summaryrefslogtreecommitdiff
path: root/pubkey.h
blob: b959cd00b8d1c10436caa0016b5764eec63413f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
// pubkey.h - originally written and placed in the public domain by Wei Dai

/// \file pubkey.h
/// \brief This file contains helper classes/functions for implementing public key algorithms.
/// \details The class hierachies in this header file tend to look like this:
///
/// <pre>
///                   x1
///                  +--+
///                  |  |
///                 y1  z1
///                  |  |
///             x2<y1>  x2<z1>
///                  |  |
///                 y2  z2
///                  |  |
///             x3<y2>  x3<z2>
///                  |  |
///                 y3  z3
/// </pre>
///
/// <ul>
///   <li>x1, y1, z1 are abstract interface classes defined in cryptlib.h
///   <li>x2, y2, z2 are implementations of the interfaces using "abstract policies", which
/// 	  are pure virtual functions that should return interfaces to interchangeable algorithms.
/// 	  These classes have Base suffixes.
///   <li>x3, y3, z3 hold actual algorithms and implement those virtual functions.
/// 	  These classes have Impl suffixes.
/// </ul>
///
/// \details The TF_ prefix means an implementation using trapdoor functions on integers.
/// \details The DL_ prefix means an implementation using group operations in groups where discrete log is hard.

#ifndef CRYPTOPP_PUBKEY_H
#define CRYPTOPP_PUBKEY_H

#include "config.h"

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4702)
#endif

#include "cryptlib.h"
#include "integer.h"
#include "algebra.h"
#include "modarith.h"
#include "filters.h"
#include "eprecomp.h"
#include "fips140.h"
#include "argnames.h"
#include "smartptr.h"
#include "stdcpp.h"

#if defined(__SUNPRO_CC)
# define MAYBE_RETURN(x) return x
#else
# define MAYBE_RETURN(x) CRYPTOPP_UNUSED(x)
#endif

NAMESPACE_BEGIN(CryptoPP)

/// \brief Provides range for plaintext and ciphertext lengths
/// \details A trapdoor function is a function that is easy to compute in one direction,
///   but difficult to compute in the opposite direction without special knowledge.
///   The special knowledge is usually the private key.
/// \details Trapdoor functions only handle messages of a limited length or size.
///   MaxPreimage is the plaintext's maximum length, and MaxImage is the
///   ciphertext's maximum length.
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
///   RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TrapdoorFunctionBounds
{
public:
	virtual ~TrapdoorFunctionBounds() {}

	/// \brief Returns the maximum size of a message before the trapdoor function is applied
	/// \return the maximum size of a message before the trapdoor function is applied
	/// \details Derived classes must implement PreimageBound().
	virtual Integer PreimageBound() const =0;
	/// \brief Returns the maximum size of a message after the trapdoor function is applied
	/// \return the maximum size of a message after the trapdoor function is applied
	/// \details Derived classes must implement ImageBound().
	virtual Integer ImageBound() const =0;
	/// \brief Returns the maximum size of a message before the trapdoor function is applied bound to a public key
	/// \return the maximum size of a message before the trapdoor function is applied bound to a public key
	/// \details The default implementation returns <tt>PreimageBound() - 1</tt>.
	virtual Integer MaxPreimage() const {return --PreimageBound();}
	/// \brief Returns the maximum size of a message after the trapdoor function is applied bound to a public key
	/// \return the the maximum size of a message after the trapdoor function is applied bound to a public key
	/// \details The default implementation returns <tt>ImageBound() - 1</tt>.
	virtual Integer MaxImage() const {return --ImageBound();}
};

/// \brief Applies the trapdoor function, using random data if required
/// \details ApplyFunction() is the foundation for encrypting a message under a public key.
///   Derived classes will override it at some point.
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
///   RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomizedTrapdoorFunction : public TrapdoorFunctionBounds
{
public:
	virtual ~RandomizedTrapdoorFunction() {}

	/// \brief Applies the trapdoor function, using random data if required
	/// \param rng a RandomNumberGenerator derived class
	/// \param x the message on which the encryption function is applied
	/// \return the message x encrypted under the public key
	/// \details ApplyRandomizedFunction is a generalization of encryption under a public key
	///    cryptosystem. The RandomNumberGenerator may (or may not) be required.
	///    Derived classes must implement it.
	virtual Integer ApplyRandomizedFunction(RandomNumberGenerator &rng, const Integer &x) const =0;

	/// \brief Determines if the encryption algorithm is randomized
	/// \return true if the encryption algorithm is randomized, false otherwise
	/// \details If IsRandomized() returns false, then NullRNG() can be used.
	virtual bool IsRandomized() const {return true;}
};

/// \brief Applies the trapdoor function
/// \details ApplyFunction() is the foundation for encrypting a message under a public key.
///    Derived classes will override it at some point.
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
///   RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TrapdoorFunction : public RandomizedTrapdoorFunction
{
public:
	virtual ~TrapdoorFunction() {}

	/// \brief Applies the trapdoor function
	/// \param rng a RandomNumberGenerator derived class
	/// \param x the message on which the encryption function is applied
	/// \details ApplyRandomizedFunction is a generalization of encryption under a public key
	///    cryptosystem. The RandomNumberGenerator may (or may not) be required.
	/// \details Internally, ApplyRandomizedFunction() calls ApplyFunction() \a
	///   without the RandomNumberGenerator.
	Integer ApplyRandomizedFunction(RandomNumberGenerator &rng, const Integer &x) const
		{CRYPTOPP_UNUSED(rng); return ApplyFunction(x);}
	bool IsRandomized() const {return false;}

	/// \brief Applies the trapdoor
	/// \param x the message on which the encryption function is applied
	/// \return the message x encrypted under the public key
	/// \details ApplyFunction is a generalization of encryption under a public key
	///    cryptosystem. Derived classes must implement it.
	virtual Integer ApplyFunction(const Integer &x) const =0;
};

/// \brief Applies the inverse of the trapdoor function, using random data if required
/// \details CalculateInverse() is the foundation for decrypting a message under a private key
///   in a public key cryptosystem. Derived classes will override it at some point.
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
///   RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomizedTrapdoorFunctionInverse
{
public:
	virtual ~RandomizedTrapdoorFunctionInverse() {}

	/// \brief Applies the inverse of the trapdoor function, using random data if required
	/// \param rng a RandomNumberGenerator derived class
	/// \param x the message on which the decryption function is applied
	/// \return the message x decrypted under the private key
	/// \details CalculateRandomizedInverse is a generalization of decryption using the private key
	///    The RandomNumberGenerator may (or may not) be required. Derived classes must implement it.
	virtual Integer CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const =0;

	/// \brief Determines if the decryption algorithm is randomized
	/// \return true if the decryption algorithm is randomized, false otherwise
	/// \details If IsRandomized() returns false, then NullRNG() can be used.
	virtual bool IsRandomized() const {return true;}
};

/// \brief Applies the inverse of the trapdoor function
/// \details CalculateInverse() is the foundation for decrypting a message under a private key
///   in a public key cryptosystem. Derived classes will override it at some point.
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
///   RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TrapdoorFunctionInverse : public RandomizedTrapdoorFunctionInverse
{
public:
	virtual ~TrapdoorFunctionInverse() {}

	/// \brief Applies the inverse of the trapdoor function
	/// \param rng a RandomNumberGenerator derived class
	/// \param x the message on which the decryption function is applied
	/// \return the message x decrypted under the private key
	/// \details CalculateRandomizedInverse is a generalization of decryption using the private key
	/// \details Internally, CalculateRandomizedInverse() calls CalculateInverse() \a
	///   without the RandomNumberGenerator.
	Integer CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const
		{return CalculateInverse(rng, x);}

	/// \brief Determines if the decryption algorithm is randomized
	/// \return true if the decryption algorithm is randomized, false otherwise
	/// \details If IsRandomized() returns false, then NullRNG() can be used.
	bool IsRandomized() const {return false;}

	/// \brief Calculates the inverse of an element
	/// \param rng a RandomNumberGenerator derived class
	/// \param x the element
	/// \return the inverse of the element in the group
	virtual Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const =0;
};

// ********************************************************

/// \brief Message encoding method for public key encryption
class CRYPTOPP_NO_VTABLE PK_EncryptionMessageEncodingMethod
{
public:
	virtual ~PK_EncryptionMessageEncodingMethod() {}

	virtual bool ParameterSupported(const char *name) const
		{CRYPTOPP_UNUSED(name); return false;}

	/// max size of unpadded message in bytes, given max size of padded message in bits (1 less than size of modulus)
	virtual size_t MaxUnpaddedLength(size_t paddedLength) const =0;

	virtual void Pad(RandomNumberGenerator &rng, const byte *raw, size_t inputLength, byte *padded, size_t paddedBitLength, const NameValuePairs &parameters) const =0;

	virtual DecodingResult Unpad(const byte *padded, size_t paddedBitLength, byte *raw, const NameValuePairs &parameters) const =0;
};

// ********************************************************

/// \brief The base for trapdoor based cryptosystems
/// \tparam TFI trapdoor function interface derived class
/// \tparam MEI message encoding interface derived class
template <class TFI, class MEI>
class CRYPTOPP_NO_VTABLE TF_Base
{
protected:
	virtual ~TF_Base() {}

	virtual const TrapdoorFunctionBounds & GetTrapdoorFunctionBounds() const =0;

	typedef TFI TrapdoorFunctionInterface;
	virtual const TrapdoorFunctionInterface & GetTrapdoorFunctionInterface() const =0;

	typedef MEI MessageEncodingInterface;
	virtual const MessageEncodingInterface & GetMessageEncodingInterface() const =0;
};

// ********************************************************

/// \brief Public key trapdoor function default implementation
/// \tparam BASE public key cryptosystem with a fixed length
template <class BASE>
class CRYPTOPP_NO_VTABLE PK_FixedLengthCryptoSystemImpl : public BASE
{
public:
	virtual ~PK_FixedLengthCryptoSystemImpl() {}

	size_t MaxPlaintextLength(size_t ciphertextLength) const
		{return ciphertextLength == FixedCiphertextLength() ? FixedMaxPlaintextLength() : 0;}
	size_t CiphertextLength(size_t plaintextLength) const
		{return plaintextLength <= FixedMaxPlaintextLength() ? FixedCiphertextLength() : 0;}

	virtual size_t FixedMaxPlaintextLength() const =0;
	virtual size_t FixedCiphertextLength() const =0;
};

/// \brief Trapdoor function cryptosystem base class
/// \tparam INTFACE public key cryptosystem base interface
/// \tparam BASE public key cryptosystem implementation base
template <class INTFACE, class BASE>
class CRYPTOPP_NO_VTABLE TF_CryptoSystemBase : public PK_FixedLengthCryptoSystemImpl<INTFACE>, protected BASE
{
public:
	virtual ~TF_CryptoSystemBase() {}

	bool ParameterSupported(const char *name) const {return this->GetMessageEncodingInterface().ParameterSupported(name);}
	size_t FixedMaxPlaintextLength() const {return this->GetMessageEncodingInterface().MaxUnpaddedLength(PaddedBlockBitLength());}
	size_t FixedCiphertextLength() const {return this->GetTrapdoorFunctionBounds().MaxImage().ByteCount();}

protected:
	size_t PaddedBlockByteLength() const {return BitsToBytes(PaddedBlockBitLength());}
	// Coverity finding on potential overflow/underflow.
	size_t PaddedBlockBitLength() const {return SaturatingSubtract(this->GetTrapdoorFunctionBounds().PreimageBound().BitCount(),1U);}
};

/// \brief Trapdoor function cryptosystems decryption base class
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_DecryptorBase : public TF_CryptoSystemBase<PK_Decryptor, TF_Base<TrapdoorFunctionInverse, PK_EncryptionMessageEncodingMethod> >
{
public:
	virtual ~TF_DecryptorBase() {}

	DecodingResult Decrypt(RandomNumberGenerator &rng, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const;
};

/// \brief Trapdoor function cryptosystems encryption base class
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_EncryptorBase : public TF_CryptoSystemBase<PK_Encryptor, TF_Base<RandomizedTrapdoorFunction, PK_EncryptionMessageEncodingMethod> >
{
public:
	virtual ~TF_EncryptorBase() {}

	void Encrypt(RandomNumberGenerator &rng, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs &parameters = g_nullNameValuePairs) const;
};

// ********************************************************

// Typedef change due to Clang, http://github.com/weidai11/cryptopp/issues/300
typedef std::pair<const byte *, unsigned int> HashIdentifier;

/// \brief Interface for message encoding method for public key signature schemes.
/// \details PK_SignatureMessageEncodingMethod provides interfaces for message
///   encoding method for public key signature schemes. The methods support both
///   trapdoor functions (<tt>TF_*</tt>) and discrete logarithm (<tt>DL_*</tt>)
///   based schemes.
class CRYPTOPP_NO_VTABLE PK_SignatureMessageEncodingMethod
{
public:
	virtual ~PK_SignatureMessageEncodingMethod() {}

	virtual size_t MinRepresentativeBitLength(size_t hashIdentifierLength, size_t digestLength) const
		{CRYPTOPP_UNUSED(hashIdentifierLength); CRYPTOPP_UNUSED(digestLength); return 0;}
	virtual size_t MaxRecoverableLength(size_t representativeBitLength, size_t hashIdentifierLength, size_t digestLength) const
		{CRYPTOPP_UNUSED(representativeBitLength); CRYPTOPP_UNUSED(representativeBitLength); CRYPTOPP_UNUSED(hashIdentifierLength); CRYPTOPP_UNUSED(digestLength); return 0;}

	/// \brief Determines whether an encoding method requires a random number generator
	/// \return true if the encoding method requires a RandomNumberGenerator()
	/// \details if IsProbabilistic() returns false, then NullRNG() can be passed to functions that take
	///   RandomNumberGenerator().
	/// \sa Bellare and Rogaway<a href="http://grouper.ieee.org/groups/1363/P1363a/contributions/pss-submission.pdf">PSS:
	///   Provably Secure Encoding Method for Digital Signatures</a>
	bool IsProbabilistic() const
		{return true;}
	bool AllowNonrecoverablePart() const
		{throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}
	virtual bool RecoverablePartFirst() const
		{throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}

	// for verification, DL
	virtual void ProcessSemisignature(HashTransformation &hash, const byte *semisignature, size_t semisignatureLength) const
		{CRYPTOPP_UNUSED(hash); CRYPTOPP_UNUSED(semisignature); CRYPTOPP_UNUSED(semisignatureLength);}

	// for signature
	virtual void ProcessRecoverableMessage(HashTransformation &hash,
		const byte *recoverableMessage, size_t recoverableMessageLength,
		const byte *presignature, size_t presignatureLength,
		SecByteBlock &semisignature) const
	{
		CRYPTOPP_UNUSED(hash);CRYPTOPP_UNUSED(recoverableMessage); CRYPTOPP_UNUSED(recoverableMessageLength);
		CRYPTOPP_UNUSED(presignature); CRYPTOPP_UNUSED(presignatureLength); CRYPTOPP_UNUSED(semisignature);
		if (RecoverablePartFirst())
			CRYPTOPP_ASSERT(!"ProcessRecoverableMessage() not implemented");
	}

	virtual void ComputeMessageRepresentative(RandomNumberGenerator &rng,
		const byte *recoverableMessage, size_t recoverableMessageLength,
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const =0;

	virtual bool VerifyMessageRepresentative(
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const =0;

	virtual DecodingResult RecoverMessageFromRepresentative(	// for TF
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength,
		byte *recoveredMessage) const
		{CRYPTOPP_UNUSED(hash);CRYPTOPP_UNUSED(hashIdentifier); CRYPTOPP_UNUSED(messageEmpty);
		CRYPTOPP_UNUSED(representative); CRYPTOPP_UNUSED(representativeBitLength); CRYPTOPP_UNUSED(recoveredMessage);
		throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}

	virtual DecodingResult RecoverMessageFromSemisignature(		// for DL
		HashTransformation &hash, HashIdentifier hashIdentifier,
		const byte *presignature, size_t presignatureLength,
		const byte *semisignature, size_t semisignatureLength,
		byte *recoveredMessage) const
		{CRYPTOPP_UNUSED(hash);CRYPTOPP_UNUSED(hashIdentifier); CRYPTOPP_UNUSED(presignature); CRYPTOPP_UNUSED(presignatureLength);
		CRYPTOPP_UNUSED(semisignature); CRYPTOPP_UNUSED(semisignatureLength); CRYPTOPP_UNUSED(recoveredMessage);
		throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}

	// VC60 workaround
	struct HashIdentifierLookup
	{
		template <class H> struct HashIdentifierLookup2
		{
			static HashIdentifier CRYPTOPP_API Lookup()
			{
				return HashIdentifier(static_cast<const byte *>(NULLPTR), 0);
			}
		};
	};
};

/// \brief Interface for message encoding method for public key signature schemes.
/// \details PK_DeterministicSignatureMessageEncodingMethod provides interfaces
///   for message encoding method for public key signature schemes.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_DeterministicSignatureMessageEncodingMethod : public PK_SignatureMessageEncodingMethod
{
public:
	bool VerifyMessageRepresentative(
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const;
};

/// \brief Interface for message encoding method for public key signature schemes.
/// \details PK_RecoverableSignatureMessageEncodingMethod provides interfaces
///   for message encoding method for public key signature schemes.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_RecoverableSignatureMessageEncodingMethod : public PK_SignatureMessageEncodingMethod
{
public:
	bool VerifyMessageRepresentative(
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const;
};

/// \brief Interface for message encoding method for public key signature schemes.
/// \details DL_SignatureMessageEncodingMethod_DSA provides interfaces
///   for message encoding method for DSA.
class CRYPTOPP_DLL DL_SignatureMessageEncodingMethod_DSA : public PK_DeterministicSignatureMessageEncodingMethod
{
public:
	void ComputeMessageRepresentative(RandomNumberGenerator &rng,
		const byte *recoverableMessage, size_t recoverableMessageLength,
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const;
};

/// \brief Interface for message encoding method for public key signature schemes.
/// \details DL_SignatureMessageEncodingMethod_NR provides interfaces
///   for message encoding method for Nyberg-Rueppel.
class CRYPTOPP_DLL DL_SignatureMessageEncodingMethod_NR : public PK_DeterministicSignatureMessageEncodingMethod
{
public:
	void ComputeMessageRepresentative(RandomNumberGenerator &rng,
		const byte *recoverableMessage, size_t recoverableMessageLength,
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const;
};

#if 0
/// \brief Interface for message encoding method for public key signature schemes.
/// \details DL_SignatureMessageEncodingMethod_SM2 provides interfaces
///   for message encoding method for SM2.
class CRYPTOPP_DLL DL_SignatureMessageEncodingMethod_SM2 : public PK_DeterministicSignatureMessageEncodingMethod
{
public:
	void ComputeMessageRepresentative(RandomNumberGenerator &rng,
		const byte *recoverableMessage, size_t recoverableMessageLength,
		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
		byte *representative, size_t representativeBitLength) const;
};
#endif

/// \brief Interface for message encoding method for public key signature schemes.
/// \details PK_MessageAccumulatorBase provides interfaces
///   for message encoding method.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_MessageAccumulatorBase : public PK_MessageAccumulator
{
public:
	PK_MessageAccumulatorBase() : m_empty(true) {}

	virtual HashTransformation & AccessHash() =0;

	void Update(const byte *input, size_t length)
	{
		AccessHash().Update(input, length);
		m_empty = m_empty && length == 0;
	}

	SecByteBlock m_recoverableMessage, m_representative, m_presignature, m_semisignature;
	Integer m_k, m_s;
	bool m_empty;
};

/// \brief Interface for message encoding method for public key signature schemes.
/// \details PK_MessageAccumulatorBase provides interfaces
///   for message encoding method.
template <class HASH_ALGORITHM>
class PK_MessageAccumulatorImpl : public PK_MessageAccumulatorBase, protected ObjectHolder<HASH_ALGORITHM>
{
public:
	HashTransformation & AccessHash() {return this->m_object;}
};

/// \brief Trapdoor Function (TF) Signature Scheme base class
/// \tparam INTFACE interface
/// \tparam BASE base class
template <class INTFACE, class BASE>
class CRYPTOPP_NO_VTABLE TF_SignatureSchemeBase : public INTFACE, protected BASE
{
public:
	virtual ~TF_SignatureSchemeBase() {}

	size_t SignatureLength() const
		{return this->GetTrapdoorFunctionBounds().MaxPreimage().ByteCount();}
	size_t MaxRecoverableLength() const
		{return this->GetMessageEncodingInterface().MaxRecoverableLength(MessageRepresentativeBitLength(), GetHashIdentifier().second, GetDigestSize());}
	size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const
		{CRYPTOPP_UNUSED(signatureLength); return this->MaxRecoverableLength();}

	bool IsProbabilistic() const
		{return this->GetTrapdoorFunctionInterface().IsRandomized() || this->GetMessageEncodingInterface().IsProbabilistic();}
	bool AllowNonrecoverablePart() const
		{return this->GetMessageEncodingInterface().AllowNonrecoverablePart();}
	bool RecoverablePartFirst() const
		{return this->GetMessageEncodingInterface().RecoverablePartFirst();}

protected:
	size_t MessageRepresentativeLength() const {return BitsToBytes(MessageRepresentativeBitLength());}
	// Coverity finding on potential overflow/underflow.
	size_t MessageRepresentativeBitLength() const {return SaturatingSubtract(this->GetTrapdoorFunctionBounds().ImageBound().BitCount(),1U);}
	virtual HashIdentifier GetHashIdentifier() const =0;
	virtual size_t GetDigestSize() const =0;
};

/// \brief Trapdoor Function (TF) Signer base class
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_SignerBase : public TF_SignatureSchemeBase<PK_Signer, TF_Base<RandomizedTrapdoorFunctionInverse, PK_SignatureMessageEncodingMethod> >
{
public:
	virtual ~TF_SignerBase() {}

	void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const;
	size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const;
};

/// \brief Trapdoor Function (TF) Verifier base class
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_VerifierBase : public TF_SignatureSchemeBase<PK_Verifier, TF_Base<TrapdoorFunction, PK_SignatureMessageEncodingMethod> >
{
public:
	virtual ~TF_VerifierBase() {}

	void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const;
	bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const;
	DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &recoveryAccumulator) const;
};

// ********************************************************

/// \brief Trapdoor Function (TF) scheme options
/// \tparam T1 algorithm info class
/// \tparam T2 keys class with public and private key
/// \tparam T3 message encoding class
template <class T1, class T2, class T3>
struct TF_CryptoSchemeOptions
{
	typedef T1 AlgorithmInfo;
	typedef T2 Keys;
	typedef typename Keys::PrivateKey PrivateKey;
	typedef typename Keys::PublicKey PublicKey;
	typedef T3 MessageEncodingMethod;
};

/// \brief Trapdoor Function (TF) signature scheme options
/// \tparam T1 algorithm info class
/// \tparam T2 keys class with public and private key
/// \tparam T3 message encoding class
/// \tparam T4 HashTransformation class
template <class T1, class T2, class T3, class T4>
struct TF_SignatureSchemeOptions : public TF_CryptoSchemeOptions<T1, T2, T3>
{
	typedef T4 HashFunction;
};

/// \brief Trapdoor Function (TF) base implementation
/// \tparam BASE base class
/// \tparam SCHEME_OPTIONS scheme options class
/// \tparam KEY_CLASS key class
template <class BASE, class SCHEME_OPTIONS, class KEY_CLASS>
class CRYPTOPP_NO_VTABLE TF_ObjectImplBase : public AlgorithmImpl<BASE, typename SCHEME_OPTIONS::AlgorithmInfo>
{
public:
	typedef SCHEME_OPTIONS SchemeOptions;
	typedef KEY_CLASS KeyClass;

	virtual ~TF_ObjectImplBase() {}

	PublicKey & AccessPublicKey() {return AccessKey();}
	const PublicKey & GetPublicKey() const {return GetKey();}

	PrivateKey & AccessPrivateKey() {return AccessKey();}
	const PrivateKey & GetPrivateKey() const {return GetKey();}

	virtual const KeyClass & GetKey() const =0;
	virtual KeyClass & AccessKey() =0;

	const KeyClass & GetTrapdoorFunction() const {return GetKey();}

	PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const
	{
		CRYPTOPP_UNUSED(rng);
		return new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>;
	}
	PK_MessageAccumulator * NewVerificationAccumulator() const
	{
		return new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>;
	}

protected:
	const typename BASE::MessageEncodingInterface & GetMessageEncodingInterface() const
		{return Singleton<typename SCHEME_OPTIONS::MessageEncodingMethod>().Ref();}
	const TrapdoorFunctionBounds & GetTrapdoorFunctionBounds() const
		{return GetKey();}
	const typename BASE::TrapdoorFunctionInterface & GetTrapdoorFunctionInterface() const
		{return GetKey();}

	// for signature scheme
	HashIdentifier GetHashIdentifier() const
	{
        typedef typename SchemeOptions::MessageEncodingMethod::HashIdentifierLookup::template HashIdentifierLookup2<typename SchemeOptions::HashFunction> L;
        return L::Lookup();
	}
	size_t GetDigestSize() const
	{
		typedef typename SchemeOptions::HashFunction H;
		return H::DIGESTSIZE;
	}
};

/// \brief Trapdoor Function (TF) signature with external reference
/// \tparam BASE base class
/// \tparam SCHEME_OPTIONS scheme options class
/// \tparam KEY key class
/// \details TF_ObjectImplExtRef() holds a pointer to an external key structure
template <class BASE, class SCHEME_OPTIONS, class KEY>
class TF_ObjectImplExtRef : public TF_ObjectImplBase<BASE, SCHEME_OPTIONS, KEY>
{
public:
	virtual ~TF_ObjectImplExtRef() {}

	TF_ObjectImplExtRef(const KEY *pKey = NULLPTR) : m_pKey(pKey) {}
	void SetKeyPtr(const KEY *pKey) {m_pKey = pKey;}

	const KEY & GetKey() const {return *m_pKey;}
	KEY & AccessKey() {throw NotImplemented("TF_ObjectImplExtRef: cannot modify refererenced key");}

private:
	const KEY * m_pKey;
};

/// \brief Trapdoor Function (TF) signature scheme options
/// \tparam BASE base class
/// \tparam SCHEME_OPTIONS scheme options class
/// \tparam KEY_CLASS key class
/// \details TF_ObjectImpl() holds a reference to a trapdoor function
template <class BASE, class SCHEME_OPTIONS, class KEY_CLASS>
class CRYPTOPP_NO_VTABLE TF_ObjectImpl : public TF_ObjectImplBase<BASE, SCHEME_OPTIONS, KEY_CLASS>
{
public:
	typedef KEY_CLASS KeyClass;

	virtual ~TF_ObjectImpl() {}

	const KeyClass & GetKey() const {return m_trapdoorFunction;}
	KeyClass & AccessKey() {return m_trapdoorFunction;}

private:
	KeyClass m_trapdoorFunction;
};

/// \brief Trapdoor Function (TF) decryptor options
/// \tparam SCHEME_OPTIONS scheme options class
template <class SCHEME_OPTIONS>
class TF_DecryptorImpl : public TF_ObjectImpl<TF_DecryptorBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
{
};

/// \brief Trapdoor Function (TF) encryptor options
/// \tparam SCHEME_OPTIONS scheme options class
template <class SCHEME_OPTIONS>
class TF_EncryptorImpl : public TF_ObjectImpl<TF_EncryptorBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
{
};

/// \brief Trapdoor Function (TF) encryptor options
/// \tparam SCHEME_OPTIONS scheme options class
template <class SCHEME_OPTIONS>
class TF_SignerImpl : public TF_ObjectImpl<TF_SignerBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
{
};

/// \brief Trapdoor Function (TF) encryptor options
/// \tparam SCHEME_OPTIONS scheme options class
template <class SCHEME_OPTIONS>
class TF_VerifierImpl : public TF_ObjectImpl<TF_VerifierBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
{
};

// ********************************************************

/// \brief Mask generation function interface
/// \sa P1363_KDF2, P1363_MGF1
/// \since Crypto++ 2.0
class CRYPTOPP_NO_VTABLE MaskGeneratingFunction
{
public:
	virtual ~MaskGeneratingFunction() {}

	/// \brief Generate and apply mask
	/// \param hash HashTransformation derived class
	/// \param output the destination byte array
	/// \param outputLength the size fo the the destination byte array
	/// \param input the message to hash
	/// \param inputLength the size of the message
	/// \param mask flag indicating whether to apply the mask
	virtual void GenerateAndMask(HashTransformation &hash, byte *output, size_t outputLength, const byte *input, size_t inputLength, bool mask = true) const =0;
};

/// \fn P1363_MGF1KDF2_Common
/// \brief P1363 mask generation function
/// \param hash HashTransformation derived class
/// \param output the destination byte array
/// \param outputLength the size fo the the destination byte array
/// \param input the message to hash
/// \param inputLength the size of the message
/// \param derivationParams additional derivation parameters
/// \param derivationParamsLength the size of the additional derivation parameters
/// \param mask flag indicating whether to apply the mask
/// \param counterStart starting counter value used in generation function
CRYPTOPP_DLL void CRYPTOPP_API P1363_MGF1KDF2_Common(HashTransformation &hash, byte *output, size_t outputLength, const byte *input, size_t inputLength, const byte *derivationParams, size_t derivationParamsLength, bool mask, unsigned int counterStart);

/// \brief P1363 mask generation function
/// \sa P1363_KDF2, MaskGeneratingFunction
/// \since Crypto++ 2.0
class P1363_MGF1 : public MaskGeneratingFunction
{
public:
	/// \brief The algorithm name
	/// \return the algorithm name
	/// \details StaticAlgorithmName returns the algorithm's name as a static
	///   member function.
	CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "MGF1";}

	/// \brief P1363 mask generation function
	/// \param hash HashTransformation derived class
	/// \param output the destination byte array
	/// \param outputLength the size fo the the destination byte array
	/// \param input the message to hash
	/// \param inputLength the size of the message
	/// \param mask flag indicating whether to apply the mask
	void GenerateAndMask(HashTransformation &hash, byte *output, size_t outputLength, const byte *input, size_t inputLength, bool mask = true) const
	{
		P1363_MGF1KDF2_Common(hash, output, outputLength, input, inputLength, NULLPTR, 0, mask, 0);
	}
};

// ********************************************************

/// \brief P1363 key derivation function
/// \tparam H hash function used in the derivation
/// \sa P1363_MGF1, KeyDerivationFunction, <A
///  HREF="https://www.cryptopp.com/wiki/P1363_KDF2">P1363_KDF2</A>
///  on the Crypto++ wiki
/// \since Crypto++ 2.0
template <class H>
class P1363_KDF2
{
public:
	/// \brief P1363 key derivation function
	/// \param output the destination byte array
	/// \param outputLength the size fo the the destination byte array
	/// \param input the message to hash
	/// \param inputLength the size of the message
	/// \param derivationParams additional derivation parameters
	/// \param derivationParamsLength the size of the additional derivation parameters
	/// \details DeriveKey calls P1363_MGF1KDF2_Common
	static void CRYPTOPP_API DeriveKey(byte *output, size_t outputLength, const byte *input, size_t inputLength, const byte *derivationParams, size_t derivationParamsLength)
	{
		H h;
		P1363_MGF1KDF2_Common(h, output, outputLength, input, inputLength, derivationParams, derivationParamsLength, false, 1);
	}
};

// ********************************************************

/// \brief Exception thrown when an invalid group element is encountered
/// \details Thrown by DecodeElement and AgreeWithStaticPrivateKey
class DL_BadElement : public InvalidDataFormat
{
public:
	DL_BadElement() : InvalidDataFormat("CryptoPP: invalid group element") {}
};

/// \brief Interface for Discrete Log (DL) group parameters
/// \tparam T element in the group
/// \details The element is usually an Integer, \ref ECP "ECP::Point" or \ref EC2N "EC2N::Point"
template <class T>
class CRYPTOPP_NO_VTABLE DL_GroupParameters : public CryptoParameters
{
	typedef DL_GroupParameters<T> ThisClass;

public:
	typedef T Element;

	virtual ~DL_GroupParameters() {}

	DL_GroupParameters() : m_validationLevel(0) {}

	// CryptoMaterial
	bool Validate(RandomNumberGenerator &rng, unsigned int level) const
	{
		if (!GetBasePrecomputation().IsInitialized())
			return false;

		if (m_validationLevel > level)
			return true;

		CRYPTOPP_ASSERT(ValidateGroup(rng, level));
		bool pass = ValidateGroup(rng, level);
		CRYPTOPP_ASSERT(ValidateElement(level, GetSubgroupGenerator(), &GetBasePrecomputation()));
		pass = pass && ValidateElement(level, GetSubgroupGenerator(), &GetBasePrecomputation());

		m_validationLevel = pass ? level+1 : 0;

		return pass;
	}

	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper(this, name, valueType, pValue)
			CRYPTOPP_GET_FUNCTION_ENTRY(SubgroupOrder)
			CRYPTOPP_GET_FUNCTION_ENTRY(SubgroupGenerator)
			;
	}

	/// \brief Determines whether the object supports precomputation
	/// \return true if the object supports precomputation, false otherwise
	/// \sa Precompute()
	bool SupportsPrecomputation() const {return true;}

	/// \brief Perform precomputation
	/// \param precomputationStorage the suggested number of objects for the precompute table
	/// \throw NotImplemented
	/// \details The exact semantics of Precompute() varies, but it typically means calculate
	///   a table of n objects that can be used later to speed up computation.
	/// \details If a derived class does not override Precompute(), then the base class throws
	///   NotImplemented.
	/// \sa SupportsPrecomputation(), LoadPrecomputation(), SavePrecomputation()
	void Precompute(unsigned int precomputationStorage=16)
	{
		AccessBasePrecomputation().Precompute(GetGroupPrecomputation(), GetSubgroupOrder().BitCount(), precomputationStorage);
	}

	/// \brief Retrieve previously saved precomputation
	/// \param storedPrecomputation BufferedTransformation with the saved precomputation
	/// \throw NotImplemented
	/// \sa SupportsPrecomputation(), Precompute()
	void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
	{
		AccessBasePrecomputation().Load(GetGroupPrecomputation(), storedPrecomputation);
		m_validationLevel = 0;
	}

	/// \brief Save precomputation for later use
	/// \param storedPrecomputation BufferedTransformation to write the precomputation
	/// \throw NotImplemented
	/// \sa SupportsPrecomputation(), Precompute()
	void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
	{
		GetBasePrecomputation().Save(GetGroupPrecomputation(), storedPrecomputation);
	}

	/// \brief Retrieves the subgroup generator
	/// \return the subgroup generator
	/// \details The subgroup generator is retrieved from the base precomputation
	virtual const Element & GetSubgroupGenerator() const {return GetBasePrecomputation().GetBase(GetGroupPrecomputation());}

	/// \brief Sets the subgroup generator
	/// \param base the new subgroup generator
	/// \details The subgroup generator is set in the base precomputation
	virtual void SetSubgroupGenerator(const Element &base) {AccessBasePrecomputation().SetBase(GetGroupPrecomputation(), base);}

	/// \brief Exponentiates the base
	/// \return the element after exponentiation
	/// \details ExponentiateBase() calls GetBasePrecomputation() and then exponentiates.
	virtual Element ExponentiateBase(const Integer &exponent) const
	{
		return GetBasePrecomputation().Exponentiate(GetGroupPrecomputation(), exponent);
	}

	/// \brief Exponentiates an element
	/// \param base the base elemenet
	/// \param exponent the exponent to raise the base
	/// \return the result of the exponentiation
	/// \details Internally, ExponentiateElement() calls SimultaneousExponentiate().
	virtual Element ExponentiateElement(const Element &base, const Integer &exponent) const
	{
		Element result;
		SimultaneousExponentiate(&result, base, &exponent, 1);
		return result;
	}

	/// \brief Retrieves the group precomputation
	/// \return a const reference to the group precomputation
	virtual const DL_GroupPrecomputation<Element> & GetGroupPrecomputation() const =0;

	/// \brief Retrieves the group precomputation
	/// \return a const reference to the group precomputation using a fixed base
	virtual const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const =0;

	/// \brief Retrieves the group precomputation
	/// \return a non-const reference to the group precomputation using a fixed base
	virtual DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() =0;

	/// \brief Retrieves the subgroup order
	/// \return the order of subgroup generated by the base element
	virtual const Integer & GetSubgroupOrder() const =0;

	/// \brief Retrieves the maximum exponent for the group
	/// \return the maximum exponent for the group
	virtual Integer GetMaxExponent() const =0;

	/// \brief Retrieves the order of the group
	/// \return the order of the group
	/// \details Either GetGroupOrder() or GetCofactor() must be overridden in a derived class.
	virtual Integer GetGroupOrder() const {return GetSubgroupOrder()*GetCofactor();}

	/// \brief Retrieves the cofactor
	/// \return the cofactor
	/// \details Either GetGroupOrder() or GetCofactor() must be overridden in a derived class.
	virtual Integer GetCofactor() const {return GetGroupOrder()/GetSubgroupOrder();}

	/// \brief Retrieves the encoded element's size
	/// \param reversible flag indicating the encoding format
	/// \return encoded element's size, in bytes
	/// \details The format of the encoded element varies by the underlying type of the element and the
	///   reversible flag. GetEncodedElementSize() must be implemented in a derived class.
	/// \sa GetEncodedElementSize(), EncodeElement(), DecodeElement()
	virtual unsigned int GetEncodedElementSize(bool reversible) const =0;

	/// \brief Encodes the element
	/// \param reversible flag indicating the encoding format
	/// \param element reference to the element to encode
	/// \param encoded destination byte array for the encoded element
	/// \details EncodeElement() must be implemented in a derived class.
	/// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
	virtual void EncodeElement(bool reversible, const Element &element, byte *encoded) const =0;

	/// \brief Decodes the element
	/// \param encoded byte array with the encoded element
	/// \param checkForGroupMembership flag indicating if the element should be validated
	/// \return Element after decoding
	/// \details DecodeElement() must be implemented in a derived class.
	/// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
	virtual Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const =0;

	/// \brief Converts an element to an Integer
	/// \param element the element to convert to an Integer
	/// \return Element after converting to an Integer
	/// \details ConvertElementToInteger() must be implemented in a derived class.
	virtual Integer ConvertElementToInteger(const Element &element) const =0;

	/// \brief Check the group for errors
	/// \param rng RandomNumberGenerator for objects which use randomized testing
	/// \param level level of thoroughness
	/// \return true if the tests succeed, false otherwise
	/// \details There are four levels of thoroughness:
	///   <ul>
	///   <li>0 - using this object won't cause a crash or exception
	///   <li>1 - this object will probably function, and encrypt, sign, other operations correctly
	///   <li>2 - ensure this object will function correctly, and perform reasonable security checks
	///   <li>3 - perform reasonable security checks, and do checks that may take a long time
	///   </ul>
	/// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
	///   Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
	/// \details ValidateGroup() must be implemented in a derived class.
	virtual bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const =0;

	/// \brief Check the element for errors
	/// \param level level of thoroughness
	/// \param element element to check
	/// \param precomp optional pointer to DL_FixedBasePrecomputation
	/// \return true if the tests succeed, false otherwise
	/// \details There are four levels of thoroughness:
	///   <ul>
	///   <li>0 - using this object won't cause a crash or exception
	///   <li>1 - this object will probably function, and encrypt, sign, other operations correctly
	///   <li>2 - ensure this object will function correctly, and perform reasonable security checks
	///   <li>3 - perform reasonable security checks, and do checks that may take a long time
	///   </ul>
	/// \details Level 0 performs group membership checks. Level 1 may not check for weak keys and such.
	///   Levels 2 and 3 are recommended.
	/// \details ValidateElement() must be implemented in a derived class.
	virtual bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const =0;

	virtual bool FastSubgroupCheckAvailable() const =0;

	/// \brief Determines if an element is an identity
	/// \param element element to check
	/// \return true if the element is an identity, false otherwise
	/// \details The identity element or or neutral element is a special element in a group that leaves
	///   other elements unchanged when combined with it.
	/// \details IsIdentity() must be implemented in a derived class.
	virtual bool IsIdentity(const Element &element) const =0;

	/// \brief Exponentiates a base to multiple exponents
	/// \param results an array of Elements
	/// \param base the base to raise to the exponents
	/// \param exponents an array of exponents
	/// \param exponentsCount the number of exponents in the array
	/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
	///   result at the respective position in the results array.
	/// \details SimultaneousExponentiate() must be implemented in a derived class.
	/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
	/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
	virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const =0;

protected:
	void ParametersChanged() {m_validationLevel = 0;}

private:
	mutable unsigned int m_validationLevel;
};

/// \brief Base implementation of Discrete Log (DL) group parameters
/// \tparam GROUP_PRECOMP group precomputation class
/// \tparam BASE_PRECOMP fixed base precomputation class
/// \tparam BASE class or type of an element
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element>, class BASE = DL_GroupParameters<typename GROUP_PRECOMP::Element> >
class DL_GroupParametersImpl : public BASE
{
public:
	typedef GROUP_PRECOMP GroupPrecomputation;
	typedef typename GROUP_PRECOMP::Element Element;
	typedef BASE_PRECOMP BasePrecomputation;

	virtual ~DL_GroupParametersImpl() {}

	/// \brief Retrieves the group precomputation
	/// \return a const reference to the group precomputation
	const DL_GroupPrecomputation<Element> & GetGroupPrecomputation() const {return m_groupPrecomputation;}

	/// \brief Retrieves the group precomputation
	/// \return a const reference to the group precomputation using a fixed base
	const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return m_gpc;}

	/// \brief Retrieves the group precomputation
	/// \return a non-const reference to the group precomputation using a fixed base
	DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return m_gpc;}

protected:
	GROUP_PRECOMP m_groupPrecomputation;
	BASE_PRECOMP m_gpc;
};

/// \brief Base class for a Discrete Log (DL) key
/// \tparam T class or type of an element
/// \details The element is usually an Integer, \ref ECP "ECP::Point" or \ref EC2N "EC2N::Point"
template <class T>
class CRYPTOPP_NO_VTABLE DL_Key
{
public:
	virtual ~DL_Key() {}

	/// \brief Retrieves abstract group parameters
	/// \return a const reference to the group parameters
	virtual const DL_GroupParameters<T> & GetAbstractGroupParameters() const =0;
	/// \brief Retrieves abstract group parameters
	/// \return a non-const reference to the group parameters
	virtual DL_GroupParameters<T> & AccessAbstractGroupParameters() =0;
};

/// \brief Interface for Discrete Log (DL) public keys
template <class T>
class CRYPTOPP_NO_VTABLE DL_PublicKey : public DL_Key<T>
{
	typedef DL_PublicKey<T> ThisClass;

public:
	typedef T Element;

	virtual ~DL_PublicKey();

	/// \brief Get a named value
	/// \param name the name of the object or value to retrieve
	/// \param valueType reference to a variable that receives the value
	/// \param pValue void pointer to a variable that receives the value
	/// \return true if the value was retrieved, false otherwise
	/// \details GetVoidValue() retrieves the value of name if it exists.
	/// \note GetVoidValue() is an internal function and should be implemented
	///   by derived classes. Users should use one of the other functions instead.
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///   GetRequiredParameter() and GetRequiredIntParameter()
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper(this, name, valueType, pValue, &this->GetAbstractGroupParameters())
				CRYPTOPP_GET_FUNCTION_ENTRY(PublicElement);
	}

	/// \brief Initialize or reinitialize this key
	/// \param source NameValuePairs to assign
	void AssignFrom(const NameValuePairs &source);

	/// \brief Retrieves the public element
	/// \return the public element
	virtual const Element & GetPublicElement() const {return GetPublicPrecomputation().GetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation());}

	/// \brief Sets the public element
	/// \param y the public element
	virtual void SetPublicElement(const Element &y) {AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}

	/// \brief Exponentiates this element
	/// \param exponent the exponent to raise the base
	/// \return the public element raised to the exponent
	virtual Element ExponentiatePublicElement(const Integer &exponent) const
	{
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		return GetPublicPrecomputation().Exponentiate(params.GetGroupPrecomputation(), exponent);
	}

	/// \brief Exponentiates an element
	/// \param baseExp the first exponent
	/// \param publicExp the second exponent
	/// \return the public element raised to the exponent
	/// \details CascadeExponentiateBaseAndPublicElement raises the public element to
	///   the base element and precomputation.
	virtual Element CascadeExponentiateBaseAndPublicElement(const Integer &baseExp, const Integer &publicExp) const
	{
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		return params.GetBasePrecomputation().CascadeExponentiate(params.GetGroupPrecomputation(), baseExp, GetPublicPrecomputation(), publicExp);
	}

	/// \brief Accesses the public precomputation
	/// \details GetPublicPrecomputation returns a const reference, while
	///   AccessPublicPrecomputation returns a non-const reference. Must be
	///   overridden in derived classes.
	virtual const DL_FixedBasePrecomputation<T> & GetPublicPrecomputation() const =0;

	/// \brief Accesses the public precomputation
	/// \details GetPublicPrecomputation returns a const reference, while
	///   AccessPublicPrecomputation returns a non-const reference. Must be
	///   overridden in derived classes.
	virtual DL_FixedBasePrecomputation<T> & AccessPublicPrecomputation() =0;
};

// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
template<class T>
DL_PublicKey<T>::~DL_PublicKey() {}

/// \brief Interface for Discrete Log (DL) private keys
template <class T>
class CRYPTOPP_NO_VTABLE DL_PrivateKey : public DL_Key<T>
{
	typedef DL_PrivateKey<T> ThisClass;

public:
	typedef T Element;

	virtual ~DL_PrivateKey();

	/// \brief Initializes a public key from this key
	/// \param pub reference to a public key
	void MakePublicKey(DL_PublicKey<T> &pub) const
	{
		pub.AccessAbstractGroupParameters().AssignFrom(this->GetAbstractGroupParameters());
		pub.SetPublicElement(this->GetAbstractGroupParameters().ExponentiateBase(GetPrivateExponent()));
	}

	/// \brief Get a named value
	/// \param name the name of the object or value to retrieve
	/// \param valueType reference to a variable that receives the value
	/// \param pValue void pointer to a variable that receives the value
	/// \return true if the value was retrieved, false otherwise
	/// \details GetVoidValue() retrieves the value of name if it exists.
	/// \note GetVoidValue() is an internal function and should be implemented
	///   by derived classes. Users should use one of the other functions instead.
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///   GetRequiredParameter() and GetRequiredIntParameter()
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper(this, name, valueType, pValue, &this->GetAbstractGroupParameters())
				CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent);
	}

	/// \brief Initialize or reinitialize this key
	/// \param source NameValuePairs to assign
	void AssignFrom(const NameValuePairs &source)
	{
		this->AccessAbstractGroupParameters().AssignFrom(source);
		AssignFromHelper(this, source)
			CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent);
	}

	/// \brief Retrieves the private exponent
	/// \return the private exponent
	/// \details Must be overridden in derived classes.
	virtual const Integer & GetPrivateExponent() const =0;
	/// \brief Sets the private exponent
	/// \param x the private exponent
	/// \details Must be overridden in derived classes.
	virtual void SetPrivateExponent(const Integer &x) =0;
};

// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
template<class T>
DL_PrivateKey<T>::~DL_PrivateKey() {}

template <class T>
void DL_PublicKey<T>::AssignFrom(const NameValuePairs &source)
{
	DL_PrivateKey<T> *pPrivateKey = NULLPTR;
	if (source.GetThisPointer(pPrivateKey))
		pPrivateKey->MakePublicKey(*this);
	else
	{
		this->AccessAbstractGroupParameters().AssignFrom(source);
		AssignFromHelper(this, source)
			CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
	}
}

class OID;

/// \brief Discrete Log (DL) key base implementation
/// \tparam PK Key class
/// \tparam GP GroupParameters class
/// \tparam O OID class
template <class PK, class GP, class O = OID>
class DL_KeyImpl : public PK
{
public:
	typedef GP GroupParameters;

	virtual ~DL_KeyImpl() {}

	O GetAlgorithmID() const {return GetGroupParameters().GetAlgorithmID();}
	bool BERDecodeAlgorithmParameters(BufferedTransformation &bt)
		{AccessGroupParameters().BERDecode(bt); return true;}
	bool DEREncodeAlgorithmParameters(BufferedTransformation &bt) const
		{GetGroupParameters().DEREncode(bt); return true;}

	const GP & GetGroupParameters() const {return m_groupParameters;}
	GP & AccessGroupParameters() {return m_groupParameters;}

private:
	GP m_groupParameters;
};

class X509PublicKey;
class PKCS8PrivateKey;

/// \brief Discrete Log (DL) private key base implementation
/// \tparam GP GroupParameters class
template <class GP>
class DL_PrivateKeyImpl : public DL_PrivateKey<typename GP::Element>, public DL_KeyImpl<PKCS8PrivateKey, GP>
{
public:
	typedef typename GP::Element Element;

	virtual ~DL_PrivateKeyImpl() {}

	// GeneratableCryptoMaterial
	bool Validate(RandomNumberGenerator &rng, unsigned int level) const
	{
		CRYPTOPP_ASSERT(GetAbstractGroupParameters().Validate(rng, level));
		bool pass = GetAbstractGroupParameters().Validate(rng, level);

		const Integer &q = GetAbstractGroupParameters().GetSubgroupOrder();
		const Integer &x = GetPrivateExponent();

		CRYPTOPP_ASSERT(x.IsPositive());
		CRYPTOPP_ASSERT(x < q);
		pass = pass && x.IsPositive() && x < q;

		if (level >= 1)
		{
			CRYPTOPP_ASSERT(Integer::Gcd(x, q) == Integer::One());
			pass = pass && Integer::Gcd(x, q) == Integer::One();
		}
		return pass;
	}

	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper<DL_PrivateKey<Element> >(this, name, valueType, pValue).Assignable();
	}

	void AssignFrom(const NameValuePairs &source)
	{
		AssignFromHelper<DL_PrivateKey<Element> >(this, source);
	}

	void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params)
	{
		if (!params.GetThisObject(this->AccessGroupParameters()))
			this->AccessGroupParameters().GenerateRandom(rng, params);
		Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
		SetPrivateExponent(x);
	}

	bool SupportsPrecomputation() const {return true;}

	void Precompute(unsigned int precomputationStorage=16)
		{AccessAbstractGroupParameters().Precompute(precomputationStorage);}

	void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
		{AccessAbstractGroupParameters().LoadPrecomputation(storedPrecomputation);}

	void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
		{GetAbstractGroupParameters().SavePrecomputation(storedPrecomputation);}

	// DL_Key
	const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return this->GetGroupParameters();}
	DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return this->AccessGroupParameters();}

	// DL_PrivateKey
	const Integer & GetPrivateExponent() const {return m_x;}
	void SetPrivateExponent(const Integer &x) {m_x = x;}

	// PKCS8PrivateKey
	void BERDecodePrivateKey(BufferedTransformation &bt, bool, size_t)
		{m_x.BERDecode(bt);}
	void DEREncodePrivateKey(BufferedTransformation &bt) const
		{m_x.DEREncode(bt);}

private:
	Integer m_x;
};

template <class BASE, class SIGNATURE_SCHEME>
class DL_PrivateKey_WithSignaturePairwiseConsistencyTest : public BASE
{
public:
	virtual ~DL_PrivateKey_WithSignaturePairwiseConsistencyTest() {}

	void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params)
	{
		BASE::GenerateRandom(rng, params);

		if (FIPS_140_2_ComplianceEnabled())
		{
			typename SIGNATURE_SCHEME::Signer signer(*this);
			typename SIGNATURE_SCHEME::Verifier verifier(signer);
			SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);
		}
	}
};

/// \brief Discrete Log (DL) public key base implementation
/// \tparam GP GroupParameters class
template <class GP>
class DL_PublicKeyImpl : public DL_PublicKey<typename GP::Element>, public DL_KeyImpl<X509PublicKey, GP>
{
public:
	typedef typename GP::Element Element;

	virtual ~DL_PublicKeyImpl();

	// CryptoMaterial
	bool Validate(RandomNumberGenerator &rng, unsigned int level) const
	{
		CRYPTOPP_ASSERT(GetAbstractGroupParameters().Validate(rng, level));
		bool pass = GetAbstractGroupParameters().Validate(rng, level);
		CRYPTOPP_ASSERT(GetAbstractGroupParameters().ValidateElement(level, this->GetPublicElement(), &GetPublicPrecomputation()));
		pass = pass && GetAbstractGroupParameters().ValidateElement(level, this->GetPublicElement(), &GetPublicPrecomputation());
		return pass;
	}

	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper<DL_PublicKey<Element> >(this, name, valueType, pValue).Assignable();
	}

	void AssignFrom(const NameValuePairs &source)
	{
		AssignFromHelper<DL_PublicKey<Element> >(this, source);
	}

	bool SupportsPrecomputation() const {return true;}

	void Precompute(unsigned int precomputationStorage=16)
	{
		AccessAbstractGroupParameters().Precompute(precomputationStorage);
		AccessPublicPrecomputation().Precompute(GetAbstractGroupParameters().GetGroupPrecomputation(), GetAbstractGroupParameters().GetSubgroupOrder().BitCount(), precomputationStorage);
	}

	void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
	{
		AccessAbstractGroupParameters().LoadPrecomputation(storedPrecomputation);
		AccessPublicPrecomputation().Load(GetAbstractGroupParameters().GetGroupPrecomputation(), storedPrecomputation);
	}

	void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
	{
		GetAbstractGroupParameters().SavePrecomputation(storedPrecomputation);
		GetPublicPrecomputation().Save(GetAbstractGroupParameters().GetGroupPrecomputation(), storedPrecomputation);
	}

	// DL_Key
	const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return this->GetGroupParameters();}
	DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return this->AccessGroupParameters();}

	// DL_PublicKey
	const DL_FixedBasePrecomputation<Element> & GetPublicPrecomputation() const {return m_ypc;}
	DL_FixedBasePrecomputation<Element> & AccessPublicPrecomputation() {return m_ypc;}

	// non-inherited
	bool operator==(const DL_PublicKeyImpl<GP> &rhs) const
		{return this->GetGroupParameters() == rhs.GetGroupParameters() && this->GetPublicElement() == rhs.GetPublicElement();}

private:
	typename GP::BasePrecomputation m_ypc;
};

// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
template<class GP>
DL_PublicKeyImpl<GP>::~DL_PublicKeyImpl() {}

/// \brief Interface for Elgamal-like signature algorithms
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_ElgamalLikeSignatureAlgorithm
{
public:
	virtual ~DL_ElgamalLikeSignatureAlgorithm() {}

	/// \brief Sign a message using a private key
	/// \param params GroupParameters
	/// \param privateKey private key
	/// \param k signing exponent
	/// \param e encoded message
	/// \param r r part of signature
	/// \param s s part of signature
	virtual void Sign(const DL_GroupParameters<T> &params, const Integer &privateKey, const Integer &k, const Integer &e, Integer &r, Integer &s) const =0;

	/// \brief Verify a message using a public key
	/// \param params GroupParameters
	/// \param publicKey public key
	/// \param e encoded message
	/// \param r r part of signature
	/// \param s s part of signature
	virtual bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const =0;

	/// \brief Recover a Presignature
	/// \param params GroupParameters
	/// \param publicKey public key
	/// \param r r part of signature
	/// \param s s part of signature
	virtual Integer RecoverPresignature(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &r, const Integer &s) const
	{
		CRYPTOPP_UNUSED(params); CRYPTOPP_UNUSED(publicKey); CRYPTOPP_UNUSED(r); CRYPTOPP_UNUSED(s);
		throw NotImplemented("DL_ElgamalLikeSignatureAlgorithm: this signature scheme does not support message recovery");
		MAYBE_RETURN(Integer::Zero());
	}

	/// \brief Retrieve R length
	/// \param params GroupParameters
	virtual size_t RLen(const DL_GroupParameters<T> &params) const
		{return params.GetSubgroupOrder().ByteCount();}

	/// \brief Retrieve S length
	/// \param params GroupParameters
	virtual size_t SLen(const DL_GroupParameters<T> &params) const
		{return params.GetSubgroupOrder().ByteCount();}

	/// \brief Signature scheme flag
	/// \return true if the signature scheme is deterministic, false otherwise
	/// \details IsDeterministic() is provided for DL signers. It is used by RFC 6979 signature schemes.
	virtual bool IsDeterministic() const
		{return false;}
};

/// \brief Interface for deterministic signers
/// \details RFC 6979 signers which generate k based on the encoded message and private key
class CRYPTOPP_NO_VTABLE DeterministicSignatureAlgorithm
{
public:
	virtual ~DeterministicSignatureAlgorithm() {}

	/// \brief Generate k
	/// \param x private key
	/// \param q subgroup generator
	/// \param e encoded message
	virtual Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const =0;
};

/// \brief Interface for DL key agreement algorithms
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_KeyAgreementAlgorithm
{
public:
	typedef T Element;

	virtual ~DL_KeyAgreementAlgorithm() {}

	virtual Element AgreeWithEphemeralPrivateKey(const DL_GroupParameters<Element> &params, const DL_FixedBasePrecomputation<Element> &publicPrecomputation, const Integer &privateExponent) const =0;
	virtual Element AgreeWithStaticPrivateKey(const DL_GroupParameters<Element> &params, const Element &publicElement, bool validateOtherPublicKey, const Integer &privateExponent) const =0;
};

/// \brief Interface for key derivation algorithms used in DL cryptosystems
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_KeyDerivationAlgorithm
{
public:
	virtual ~DL_KeyDerivationAlgorithm() {}

	virtual bool ParameterSupported(const char *name) const
		{CRYPTOPP_UNUSED(name); return false;}
	virtual void Derive(const DL_GroupParameters<T> &groupParams, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs &derivationParams) const =0;
};

/// \brief Interface for symmetric encryption algorithms used in DL cryptosystems
class CRYPTOPP_NO_VTABLE DL_SymmetricEncryptionAlgorithm
{
public:
	virtual ~DL_SymmetricEncryptionAlgorithm() {}

	virtual bool ParameterSupported(const char *name) const
		{CRYPTOPP_UNUSED(name); return false;}
	virtual size_t GetSymmetricKeyLength(size_t plaintextLength) const =0;
	virtual size_t GetSymmetricCiphertextLength(size_t plaintextLength) const =0;
	virtual size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const =0;
	virtual void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs &parameters) const =0;
	virtual DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs &parameters) const =0;
};

/// \brief Discrete Log (DL) base interface
/// \tparam KI public or private key interface
template <class KI>
class CRYPTOPP_NO_VTABLE DL_Base
{
protected:
	typedef KI KeyInterface;
	typedef typename KI::Element Element;

	virtual ~DL_Base() {}

	const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return GetKeyInterface().GetAbstractGroupParameters();}
	DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return AccessKeyInterface().AccessAbstractGroupParameters();}

	virtual KeyInterface & AccessKeyInterface() =0;
	virtual const KeyInterface & GetKeyInterface() const =0;
};

/// \brief Discrete Log (DL) signature scheme base implementation
/// \tparam INTFACE PK_Signer or PK_Verifier derived class
/// \tparam KEY_INTFACE DL_Base key base used in the scheme
/// \details DL_SignatureSchemeBase provides common functions for signers and verifiers.
///   DL_Base<DL_PrivateKey> is used for signers, and DL_Base<DL_PublicKey> is used for verifiers.
template <class INTFACE, class KEY_INTFACE>
class CRYPTOPP_NO_VTABLE DL_SignatureSchemeBase : public INTFACE, public DL_Base<KEY_INTFACE>
{
public:
	virtual ~DL_SignatureSchemeBase() {}

	/// \brief Provides the signature length
	/// \return signature length, in bytes
	/// \details SignatureLength returns the size required for <tt>r+s</tt>.
	size_t SignatureLength() const
	{
		return GetSignatureAlgorithm().RLen(this->GetAbstractGroupParameters())
			+ GetSignatureAlgorithm().SLen(this->GetAbstractGroupParameters());
	}

	/// \brief Provides the maximum recoverable length
	/// \return maximum recoverable length, in bytes
	size_t MaxRecoverableLength() const
		{return GetMessageEncodingInterface().MaxRecoverableLength(0, GetHashIdentifier().second, GetDigestSize());}

	/// \brief Provides the maximum recoverable length
	/// \param signatureLength the size fo the signature
	/// \return maximum recoverable length based on signature length, in bytes
	/// \details this function is not implemented and always returns 0.
	size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const
		{CRYPTOPP_UNUSED(signatureLength); CRYPTOPP_ASSERT(false); return 0;}	// TODO

	/// \brief Determines if the scheme is probabilistic
	/// \return true if the scheme is probabilistic, false otherwise
	bool IsProbabilistic() const
		{return true;}

	/// \brief Determines if the scheme has non-recoverable part
	/// \return true if the message encoding has a non-recoverable part, false otherwise.
	bool AllowNonrecoverablePart() const
		{return GetMessageEncodingInterface().AllowNonrecoverablePart();}

	/// \brief Determines if the scheme allows recoverable part first
	/// \return true if the message encoding allows the recoverable part, false otherwise.
	bool RecoverablePartFirst() const
		{return GetMessageEncodingInterface().RecoverablePartFirst();}

protected:
	size_t MessageRepresentativeLength() const {return BitsToBytes(MessageRepresentativeBitLength());}
	size_t MessageRepresentativeBitLength() const {return this->GetAbstractGroupParameters().GetSubgroupOrder().BitCount();}

	// true if the scheme conforms to RFC 6979
	virtual bool IsDeterministic() const {return false;}

	virtual const DL_ElgamalLikeSignatureAlgorithm<typename KEY_INTFACE::Element> & GetSignatureAlgorithm() const =0;
	virtual const PK_SignatureMessageEncodingMethod & GetMessageEncodingInterface() const =0;
	virtual HashIdentifier GetHashIdentifier() const =0;
	virtual size_t GetDigestSize() const =0;
};

/// \brief Discrete Log (DL) signature scheme signer base implementation
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_SignerBase : public DL_SignatureSchemeBase<PK_Signer, DL_PrivateKey<T> >
{
public:
	virtual ~DL_SignerBase() {}

	/// \brief Testing interface
	/// \param k Integer
	/// \param e Integer
	/// \param r Integer
	/// \param s Integer
	void RawSign(const Integer &k, const Integer &e, Integer &r, Integer &s) const
	{
		const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		const DL_PrivateKey<T> &key = this->GetKeyInterface();

		r = params.ConvertElementToInteger(params.ExponentiateBase(k));
		alg.Sign(params, key.GetPrivateExponent(), k, e, r, s);
	}

	void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const
	{
		PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
		ma.m_recoverableMessage.Assign(recoverableMessage, recoverableMessageLength);
		this->GetMessageEncodingInterface().ProcessRecoverableMessage(ma.AccessHash(),
			recoverableMessage, recoverableMessageLength,
			ma.m_presignature, ma.m_presignature.size(),
			ma.m_semisignature);
	}

	size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart) const
	{
		this->GetMaterial().DoQuickSanityCheck();

		PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
		const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		const DL_PrivateKey<T> &key = this->GetKeyInterface();

		SecByteBlock representative(this->MessageRepresentativeLength());
		this->GetMessageEncodingInterface().ComputeMessageRepresentative(
			rng,
			ma.m_recoverableMessage, ma.m_recoverableMessage.size(),
			ma.AccessHash(), this->GetHashIdentifier(), ma.m_empty,
			representative, this->MessageRepresentativeBitLength());
		ma.m_empty = true;
		Integer e(representative, representative.size());

		// hash message digest into random number k to prevent reusing the same k on
		// different messages after virtual machine rollback
		if (rng.CanIncorporateEntropy())
			rng.IncorporateEntropy(representative, representative.size());

		Integer k, ks;
		const Integer& q = params.GetSubgroupOrder();
		if (alg.IsDeterministic())
		{
			const Integer& x = key.GetPrivateExponent();
			const DeterministicSignatureAlgorithm& det = dynamic_cast<const DeterministicSignatureAlgorithm&>(alg);
			k = det.GenerateRandom(x, q, e);
		}
		else
		{
			k.Randomize(rng, 1, params.GetSubgroupOrder()-1);
		}

		// Due to timing attack on nonce length by Jancar
		// https://github.com/weidai11/cryptopp/issues/869
		ks = k + q;
		if (ks.BitCount() == q.BitCount()) {
			ks += q;
		}

		Integer r, s;
		r = params.ConvertElementToInteger(params.ExponentiateBase(ks));
		alg.Sign(params, key.GetPrivateExponent(), k, e, r, s);

		/*
		Integer r, s;
		if (this->MaxRecoverableLength() > 0)
			r.Decode(ma.m_semisignature, ma.m_semisignature.size());
		else
			r.Decode(ma.m_presignature, ma.m_presignature.size());
		alg.Sign(params, key.GetPrivateExponent(), ma.m_k, e, r, s);
		*/

		const size_t rLen = alg.RLen(params);
		r.Encode(signature, rLen);
		s.Encode(signature+rLen, alg.SLen(params));

		if (restart)
			RestartMessageAccumulator(rng, ma);

		return this->SignatureLength();
	}

protected:
	void RestartMessageAccumulator(RandomNumberGenerator &rng, PK_MessageAccumulatorBase &ma) const
	{
		// k needs to be generated before hashing for signature schemes with recovery
		// but to defend against VM rollbacks we need to generate k after hashing.
		// so this code is commented out, since no DL-based signature scheme with recovery
		// has been implemented in Crypto++ anyway
		/*
		const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		ma.m_k.Randomize(rng, 1, params.GetSubgroupOrder()-1);
		ma.m_presignature.New(params.GetEncodedElementSize(false));
		params.ConvertElementToInteger(params.ExponentiateBase(ma.m_k)).Encode(ma.m_presignature, ma.m_presignature.size());
		*/
		CRYPTOPP_UNUSED(rng); CRYPTOPP_UNUSED(ma);
	}
};

/// \brief Discret Log (DL) Verifier base class
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_VerifierBase : public DL_SignatureSchemeBase<PK_Verifier, DL_PublicKey<T> >
{
public:
	virtual ~DL_VerifierBase() {}

	void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const
	{
		PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
		const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();

		// Validation due to https://github.com/weidai11/cryptopp/issues/981
		// We allow a caller to provide R and S in oversized buffer. R and S
		// are read based on the field element size, and not the buffer size.
		const size_t rLen = alg.RLen(params);
		const size_t sLen = alg.SLen(params);
		CRYPTOPP_ASSERT(signatureLength >= rLen + sLen);
		if (signatureLength < rLen + sLen)
			throw InvalidDataFormat("DL_VerifierBase: signature length is not valid.");

		ma.m_semisignature.Assign(signature, rLen);
		ma.m_s.Decode(signature+rLen, sLen);

		this->GetMessageEncodingInterface().ProcessSemisignature(ma.AccessHash(), ma.m_semisignature, ma.m_semisignature.size());
	}

	bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const
	{
		this->GetMaterial().DoQuickSanityCheck();

		PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
		const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		const DL_PublicKey<T> &key = this->GetKeyInterface();

		SecByteBlock representative(this->MessageRepresentativeLength());
		this->GetMessageEncodingInterface().ComputeMessageRepresentative(NullRNG(), ma.m_recoverableMessage, ma.m_recoverableMessage.size(),
			ma.AccessHash(), this->GetHashIdentifier(), ma.m_empty,
			representative, this->MessageRepresentativeBitLength());
		ma.m_empty = true;
		Integer e(representative, representative.size());

		Integer r(ma.m_semisignature, ma.m_semisignature.size());
		return alg.Verify(params, key, e, r, ma.m_s);
	}

	DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const
	{
		this->GetMaterial().DoQuickSanityCheck();

		PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
		const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		const DL_PublicKey<T> &key = this->GetKeyInterface();

		SecByteBlock representative(this->MessageRepresentativeLength());
		this->GetMessageEncodingInterface().ComputeMessageRepresentative(
			NullRNG(),
			ma.m_recoverableMessage, ma.m_recoverableMessage.size(),
			ma.AccessHash(), this->GetHashIdentifier(), ma.m_empty,
			representative, this->MessageRepresentativeBitLength());
		ma.m_empty = true;
		Integer e(representative, representative.size());

		ma.m_presignature.New(params.GetEncodedElementSize(false));
		Integer r(ma.m_semisignature, ma.m_semisignature.size());
		alg.RecoverPresignature(params, key, r, ma.m_s).Encode(ma.m_presignature, ma.m_presignature.size());

		return this->GetMessageEncodingInterface().RecoverMessageFromSemisignature(
			ma.AccessHash(), this->GetHashIdentifier(),
			ma.m_presignature, ma.m_presignature.size(),
			ma.m_semisignature, ma.m_semisignature.size(),
			recoveredMessage);
	}
};

/// \brief Discrete Log (DL) cryptosystem base implementation
/// \tparam PK field element type
/// \tparam KI public or private key interface
template <class PK, class KI>
class CRYPTOPP_NO_VTABLE DL_CryptoSystemBase : public PK, public DL_Base<KI>
{
public:
	typedef typename DL_Base<KI>::Element Element;

	virtual ~DL_CryptoSystemBase() {}

	size_t MaxPlaintextLength(size_t ciphertextLength) const
	{
		unsigned int minLen = this->GetAbstractGroupParameters().GetEncodedElementSize(true);
		return ciphertextLength < minLen ? 0 : GetSymmetricEncryptionAlgorithm().GetMaxSymmetricPlaintextLength(ciphertextLength - minLen);
	}

	size_t CiphertextLength(size_t plaintextLength) const
	{
		size_t len = GetSymmetricEncryptionAlgorithm().GetSymmetricCiphertextLength(plaintextLength);
		return len == 0 ? 0 : this->GetAbstractGroupParameters().GetEncodedElementSize(true) + len;
	}

	bool ParameterSupported(const char *name) const
		{return GetKeyDerivationAlgorithm().ParameterSupported(name) || GetSymmetricEncryptionAlgorithm().ParameterSupported(name);}

protected:
	virtual const DL_KeyAgreementAlgorithm<Element> & GetKeyAgreementAlgorithm() const =0;
	virtual const DL_KeyDerivationAlgorithm<Element> & GetKeyDerivationAlgorithm() const =0;
	virtual const DL_SymmetricEncryptionAlgorithm & GetSymmetricEncryptionAlgorithm() const =0;
};

/// \brief Discrete Log (DL) decryptor base implementation
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_DecryptorBase : public DL_CryptoSystemBase<PK_Decryptor, DL_PrivateKey<T> >
{
public:
	typedef T Element;

	virtual ~DL_DecryptorBase() {}

	DecodingResult Decrypt(RandomNumberGenerator &rng, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const
	{
		try
		{
			CRYPTOPP_UNUSED(rng);
			const DL_KeyAgreementAlgorithm<T> &agreeAlg = this->GetKeyAgreementAlgorithm();
			const DL_KeyDerivationAlgorithm<T> &derivAlg = this->GetKeyDerivationAlgorithm();
			const DL_SymmetricEncryptionAlgorithm &encAlg = this->GetSymmetricEncryptionAlgorithm();
			const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
			const DL_PrivateKey<T> &key = this->GetKeyInterface();

			Element q = params.DecodeElement(ciphertext, true);
			size_t elementSize = params.GetEncodedElementSize(true);
			ciphertext += elementSize;
			ciphertextLength -= elementSize;

			Element z = agreeAlg.AgreeWithStaticPrivateKey(params, q, true, key.GetPrivateExponent());

			SecByteBlock derivedKey(encAlg.GetSymmetricKeyLength(encAlg.GetMaxSymmetricPlaintextLength(ciphertextLength)));
			derivAlg.Derive(params, derivedKey, derivedKey.size(), z, q, parameters);

			return encAlg.SymmetricDecrypt(derivedKey, ciphertext, ciphertextLength, plaintext, parameters);
		}
		catch (DL_BadElement &)
		{
			return DecodingResult();
		}
	}
};

/// \brief Discrete Log (DL) encryptor base implementation
/// \tparam T Field element
template <class T>
class CRYPTOPP_NO_VTABLE DL_EncryptorBase : public DL_CryptoSystemBase<PK_Encryptor, DL_PublicKey<T> >
{
public:
	typedef T Element;

	virtual ~DL_EncryptorBase() {}

	void Encrypt(RandomNumberGenerator &rng, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs &parameters = g_nullNameValuePairs) const
	{
		const DL_KeyAgreementAlgorithm<T> &agreeAlg = this->GetKeyAgreementAlgorithm();
		const DL_KeyDerivationAlgorithm<T> &derivAlg = this->GetKeyDerivationAlgorithm();
		const DL_SymmetricEncryptionAlgorithm &encAlg = this->GetSymmetricEncryptionAlgorithm();
		const DL_GroupParameters<T> &params = this->GetAbstractGroupParameters();
		const DL_PublicKey<T> &key = this->GetKeyInterface();

		Integer x(rng, Integer::One(), params.GetMaxExponent());
		Element q = params.ExponentiateBase(x);
		params.EncodeElement(true, q, ciphertext);
		unsigned int elementSize = params.GetEncodedElementSize(true);
		ciphertext += elementSize;

		Element z = agreeAlg.AgreeWithEphemeralPrivateKey(params, key.GetPublicPrecomputation(), x);

		SecByteBlock derivedKey(encAlg.GetSymmetricKeyLength(plaintextLength));
		derivAlg.Derive(params, derivedKey, derivedKey.size(), z, q, parameters);

		encAlg.SymmetricEncrypt(rng, derivedKey, plaintext, plaintextLength, ciphertext, parameters);
	}
};

/// \brief Discrete Log (DL) scheme options
/// \tparam T1 algorithm information
/// \tparam T2 group parameters for the scheme
template <class T1, class T2>
struct DL_SchemeOptionsBase
{
	typedef T1 AlgorithmInfo;
	typedef T2 GroupParameters;
	typedef typename GroupParameters::Element Element;
};

/// \brief Discrete Log (DL) key options
/// \tparam T1 algorithm information
/// \tparam T2 keys used in the scheme
template <class T1, class T2>
struct DL_KeyedSchemeOptions : public DL_SchemeOptionsBase<T1, typename T2::PublicKey::GroupParameters>
{
	typedef T2 Keys;
	typedef typename Keys::PrivateKey PrivateKey;
	typedef typename Keys::PublicKey PublicKey;
};

/// \brief Discrete Log (DL) signature scheme options
/// \tparam T1 algorithm information
/// \tparam T2 keys used in the scheme
/// \tparam T3 signature algorithm
/// \tparam T4 message encoding method
/// \tparam T5 hash function
template <class T1, class T2, class T3, class T4, class T5>
struct DL_SignatureSchemeOptions : public DL_KeyedSchemeOptions<T1, T2>
{
	typedef T3 SignatureAlgorithm;
	typedef T4 MessageEncodingMethod;
	typedef T5 HashFunction;
};

/// \brief Discrete Log (DL) crypto scheme options
/// \tparam T1 algorithm information
/// \tparam T2 keys used in the scheme
/// \tparam T3 key agreement algorithm
/// \tparam T4 key derivation algorithm
/// \tparam T5 symmetric encryption algorithm
template <class T1, class T2, class T3, class T4, class T5>
struct DL_CryptoSchemeOptions : public DL_KeyedSchemeOptions<T1, T2>
{
	typedef T3 KeyAgreementAlgorithm;
	typedef T4 KeyDerivationAlgorithm;
	typedef T5 SymmetricEncryptionAlgorithm;
};

/// \brief Discrete Log (DL) base object implementation
/// \tparam BASE TODO
/// \tparam SCHEME_OPTIONS options for the scheme
/// \tparam KEY key used in the scheme
template <class BASE, class SCHEME_OPTIONS, class KEY>
class CRYPTOPP_NO_VTABLE DL_ObjectImplBase : public AlgorithmImpl<BASE, typename SCHEME_OPTIONS::AlgorithmInfo>
{
public:
	typedef SCHEME_OPTIONS SchemeOptions;
	typedef typename KEY::Element Element;

	virtual ~DL_ObjectImplBase() {}

	PrivateKey & AccessPrivateKey() {return m_key;}
	PublicKey & AccessPublicKey() {return m_key;}

	// KeyAccessor
	const KEY & GetKey() const {return m_key;}
	KEY & AccessKey() {return m_key;}

protected:
	typename BASE::KeyInterface & AccessKeyInterface() {return m_key;}
	const typename BASE::KeyInterface & GetKeyInterface() const {return m_key;}

	// for signature scheme
	HashIdentifier GetHashIdentifier() const
	{
		typedef typename SchemeOptions::MessageEncodingMethod::HashIdentifierLookup HashLookup;
		return HashLookup::template HashIdentifierLookup2<typename SchemeOptions::HashFunction>::Lookup();
	}
	size_t GetDigestSize() const
	{
		typedef typename SchemeOptions::HashFunction H;
		return H::DIGESTSIZE;
	}

private:
	KEY m_key;
};

/// \brief Discrete Log (DL) object implementation
/// \tparam BASE TODO
/// \tparam SCHEME_OPTIONS options for the scheme
/// \tparam KEY key used in the scheme
template <class BASE, class SCHEME_OPTIONS, class KEY>
class CRYPTOPP_NO_VTABLE DL_ObjectImpl : public DL_ObjectImplBase<BASE, SCHEME_OPTIONS, KEY>
{
public:
	typedef typename KEY::Element Element;

	virtual ~DL_ObjectImpl() {}

protected:
	const DL_ElgamalLikeSignatureAlgorithm<Element> & GetSignatureAlgorithm() const
		{return Singleton<typename SCHEME_OPTIONS::SignatureAlgorithm>().Ref();}
	const DL_KeyAgreementAlgorithm<Element> & GetKeyAgreementAlgorithm() const
		{return Singleton<typename SCHEME_OPTIONS::KeyAgreementAlgorithm>().Ref();}
	const DL_KeyDerivationAlgorithm<Element> & GetKeyDerivationAlgorithm() const
		{return Singleton<typename SCHEME_OPTIONS::KeyDerivationAlgorithm>().Ref();}
	const DL_SymmetricEncryptionAlgorithm & GetSymmetricEncryptionAlgorithm() const
		{return Singleton<typename SCHEME_OPTIONS::SymmetricEncryptionAlgorithm>().Ref();}
	HashIdentifier GetHashIdentifier() const
		{return HashIdentifier();}
	const PK_SignatureMessageEncodingMethod & GetMessageEncodingInterface() const
		{return Singleton<typename SCHEME_OPTIONS::MessageEncodingMethod>().Ref();}
};

/// \brief Discrete Log (DL) signer implementation
/// \tparam SCHEME_OPTIONS options for the scheme
template <class SCHEME_OPTIONS>
class DL_SignerImpl : public DL_ObjectImpl<DL_SignerBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
{
public:
	PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const
	{
		member_ptr<PK_MessageAccumulatorBase> p(new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>);
		this->RestartMessageAccumulator(rng, *p);
		return p.release();
	}
};

/// \brief Discrete Log (DL) verifier implementation
/// \tparam SCHEME_OPTIONS options for the scheme
template <class SCHEME_OPTIONS>
class DL_VerifierImpl : public DL_ObjectImpl<DL_VerifierBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
{
public:
	PK_MessageAccumulator * NewVerificationAccumulator() const
	{
		return new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>;
	}
};

/// \brief Discrete Log (DL) encryptor implementation
/// \tparam SCHEME_OPTIONS options for the scheme
template <class SCHEME_OPTIONS>
class DL_EncryptorImpl : public DL_ObjectImpl<DL_EncryptorBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
{
};

/// \brief Discrete Log (DL) decryptor implementation
/// \tparam SCHEME_OPTIONS options for the scheme
template <class SCHEME_OPTIONS>
class DL_DecryptorImpl : public DL_ObjectImpl<DL_DecryptorBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
{
};

// ********************************************************

/// \brief Discrete Log (DL) simple key agreement base implementation
/// \tparam T class or type
template <class T>
class CRYPTOPP_NO_VTABLE DL_SimpleKeyAgreementDomainBase : public SimpleKeyAgreementDomain
{
public:
	typedef T Element;

	virtual ~DL_SimpleKeyAgreementDomainBase() {}

	CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}
	unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
	unsigned int PrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
	unsigned int PublicKeyLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(true);}

	void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
	{
		Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
		x.Encode(privateKey, PrivateKeyLength());
	}

	void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
	{
		CRYPTOPP_UNUSED(rng);
		const DL_GroupParameters<T> &params = GetAbstractGroupParameters();
		Integer x(privateKey, PrivateKeyLength());
		Element y = params.ExponentiateBase(x);
		params.EncodeElement(true, y, publicKey);
	}

	bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const
	{
		try
		{
			const DL_GroupParameters<T> &params = GetAbstractGroupParameters();
			Integer x(privateKey, PrivateKeyLength());
			Element w = params.DecodeElement(otherPublicKey, validateOtherPublicKey);

			Element z = GetKeyAgreementAlgorithm().AgreeWithStaticPrivateKey(
				GetAbstractGroupParameters(), w, validateOtherPublicKey, x);
			params.EncodeElement(false, z, agreedValue);
		}
		catch (DL_BadElement &)
		{
			return false;
		}
		return true;
	}

	/// \brief Retrieves a reference to the group generator
	/// \return const reference to the group generator
	const Element &GetGenerator() const {return GetAbstractGroupParameters().GetSubgroupGenerator();}

protected:
	virtual const DL_KeyAgreementAlgorithm<Element> & GetKeyAgreementAlgorithm() const =0;
	virtual DL_GroupParameters<Element> & AccessAbstractGroupParameters() =0;
	const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return const_cast<DL_SimpleKeyAgreementDomainBase<Element> *>(this)->AccessAbstractGroupParameters();}
};

/// \brief Methods for avoiding "Small-Subgroup" attacks on Diffie-Hellman Key Agreement
/// \details Additional methods exist and include public key validation and choice of prime p.
/// \sa <A HREF="http://tools.ietf.org/html/rfc2785">Methods for Avoiding the "Small-Subgroup" Attacks on the
///   Diffie-Hellman Key Agreement Method for S/MIME</A>
enum CofactorMultiplicationOption {
	/// \brief No cofactor multiplication applied
	NO_COFACTOR_MULTIPLICTION,
	/// \brief Cofactor multiplication compatible with ordinary Diffie-Hellman
	/// \details Modifies the computation of ZZ by including j (the cofactor) in the computations and is
	///   compatible with ordinary Diffie-Hellman.
	COMPATIBLE_COFACTOR_MULTIPLICTION,
	/// \brief Cofactor multiplication incompatible with ordinary Diffie-Hellman
	/// \details Modifies the computation of ZZ by including j (the cofactor) in the computations but is
	///   not compatible with ordinary Diffie-Hellman.
	INCOMPATIBLE_COFACTOR_MULTIPLICTION};

typedef EnumToType<CofactorMultiplicationOption, NO_COFACTOR_MULTIPLICTION> NoCofactorMultiplication;
typedef EnumToType<CofactorMultiplicationOption, COMPATIBLE_COFACTOR_MULTIPLICTION> CompatibleCofactorMultiplication;
typedef EnumToType<CofactorMultiplicationOption, INCOMPATIBLE_COFACTOR_MULTIPLICTION> IncompatibleCofactorMultiplication;

/// \brief Diffie-Hellman key agreement algorithm
template <class ELEMENT, class COFACTOR_OPTION>
class DL_KeyAgreementAlgorithm_DH : public DL_KeyAgreementAlgorithm<ELEMENT>
{
public:
	typedef ELEMENT Element;

	CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName()
		{return COFACTOR_OPTION::ToEnum() == INCOMPATIBLE_COFACTOR_MULTIPLICTION ? "DHC" : "DH";}

	virtual ~DL_KeyAgreementAlgorithm_DH() {}

	Element AgreeWithEphemeralPrivateKey(const DL_GroupParameters<Element> &params, const DL_FixedBasePrecomputation<Element> &publicPrecomputation, const Integer &privateExponent) const
	{
		return publicPrecomputation.Exponentiate(params.GetGroupPrecomputation(),
			COFACTOR_OPTION::ToEnum() == INCOMPATIBLE_COFACTOR_MULTIPLICTION ? privateExponent*params.GetCofactor() : privateExponent);
	}

	Element AgreeWithStaticPrivateKey(const DL_GroupParameters<Element> &params, const Element &publicElement, bool validateOtherPublicKey, const Integer &privateExponent) const
	{
		if (COFACTOR_OPTION::ToEnum() == COMPATIBLE_COFACTOR_MULTIPLICTION)
		{
			const Integer &k = params.GetCofactor();
			return params.ExponentiateElement(publicElement,
				ModularArithmetic(params.GetSubgroupOrder()).Divide(privateExponent, k)*k);
		}
		else if (COFACTOR_OPTION::ToEnum() == INCOMPATIBLE_COFACTOR_MULTIPLICTION)
			return params.ExponentiateElement(publicElement, privateExponent*params.GetCofactor());
		else
		{
			CRYPTOPP_ASSERT(COFACTOR_OPTION::ToEnum() == NO_COFACTOR_MULTIPLICTION);

			if (!validateOtherPublicKey)
				return params.ExponentiateElement(publicElement, privateExponent);

			if (params.FastSubgroupCheckAvailable())
			{
				if (!params.ValidateElement(2, publicElement, NULLPTR))
					throw DL_BadElement();
				return params.ExponentiateElement(publicElement, privateExponent);
			}
			else
			{
				const Integer e[2] = {params.GetSubgroupOrder(), privateExponent};
				Element r[2];
				params.SimultaneousExponentiate(r, publicElement, e, 2);
				if (!params.IsIdentity(r[0]))
					throw DL_BadElement();
				return r[1];
			}
		}
	}
};

// ********************************************************

/// \brief Template implementing constructors for public key algorithm classes
template <class BASE>
class CRYPTOPP_NO_VTABLE PK_FinalTemplate : public BASE
{
public:
	PK_FinalTemplate() {}

	PK_FinalTemplate(const CryptoMaterial &key)
		{this->AccessKey().AssignFrom(key);}

	PK_FinalTemplate(BufferedTransformation &bt)
		{this->AccessKey().BERDecode(bt);}

	PK_FinalTemplate(const AsymmetricAlgorithm &algorithm)
		{this->AccessKey().AssignFrom(algorithm.GetMaterial());}

	PK_FinalTemplate(const Integer &v1)
		{this->AccessKey().Initialize(v1);}

	template <class T1, class T2>
	PK_FinalTemplate(const T1 &v1, const T2 &v2)
		{this->AccessKey().Initialize(v1, v2);}

	template <class T1, class T2, class T3>
	PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3)
		{this->AccessKey().Initialize(v1, v2, v3);}

	template <class T1, class T2, class T3, class T4>
	PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4)
		{this->AccessKey().Initialize(v1, v2, v3, v4);}

	template <class T1, class T2, class T3, class T4, class T5>
	PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5);}

	template <class T1, class T2, class T3, class T4, class T5, class T6>
	PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6);}

	template <class T1, class T2, class T3, class T4, class T5, class T6, class T7>
	PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7);}

	template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
	PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7, v8);}

	template <class T1, class T2>
	PK_FinalTemplate(T1 &v1, const T2 &v2)
		{this->AccessKey().Initialize(v1, v2);}

	template <class T1, class T2, class T3>
	PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3)
		{this->AccessKey().Initialize(v1, v2, v3);}

	template <class T1, class T2, class T3, class T4>
	PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4)
		{this->AccessKey().Initialize(v1, v2, v3, v4);}

	template <class T1, class T2, class T3, class T4, class T5>
	PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5);}

	template <class T1, class T2, class T3, class T4, class T5, class T6>
	PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6);}

	template <class T1, class T2, class T3, class T4, class T5, class T6, class T7>
	PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7);}

	template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
	PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8)
		{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7, v8);}
};

/// \brief Base class for public key encryption standard classes.
/// \details These classes are used to select from variants of algorithms.
///   Not all standards apply to all algorithms.
struct EncryptionStandard {};

/// \brief Base class for public key signature standard classes.
/// \details These classes are used to select from variants of algorithms.
///   Not all standards apply to all algorithms.
struct SignatureStandard {};

/// \brief Trapdoor Function (TF) encryption scheme
/// \tparam STANDARD standard
/// \tparam KEYS keys used in the encryption scheme
/// \tparam ALG_INFO algorithm information
template <class KEYS, class STANDARD, class ALG_INFO>
class TF_ES;

template <class KEYS, class STANDARD, class ALG_INFO = TF_ES<KEYS, STANDARD, int> >
class TF_ES : public KEYS
{
	typedef typename STANDARD::EncryptionMessageEncodingMethod MessageEncodingMethod;

public:
	/// see EncryptionStandard for a list of standards
	typedef STANDARD Standard;
	typedef TF_CryptoSchemeOptions<ALG_INFO, KEYS, MessageEncodingMethod> SchemeOptions;

	static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string(KEYS::StaticAlgorithmName()) + "/" + MessageEncodingMethod::StaticAlgorithmName();}

	/// implements PK_Decryptor interface
	typedef PK_FinalTemplate<TF_DecryptorImpl<SchemeOptions> > Decryptor;
	/// implements PK_Encryptor interface
	typedef PK_FinalTemplate<TF_EncryptorImpl<SchemeOptions> > Encryptor;
};

/// \brief Trapdoor Function (TF) Signature Scheme
/// \tparam STANDARD standard
/// \tparam H hash function
/// \tparam KEYS keys used in the signature scheme
/// \tparam ALG_INFO algorithm information
template <class KEYS, class STANDARD, class H, class ALG_INFO>
class TF_SS;

template <class KEYS, class STANDARD, class H, class ALG_INFO = TF_SS<KEYS, STANDARD, H, int> >
class TF_SS : public KEYS
{
public:
	/// see SignatureStandard for a list of standards
	typedef STANDARD Standard;
	typedef typename Standard::SignatureMessageEncodingMethod MessageEncodingMethod;
	typedef TF_SignatureSchemeOptions<ALG_INFO, KEYS, MessageEncodingMethod, H> SchemeOptions;

	static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string(KEYS::StaticAlgorithmName()) + "/" + MessageEncodingMethod::StaticAlgorithmName() + "(" + H::StaticAlgorithmName() + ")";}

	/// implements PK_Signer interface
	typedef PK_FinalTemplate<TF_SignerImpl<SchemeOptions> > Signer;
	/// implements PK_Verifier interface
	typedef PK_FinalTemplate<TF_VerifierImpl<SchemeOptions> > Verifier;
};

/// \brief Discrete Log (DL) signature scheme
/// \tparam KEYS keys used in the signature scheme
/// \tparam SA signature algorithm
/// \tparam MEM message encoding method
/// \tparam H hash function
/// \tparam ALG_INFO algorithm information
template <class KEYS, class SA, class MEM, class H, class ALG_INFO>
class DL_SS;

template <class KEYS, class SA, class MEM, class H, class ALG_INFO = DL_SS<KEYS, SA, MEM, H, int> >
class DL_SS : public KEYS
{
	typedef DL_SignatureSchemeOptions<ALG_INFO, KEYS, SA, MEM, H> SchemeOptions;

public:
	static std::string StaticAlgorithmName() {return SA::StaticAlgorithmName() + std::string("/EMSA1(") + H::StaticAlgorithmName() + ")";}

	/// implements PK_Signer interface
	typedef PK_FinalTemplate<DL_SignerImpl<SchemeOptions> > Signer;
	/// implements PK_Verifier interface
	typedef PK_FinalTemplate<DL_VerifierImpl<SchemeOptions> > Verifier;
};

/// \brief Discrete Log (DL) encryption scheme
/// \tparam KEYS keys used in the encryption scheme
/// \tparam AA key agreement algorithm
/// \tparam DA key derivation algorithm
/// \tparam EA encryption algorithm
/// \tparam ALG_INFO algorithm information
template <class KEYS, class AA, class DA, class EA, class ALG_INFO>
class DL_ES : public KEYS
{
	typedef DL_CryptoSchemeOptions<ALG_INFO, KEYS, AA, DA, EA> SchemeOptions;

public:
	/// implements PK_Decryptor interface
	typedef PK_FinalTemplate<DL_DecryptorImpl<SchemeOptions> > Decryptor;
	/// implements PK_Encryptor interface
	typedef PK_FinalTemplate<DL_EncryptorImpl<SchemeOptions> > Encryptor;
};

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif