_idx, input, head);
m_idx += head; input += head; length -= head;
if (m_idx == 8)
{
word64 m = GetWord<word64>(true, LITTLE_ENDIAN_ORDER, m_acc);
m_v[3] ^= m;
for (unsigned int i = 0; i < C; ++i)
SIPROUND();
m_v[0] ^= m;
m_b[0] += 8;
m_idx = 0;
}
}
while (length >= 8)
{
word64 m = GetWord<word64>(false, LITTLE_ENDIAN_ORDER, input);
m_v[3] ^= m;
for (unsigned int i = 0; i < C; ++i)
SIPROUND();
m_v[0] ^= m;
m_b[0] += 8;
input += 8;
length -= 8;
}
CRYPTOPP_ASSERT(length < 8);
size_t tail = length % 8;
if (tail)
{
memcpy(m_acc+m_idx, input, tail);
m_idx += tail;
}
}
template <unsigned int C, unsigned int D, bool T_128bit>
void SipHash_Base<C,D,T_128bit>::TruncatedFinal(byte *digest, size_t digestSize)
{
CRYPTOPP_ASSERT(digest); // Pointer is valid
ThrowIfInvalidTruncatedSize(digestSize);
// The high octet holds length and is digested mod 256
m_b[0] += m_idx; m_b[0] <<= 56U;
switch (m_idx)
{
case 7:
m_b[0] |= ((word64)m_acc[6]) << 48;
// fall through
case 6:
m_b[0] |= ((word64)m_acc[5]) << 40;
// fall through
case 5:
m_b[0] |= ((word64)m_acc[4]) << 32;
// fall through
case 4:
m_b[0] |= ((word64)m_acc[3]) << 24;
// fall through
case 3:
m_b[0] |= ((word64)m_acc[2]) << 16;
// fall through
case 2:
m_b[0] |= ((word64)m_acc[1]) << 8;
// fall through
case 1:
m_b[0] |= ((word64)m_acc[0]);
// fall through
case 0:
break;
}
m_v[3] ^= m_b[0];
for (unsigned int i=0; i<C; i++)
SIPROUND();
m_v[0] ^= m_b[0];
if (T_128bit)
m_v[2] ^= 0xee;
else
m_v[2] ^= 0xff;
for (unsigned int i=0; i<D; i++)
SIPROUND();
m_b[0] = m_v[0] ^ m_v[1] ^ m_v[2] ^ m_v[3];
m_b[0] = ConditionalByteReverse(LITTLE_ENDIAN_ORDER, m_b[0]);
if (T_128bit)
{
m_v[1] ^= 0xdd;
for (unsigned int i = 0; i<D; ++i)
SIPROUND();
m_b[1] = m_v[0] ^ m_v[1] ^ m_v[2] ^ m_v[3];
m_b[1] = ConditionalByteReverse(LITTLE_ENDIAN_ORDER, m_b[1]);
}
memcpy_s(digest, digestSize, m_b.begin(), STDMIN(digestSize, (size_t)SipHash_Info<T_128bit>::DIGESTSIZE));
Restart();
}
template <unsigned int C, unsigned int D, bool T_128bit>
void SipHash_Base<C,D,T_128bit>::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
CRYPTOPP_UNUSED(params);
if (key && length)
{
m_k[0] = GetWord<word64>(false, LITTLE_ENDIAN_ORDER, key);
m_k[1] = GetWord<word64>(false, LITTLE_ENDIAN_ORDER, key+8);
}
else
{
// Avoid Coverity finding
m_k[0] = m_k[1] = 0;
}
Restart();
}
template <unsigned int C, unsigned int D, bool T_128bit>
void SipHash_Base<C,D,T_128bit>::Restart ()
{
m_v[0] = W64LIT(0x736f6d6570736575);
m_v[1] = W64LIT(0x646f72616e646f6d);
m_v[2] = W64LIT(0x6c7967656e657261);
m_v[3] = W64LIT(0x7465646279746573);
m_v[3] ^= m_k[1];
m_v[2] ^= m_k[0];
m_v[1] ^= m_k[1];
m_v[0] ^= m_k[0];
if (T_128bit)
{
m_v[1] ^= 0xee;
}
m_idx = 0;
m_b[0] = 0;
}
NAMESPACE_END
#endif // CRYPTOPP_SIPHASH_H
|