1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
// pwdbased.h - originally written and placed in the public domain by Wei Dai
//! \file pwdbased.h
//! \brief Password based key derivation functions
#ifndef CRYPTOPP_PWDBASED_H
#define CRYPTOPP_PWDBASED_H
#include "cryptlib.h"
#include "hrtimer.h"
#include "integer.h"
#include "hmac.h"
NAMESPACE_BEGIN(CryptoPP)
//! \brief Abstract base class for password based key derivation function
class PasswordBasedKeyDerivationFunction
{
public:
virtual ~PasswordBasedKeyDerivationFunction() {}
//! \brief Provides the maximum derived key length
//! \returns maximum derived key length, in bytes
virtual size_t MaxDerivedKeyLength() const =0;
//! \brief Determines if the derivation function uses the purpose byte
//! \returns true if the derivation function uses the purpose byte, false otherwise
virtual bool UsesPurposeByte() const =0;
//! \brief Derive key from the password
//! \param derived the byte buffer to receive the derived password
//! \param derivedLen the size of the byte buffer to receive the derived password
//! \param purpose an octet indicating the purpose of the derivation
//! \param password the byte buffer with the password
//! \param passwordLen the size of the password, in bytes
//! \param salt the byte buffer with the salt
//! \param saltLen the size of the salt, in bytes
//! \param iterations the number of iterations to attempt
//! \param timeInSeconds the length of time the derivation function should execute
//! \returns iteration count achieved
//! \details DeriveKey returns the actual iteration count achieved. If <tt>timeInSeconds == 0</tt>, then the complete number
//! of iterations will be obtained. If <tt>timeInSeconds != 0</tt>, then DeriveKey will iterate until time elapsed, as
//! measured by ThreadUserTimer.
virtual unsigned int DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds=0) const =0;
};
//! \brief PBKDF1 from PKCS #5
//! \tparam T a HashTransformation class
template <class T>
class PKCS5_PBKDF1 : public PasswordBasedKeyDerivationFunction
{
public:
size_t MaxDerivedKeyLength() const {return T::DIGESTSIZE;}
bool UsesPurposeByte() const {return false;}
// PKCS #5 says PBKDF1 should only take 8-byte salts. This implementation allows salts of any length.
unsigned int DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds=0) const;
};
//! \brief PBKDF2 from PKCS #5
//! \tparam T a HashTransformation class
template <class T>
class PKCS5_PBKDF2_HMAC : public PasswordBasedKeyDerivationFunction
{
public:
size_t MaxDerivedKeyLength() const {return 0xffffffffU;} // should multiply by T::DIGESTSIZE, but gets overflow that way
bool UsesPurposeByte() const {return false;}
unsigned int DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds=0) const;
};
/*
class PBKDF2Params
{
public:
SecByteBlock m_salt;
unsigned int m_interationCount;
ASNOptional<ASNUnsignedWrapper<word32> > m_keyLength;
};
*/
template <class T>
unsigned int PKCS5_PBKDF1<T>::DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const
{
CRYPTOPP_UNUSED(purpose);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
CRYPTOPP_ASSERT(iterations > 0 || timeInSeconds > 0);
if (!iterations)
iterations = 1;
T hash;
hash.Update(password, passwordLen);
hash.Update(salt, saltLen);
SecByteBlock buffer(hash.DigestSize());
hash.Final(buffer);
unsigned int i;
ThreadUserTimer timer;
if (timeInSeconds)
timer.StartTimer();
for (i=1; i<iterations || (timeInSeconds && (i%128!=0 || timer.ElapsedTimeAsDouble() < timeInSeconds)); i++)
hash.CalculateDigest(buffer, buffer, buffer.size());
memcpy(derived, buffer, derivedLen);
return i;
}
template <class T>
unsigned int PKCS5_PBKDF2_HMAC<T>::DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const
{
CRYPTOPP_UNUSED(purpose);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
CRYPTOPP_ASSERT(iterations > 0 || timeInSeconds > 0);
if (!iterations)
iterations = 1;
HMAC<T> hmac(password, passwordLen);
SecByteBlock buffer(hmac.DigestSize());
ThreadUserTimer timer;
unsigned int i=1;
while (derivedLen > 0)
{
hmac.Update(salt, saltLen);
unsigned int j;
for (j=0; j<4; j++)
{
byte b = byte(i >> ((3-j)*8));
hmac.Update(&b, 1);
}
hmac.Final(buffer);
#if CRYPTOPP_MSC_VERSION
const size_t segmentLen = STDMIN(derivedLen, buffer.size());
memcpy_s(derived, segmentLen, buffer, segmentLen);
#else
const size_t segmentLen = STDMIN(derivedLen, buffer.size());
memcpy(derived, buffer, segmentLen);
#endif
if (timeInSeconds)
{
timeInSeconds = timeInSeconds / ((derivedLen + buffer.size() - 1) / buffer.size());
timer.StartTimer();
}
for (j=1; j<iterations || (timeInSeconds && (j%128!=0 || timer.ElapsedTimeAsDouble() < timeInSeconds)); j++)
{
hmac.CalculateDigest(buffer, buffer, buffer.size());
xorbuf(derived, buffer, segmentLen);
}
if (timeInSeconds)
{
iterations = j;
timeInSeconds = 0;
}
derived += segmentLen;
derivedLen -= segmentLen;
i++;
}
return iterations;
}
//! \brief PBKDF from PKCS #12, appendix B
//! \tparam T a HashTransformation class
template <class T>
class PKCS12_PBKDF : public PasswordBasedKeyDerivationFunction
{
public:
size_t MaxDerivedKeyLength() const {return size_t(0)-1;}
bool UsesPurposeByte() const {return true;}
unsigned int DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const;
};
template <class T>
unsigned int PKCS12_PBKDF<T>::DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *password, size_t passwordLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const
{
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
CRYPTOPP_ASSERT(iterations > 0 || timeInSeconds > 0);
if (!iterations)
iterations = 1;
const size_t v = T::BLOCKSIZE; // v is in bytes rather than bits as in PKCS #12
const size_t DLen = v, SLen = RoundUpToMultipleOf(saltLen, v);
const size_t PLen = RoundUpToMultipleOf(passwordLen, v), ILen = SLen + PLen;
SecByteBlock buffer(DLen + SLen + PLen);
byte *D = buffer, *S = buffer+DLen, *P = buffer+DLen+SLen, *I = S;
memset(D, purpose, DLen);
size_t i;
for (i=0; i<SLen; i++)
S[i] = salt[i % saltLen];
for (i=0; i<PLen; i++)
P[i] = password[i % passwordLen];
T hash;
SecByteBlock Ai(T::DIGESTSIZE), B(v);
ThreadUserTimer timer;
while (derivedLen > 0)
{
hash.CalculateDigest(Ai, buffer, buffer.size());
if (timeInSeconds)
{
timeInSeconds = timeInSeconds / ((derivedLen + Ai.size() - 1) / Ai.size());
timer.StartTimer();
}
for (i=1; i<iterations || (timeInSeconds && (i%128!=0 || timer.ElapsedTimeAsDouble() < timeInSeconds)); i++)
hash.CalculateDigest(Ai, Ai, Ai.size());
if (timeInSeconds)
{
iterations = (unsigned int)i;
timeInSeconds = 0;
}
for (i=0; i<B.size(); i++)
B[i] = Ai[i % Ai.size()];
Integer B1(B, B.size());
++B1;
for (i=0; i<ILen; i+=v)
(Integer(I+i, v) + B1).Encode(I+i, v);
#if CRYPTOPP_MSC_VERSION
const size_t segmentLen = STDMIN(derivedLen, Ai.size());
memcpy_s(derived, segmentLen, Ai, segmentLen);
#else
const size_t segmentLen = STDMIN(derivedLen, Ai.size());
std::memcpy(derived, Ai, segmentLen);
#endif
derived += segmentLen;
derivedLen -= segmentLen;
}
return iterations;
}
NAMESPACE_END
#endif
|