summaryrefslogtreecommitdiff
path: root/rw.cpp
blob: ab3fb707abee19389f6bbe0e8d92be23a93927c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// rw.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "rw.h"
#include "nbtheory.h"
#include "asn.h"

NAMESPACE_BEGIN(CryptoPP)

void EMSA2Pad::ComputeMessageRepresentative(RandomNumberGenerator &rng, 
	const byte *recoverableMessage, unsigned int recoverableMessageLength,
	HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
	byte *representative, unsigned int representativeBitLength) const
{
	if (representativeBitLength % 8 != 7)
		throw PK_SignatureScheme::InvalidKeyLength("EMSA2: EMSA2 requires a key length that is a multiple of 8");

	unsigned int digestSize = hash.DigestSize();
	if (representativeBitLength < 8*digestSize + 31)
		throw PK_SignatureScheme::KeyTooShort();

	unsigned int representativeByteLength = BitsToBytes(representativeBitLength);

	representative[0] = messageEmpty ? 0x4b : 0x6b;
	memset(representative+1, 0xbb, representativeByteLength-digestSize-4);	// padd with 0xbb
	byte *afterP2 = representative+representativeByteLength-digestSize-3;
	afterP2[0] = 0xba;
	hash.Final(afterP2+1);
	representative[representativeByteLength-2] = *hashIdentifier.first;
	representative[representativeByteLength-1] = 0xcc;
}

// *****************************************************************************

void RWFunction::BERDecode(BufferedTransformation &bt)
{
	BERSequenceDecoder seq(bt);
	m_n.BERDecode(seq);
	seq.MessageEnd();
}

void RWFunction::DEREncode(BufferedTransformation &bt) const
{
	DERSequenceEncoder seq(bt);
	m_n.DEREncode(seq);
	seq.MessageEnd();
}

Integer RWFunction::ApplyFunction(const Integer &in) const
{
	DoQuickSanityCheck();

	Integer out = in.Squared()%m_n;
	const word r = 12;
	// this code was written to handle both r = 6 and r = 12,
	// but now only r = 12 is used in P1363
	const word r2 = r/2;
	const word r3a = (16 + 5 - r) % 16;	// n%16 could be 5 or 13
	const word r3b = (16 + 13 - r) % 16;
	const word r4 = (8 + 5 - r/2) % 8;	// n%8 == 5
	switch (out % 16)
	{
	case r:
		break;
	case r2:
	case r2+8:
		out <<= 1;
		break;
	case r3a:
	case r3b:
		out.Negate();
		out += m_n;
		break;
	case r4:
	case r4+8:
		out.Negate();
		out += m_n;
		out <<= 1;
		break;
	default:
		out = Integer::Zero();
	}
	return out;
}

bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
	bool pass = true;
	pass = pass && m_n > Integer::One() && m_n%8 == 5;
	return pass;
}

bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper(this, name, valueType, pValue).Assignable()
		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
		;
}

void RWFunction::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
		;
}

// *****************************************************************************
// private key operations:

// generate a random private key
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	int modulusSize = 2048;
	alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);

	if (modulusSize < 16)
		throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");

	const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);
	m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));
	m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));

	m_n = m_p * m_q;
	m_u = m_q.InverseMod(m_p);
}

void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
{
	BERSequenceDecoder seq(bt);
	m_n.BERDecode(seq);
	m_p.BERDecode(seq);
	m_q.BERDecode(seq);
	m_u.BERDecode(seq);
	seq.MessageEnd();
}

void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
{
	DERSequenceEncoder seq(bt);
	m_n.DEREncode(seq);
	m_p.DEREncode(seq);
	m_q.DEREncode(seq);
	m_u.DEREncode(seq);
	seq.MessageEnd();
}

Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const
{
	// no need to do blinding because RW is only used for signatures

	DoQuickSanityCheck();

	Integer cp=in%m_p, cq=in%m_q;

	if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)
	{
		cp = cp%2 ? (cp+m_p) >> 1 : cp >> 1;
		cq = cq%2 ? (cq+m_q) >> 1 : cq >> 1;
	}

	cp = ModularSquareRoot(cp, m_p);
	cq = ModularSquareRoot(cq, m_q);

	Integer out = CRT(cq, m_q, cp, m_p, m_u);

	return STDMIN(out, m_n-out);
}

bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
	bool pass = RWFunction::Validate(rng, level);
	pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
	pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
	pass = pass && m_u.IsPositive() && m_u < m_p;
	if (level >= 1)
	{
		pass = pass && m_p * m_q == m_n;
		pass = pass && m_u * m_q % m_p == 1;
	}
	if (level >= 2)
		pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
	return pass;
}

bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable()
		CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
		CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
		CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
		;
}

void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper<RWFunction>(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
		CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
		CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
		;
}

NAMESPACE_END