summaryrefslogtreecommitdiff
path: root/sapphire.cpp
blob: 7e46ea7913a931193103c88ee1acbd353ecac371 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// sapphire.cpp -- modified by Wei Dai from:

/* sapphire.cpp -- the Saphire II stream cipher class.
   Dedicated to the Public Domain the author and inventor:
   (Michael Paul Johnson).  This code comes with no warranty.
   Use it at your own risk.
   Ported from the Pascal implementation of the Sapphire Stream
   Cipher 9 December 1994.
   Added hash pre- and post-processing 27 December 1994.
   Modified initialization to make index variables key dependent,
   made the output function more resistant to cryptanalysis,
   and renamed to Sapphire II 2 January 1995
*/

#include "pch.h"
#include "sapphire.h"

NAMESPACE_BEGIN(CryptoPP)

byte SapphireBase::keyrand(unsigned int limit,
						   const byte *user_key,
						   byte keysize,
						   byte *rsum,
						   unsigned *keypos)
{
	unsigned u,             // Value from 0 to limit to return.
		retry_limiter,      // No infinite loops allowed.
		mask;               // Select just enough bits.

	retry_limiter = 0;
	mask = 1;               // Fill mask with enough bits to cover
	while (mask < limit)    // the desired range.
		mask = (mask << 1) + 1;
	do
		{
		*rsum = cards[*rsum] + user_key[(*keypos)++];
		if (*keypos >= keysize)
			{
			*keypos = 0;            // Recycle the user key.
			*rsum += keysize;   // key "aaaa" != key "aaaaaaaa"
			}
		u = mask & *rsum;
		if (++retry_limiter > 11)
			u %= limit;     // Prevent very rare long loops.
		}
	while (u > limit);
	return u;
}

SapphireBase::SapphireBase()
	: cards(256)
{
}

SapphireBase::SapphireBase(const byte *key, unsigned int keysize)
	: cards(256)
{
	assert(keysize < 256);
	// Key size may be up to 256 bytes.
	// Pass phrases may be used directly, with longer length
	// compensating for the low entropy expected in such keys.
	// Alternatively, shorter keys hashed from a pass phrase or
	// generated randomly may be used. For random keys, lengths
	// of from 4 to 16 bytes are recommended, depending on how
	// secure you want this to be.

	int i;
	byte rsum;
	unsigned keypos;

	// Start with cards all in order, one of each.

	for (i=0;i<256;i++)
		cards[i] = i;

	// Swap the card at each position with some other card.

	keypos = 0;         // Start with first byte of user key.
	rsum = 0;
	for (i=255;i;i--)
		std::swap(cards[i], cards[keyrand(i, key, keysize, &rsum, &keypos)]);

	// Initialize the indices and data dependencies.
	// Indices are set to different values instead of all 0
	// to reduce what is known about the state of the cards
	// when the first byte is emitted.

	rotor = cards[1];
	ratchet = cards[3];
	avalanche = cards[5];
	last_plain = cards[7];
	last_cipher = cards[rsum];

	rsum = 0;
	keypos = 0;
}

SapphireBase::~SapphireBase()
{
	rotor = ratchet = avalanche = last_plain = last_cipher = 0;
}

void SapphireEncryption::ProcessString(byte *outString, const byte *inString, unsigned int length)
{
	while(length--)
		*outString++ = SapphireEncryption::ProcessByte(*inString++);
}

void SapphireEncryption::ProcessString(byte *inoutString, unsigned int length)
{
	while(length--)
	{
		*inoutString = SapphireEncryption::ProcessByte(*inoutString);
		inoutString++;
	}
}

void SapphireDecryption::ProcessString(byte *outString, const byte *inString, unsigned int length)
{
	while(length--)
		*outString++ = SapphireDecryption::ProcessByte(*inString++);
}

void SapphireDecryption::ProcessString(byte *inoutString, unsigned int length)
{
	while(length--)
	{
		*inoutString = SapphireDecryption::ProcessByte(*inoutString);
		inoutString++;
	}
}

SapphireHash::SapphireHash(unsigned int hashLength)
	: hashLength(hashLength)
{
	Init();
}

void SapphireHash::Init()
{
	// This function is used to initialize non-keyed hash
	// computation.

	int i, j;

	// Initialize the indices and data dependencies.

	rotor = 1;
	ratchet = 3;
	avalanche = 5;
	last_plain = 7;
	last_cipher = 11;

	// Start with cards all in inverse order.

	for (i=0, j=255;i<256;i++,j--)
		cards[i] = (byte) j;
}

void SapphireHash::Update(const byte *input, unsigned int length)
{
	while(length--)
		SapphireEncryption::ProcessByte(*input++);
}

void SapphireHash::TruncatedFinal(byte *hash, unsigned int size)
{
	ThrowIfInvalidTruncatedSize(size);

	for (int i=255; i>=0; i--)
		ProcessByte((byte) i);

	for (unsigned int j=0; j<size; j++)
		hash[j] = ProcessByte(0);

	Init();
}

NAMESPACE_END