summaryrefslogtreecommitdiff
path: root/ppc_simd.h
blob: dc47bf2e3c46966f1108bd60e8fb9acb97c372f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
// ppc_simd.h - written and placed in public domain by Jeffrey Walton

/// \file ppc_simd.h
/// \brief Support functions for PowerPC and vector operations
/// \details This header provides an agnostic interface into Clang, GCC
///  and IBM XL C/C++ compilers modulo their different built-in functions
///  for accessing vector instructions.
/// \details The abstractions are necessary to support back to GCC 4.8 and
///  XLC 11 and 12. GCC 4.8 and 4.9 are still popular, and they are the
///  default compiler for GCC112, GCC119 and others on the compile farm.
///  Older IBM XL C/C++ compilers also have the need due to lack of
///  <tt>vec_xl</tt> and <tt>vec_xst</tt> support on some platforms. Modern
///  compilers provide best support and don't need many of the hacks
///  below.
/// \details The library is tested with the following PowerPC machines and
///  compilers. GCC110, GCC111, GCC112, GCC119 and GCC135 are provided by
///  the <A HREF="https://cfarm.tetaneutral.net/">GCC Compile Farm</A>
///  - PowerMac G5, OSX 10.5, POWER4, Apple GCC 4.0
///  - PowerMac G5, OSX 10.5, POWER4, Macports GCC 5.0
///  - GCC110, Linux, POWER7, GCC 4.8.5
///  - GCC110, Linux, POWER7, XLC 12.01
///  - GCC111, AIX, POWER7, GCC 4.8.1
///  - GCC111, AIX, POWER7, XLC 12.01
///  - GCC112, Linux, POWER8, GCC 4.8.5
///  - GCC112, Linux, POWER8, XLC 13.01
///  - GCC112, Linux, POWER8, Clang 7.0
///  - GCC119, AIX, POWER8, GCC 7.2.0
///  - GCC119, AIX, POWER8, XLC 13.01
///  - GCC135, Linux, POWER9, GCC 7.0
/// \details 12 machines are used for testing because the three compilers form
///  five or six profiles. The profiles are listed below.
///  - GCC (Linux GCC, Macports GCC, etc. Consistent across machines)
///  - XLC 13.0 and earlier (all IBM components)
///  - XLC 13.1 and later on Linux (LLVM front-end, no compatibility macros)
///  - XLC 13.1 and later on Linux (LLVM front-end, -qxlcompatmacros option)
///  - early LLVM Clang (traditional Clang compiler)
///  - late LLVM Clang (traditional Clang compiler)
/// \details The LLVM front-end makes it tricky to write portable code because
///  LLVM pretends to be other compilers but cannot consume other compiler's
///  builtins. When using XLC with -qxlcompatmacros the compiler pretends to
///  be GCC, Clang and XLC all at once but it can only consume it's variety
///  of builtins.
/// \details At Crypto++ 8.0 the various <tt>Vector{FuncName}</tt> were
///  renamed to <tt>Vec{FuncName}</tt>. For example, <tt>VectorAnd</tt> was
///  changed to <tt>VecAnd</tt>. The name change helped consolidate two
///  slightly different implementations.
/// \details At Crypto++ 8.3 the library added select 64-bit functions for
///  32-bit Altivec. For example, <tt>VecAdd64</tt> and <tt>VecSub64</tt>
///  take 32-bit vectors and adds or subtracts them as if there were vectors
///  with two 64-bit elements. The functions dramtically improve performance
///  for some algorithms on some platforms, like SIMON128 and SPECK128 on
///  Power6 and earlier. For example, SPECK128 improved from 70 cpb to
///  10 cpb on an old PowerMac. Use the functions like shown below.
///  <pre>
///    \#if defined(_ARCH_PWR8)
///    \#  define speck128_t uint64x2_p
///    \#else
///    \#  define speck128_t uint32x4_p
///    \#endif
///
///    speck128_t rk, x1, x2, y1, y2;
///    rk = (speck128_t)VecLoadAligned(ptr);
///    x1 = VecRotateRight64<8>(x1);
///    x1 = VecAdd64(x1, y1);
///    ...</pre>
/// \since Crypto++ 6.0, LLVM Clang compiler support since Crypto++ 8.0

// Use __ALTIVEC__, _ARCH_PWR7, __VSX__, and _ARCH_PWR8 when detecting
// actual availaibility of the feature for the source file being compiled.
// The preprocessor macros depend on compiler options like -maltivec; and
// not compiler versions.

// For GCC see https://gcc.gnu.org/onlinedocs/gcc/Basic-PowerPC-Built-in-Functions.html
// For XLC see the Compiler Reference manual. For Clang you have to experiment.
// Clang does not document the compiler options, does not reject options it does
// not understand, and pretends to be other compilers even though it cannot
// process the builtins and intrinsics. Clang will waste hours of your time.

// DO NOT USE this pattern in VecLoad and VecStore. We have to use the
// code paths guarded by preprocessor macros because XLC 12 generates
// bad code in some places. To verify the bad code generation test on
// GCC111 with XLC 12.01 installed. XLC 13.01 on GCC112 and GCC119 are OK.
//
//   inline uint32x4_p VecLoad(const byte src[16])
//   {
//   #if defined(__VSX__) || defined(_ARCH_PWR8)
//       return (uint32x4_p) *(uint8x16_p*)((byte*)src);
//   #else
//       return VecLoad_ALTIVEC(src);
//   #endif
//   }

// We should be able to perform the load using inline asm on Power7 with
// VSX or Power8. The inline asm will avoid C undefined behavior due to
// casting from byte* to word32*. We are safe because our byte* are
// 16-byte aligned for Altivec. Below is the big endian load. Little
// endian would need to follow with xxpermdi for the reversal.
//
//   __asm__ ("lxvw4x %x0, %1, %2" : "=wa"(v) : "r"(0), "r"(src) : );

// GCC and XLC use integer math for the address (D-form or byte-offset
// in the ISA manual). LLVM uses pointer math for the address (DS-form
// or indexed in the ISA manual). To keep them consistent we calculate
// the address from the offset and pass to a load or store function
// using a 0 offset.

#ifndef CRYPTOPP_PPC_CRYPTO_H
#define CRYPTOPP_PPC_CRYPTO_H

#include "config.h"
#include "misc.h"

#if defined(__ALTIVEC__)
# include <altivec.h>
# undef vector
# undef pixel
# undef bool
#endif

// XL C++ on AIX does not define VSX and does not
// provide an option to set it. We have to set it
// for the code below. This define must stay in
// sync with the define in test_ppc_power7.cpp.
#ifndef CRYPTOPP_DISABLE_POWER7
# if defined(_AIX) && defined(_ARCH_PWR7) && defined(__xlC__)
#  define __VSX__ 1
# endif
#endif

// XL C++ on AIX does not define CRYPTO and does not
// provide an option to set it. We have to set it
// for the code below. This define must stay in
// sync with the define in test_ppc_power8.cpp
#ifndef CRYPTOPP_DISABLE_POWER8
# if defined(_AIX) && defined(_ARCH_PWR8) && defined(__xlC__)
#  define __CRYPTO__ 1
# endif
#endif

/// \brief Cast array to vector pointer
/// \details CONST_V8_CAST casts a const array to a vector
///  pointer for a byte array. The Power ABI says source arrays
///  are non-const, so this define removes the const. XLC++ will
///  fail the compile if the source array is const.
#define CONST_V8_CAST(x)  ((unsigned char*)(x))
/// \brief Cast array to vector pointer
/// \details CONST_V32_CAST casts a const array to a vector
///  pointer for a word array. The Power ABI says source arrays
///  are non-const, so this define removes the const. XLC++ will
///  fail the compile if the source array is const.
#define CONST_V32_CAST(x) ((unsigned int*)(x))
/// \brief Cast array to vector pointer
/// \details CONST_V64_CAST casts a const array to a vector
///  pointer for a double word array. The Power ABI says source arrays
///  are non-const, so this define removes the const. XLC++ will
///  fail the compile if the source array is const.
#define CONST_V64_CAST(x) ((unsigned long long*)(x))
/// \brief Cast array to vector pointer
/// \details NCONST_V8_CAST casts an array to a vector
///  pointer for a byte array. The Power ABI says source arrays
///  are non-const, so this define removes the const. XLC++ will
///  fail the compile if the source array is const.
#define NCONST_V8_CAST(x)  ((unsigned char*)(x))
/// \brief Cast array to vector pointer
/// \details NCONST_V32_CAST casts an array to a vector
///  pointer for a word array. The Power ABI says source arrays
///  are non-const, so this define removes the const. XLC++ will
///  fail the compile if the source array is const.
#define NCONST_V32_CAST(x) ((unsigned int*)(x))
/// \brief Cast array to vector pointer
/// \details NCONST_V64_CAST casts an array to a vector
///  pointer for a double word array. The Power ABI says source arrays
///  are non-const, so this define removes the const. XLC++ will
///  fail the compile if the source array is const.
#define NCONST_V64_CAST(x) ((unsigned long long*)(x))

// VecLoad_ALTIVEC and VecStore_ALTIVEC are
// too noisy on modern compilers
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated"
#endif

NAMESPACE_BEGIN(CryptoPP)

#if defined(__ALTIVEC__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Vector of 8-bit elements
/// \par Wraps
///  __vector unsigned char
/// \since Crypto++ 6.0
typedef __vector unsigned char   uint8x16_p;
/// \brief Vector of 16-bit elements
/// \par Wraps
///  __vector unsigned short
/// \since Crypto++ 6.0
typedef __vector unsigned short  uint16x8_p;
/// \brief Vector of 32-bit elements
/// \par Wraps
///  __vector unsigned int
/// \since Crypto++ 6.0
typedef __vector unsigned int    uint32x4_p;

#if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Vector of 64-bit elements
/// \details uint64x2_p is available on POWER7 with VSX and above. Most
///  supporting functions, like 64-bit <tt>vec_add</tt> (<tt>vaddudm</tt>)
///  and <tt>vec_sub</tt> (<tt>vsubudm</tt>), did not arrive until POWER8.
/// \par Wraps
///  __vector unsigned long long
/// \since Crypto++ 6.0
typedef __vector unsigned long long uint64x2_p;
#endif  // VSX or ARCH_PWR8

/// \brief The 0 vector
/// \return a 32-bit vector of 0's
/// \since Crypto++ 8.0
inline uint32x4_p VecZero()
{
    const uint32x4_p v = {0,0,0,0};
    return v;
}

/// \brief The 1 vector
/// \return a 32-bit vector of 1's
/// \since Crypto++ 8.0
inline uint32x4_p VecOne()
{
    const uint32x4_p v = {1,1,1,1};
    return v;
}

/// \brief Reverse bytes in a vector
/// \tparam T vector type
/// \param data the vector
/// \return vector
/// \details VecReverse() reverses the bytes in a vector
/// \par Wraps
///  vec_perm
/// \since Crypto++ 6.0
template <class T>
inline T VecReverse(const T data)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
    return (T)vec_perm(data, data, mask);
#else
    const uint8x16_p mask = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
    return (T)vec_perm(data, data, mask);
#endif
}

/// \brief Reverse bytes in a vector
/// \tparam T vector type
/// \param data the vector
/// \return vector
/// \details VecReverseLE() reverses the bytes in a vector on
///  little-endian systems.
/// \par Wraps
///  vec_perm
/// \since Crypto++ 6.0
template <class T>
inline T VecReverseLE(const T data)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
    const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
    return (T)vec_perm(data, data, mask);
#else
    return data;
#endif
}

/// \brief Reverse bytes in a vector
/// \tparam T vector type
/// \param data the vector
/// \return vector
/// \details VecReverseBE() reverses the bytes in a vector on
///  big-endian systems.
/// \par Wraps
///  vec_perm
/// \since Crypto++ 6.0
template <class T>
inline T VecReverseBE(const T data)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
    return (T)vec_perm(data, data, mask);
#else
    return data;
#endif
}

/// \name LOAD OPERATIONS
//@{

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
///  of <tt>src</tt> is aligned. If unaligned it uses <tt>vec_lvsl</tt>,
///  <tt>vec_ld</tt>, <tt>vec_perm</tt> and <tt>src</tt>. The fixups using
///  <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are relatively expensive so
///  you should provide aligned memory addresses.
/// \par Wraps
///  vec_ld, vec_lvsl, vec_perm
/// \sa VecLoad, VecLoadAligned
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad_ALTIVEC(const byte src[16])
{
    // Avoid IsAlignedOn for convenience.
    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    if (addr % 16 == 0)
    {
        return (uint32x4_p)vec_ld(0, CONST_V8_CAST(addr));
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        const uint8x16_p perm = vec_lvsl(0, CONST_V8_CAST(addr));
        const uint8x16_p low = vec_ld(0, CONST_V8_CAST(addr));
        const uint8x16_p high = vec_ld(15, CONST_V8_CAST(addr));
        return (uint32x4_p)vec_perm(low, high, perm);
    }
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector in native endian format from a byte array.
/// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
///  of <tt>src</tt> is aligned. If unaligned it uses <tt>vec_lvsl</tt>,
///  <tt>vec_ld</tt>, <tt>vec_perm</tt> and <tt>src</tt>.
/// \details The fixups using <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are
///  relatively expensive so you should provide aligned memory addresses.
/// \par Wraps
///  vec_ld, vec_lvsl, vec_perm
/// \sa VecLoad, VecLoadAligned
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad_ALTIVEC(int off, const byte src[16])
{
    // Avoid IsAlignedOn for convenience.
    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    if (addr % 16 == 0)
    {
        return (uint32x4_p)vec_ld(0, CONST_V8_CAST(addr));
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        const uint8x16_p perm = vec_lvsl(0, CONST_V8_CAST(addr));
        const uint8x16_p low = vec_ld(0, CONST_V8_CAST(addr));
        const uint8x16_p high = vec_ld(15, CONST_V8_CAST(addr));
        return (uint32x4_p)vec_perm(low, high, perm);
    }
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details VecLoad() loads a vector from a byte array.
/// \details VecLoad() uses POWER9's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER9 is not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xl on POWER9 and above, Altivec load on POWER8 and below
/// \sa VecLoad_ALTIVEC, VecLoadAligned
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad(const byte src[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
#else
    return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#endif
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details VecLoad() loads a vector from a byte array.
/// \details VecLoad() uses POWER9's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER9 is not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xl on POWER9 and above, Altivec load on POWER8 and below
/// \sa VecLoad_ALTIVEC, VecLoadAligned
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad(int off, const byte src[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
#else
    return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#endif
}

/// \brief Loads a vector from a word array
/// \param src the word array
/// \details VecLoad() loads a vector from a word array.
/// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER7 is not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoadAligned
/// \since Crypto++ 8.0
inline uint32x4_p VecLoad(const word32 src[4])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    return (uint32x4_p)vec_xl(0, CONST_V32_CAST(addr));
#else
    return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#endif
}

/// \brief Loads a vector from a word array
/// \param src the word array
/// \param off offset into the word array
/// \details VecLoad() loads a vector from a word array.
/// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER7 is not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoadAligned
/// \since Crypto++ 8.0
inline uint32x4_p VecLoad(int off, const word32 src[4])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    return (uint32x4_p)vec_xl(0, CONST_V32_CAST(addr));
#else
    return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#endif
}

#if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Loads a vector from a double word array
/// \param src the double word array
/// \details VecLoad() loads a vector from a double word array.
/// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER7 and VSX are not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \details VecLoad() with 64-bit elements is available on POWER7 and above.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoadAligned
/// \since Crypto++ 8.0
inline uint64x2_p VecLoad(const word64 src[2])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint64x2_p)vec_xl(0, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    // The 32-bit cast is not a typo. Compiler workaround.
    return (uint64x2_p)vec_xl(0, CONST_V32_CAST(addr));
#else
    return (uint64x2_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#endif
}

/// \brief Loads a vector from a double word array
/// \param src the double word array
/// \param off offset into the double word array
/// \details VecLoad() loads a vector from a double word array.
/// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER7 and VSX are not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \details VecLoad() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoadAligned
/// \since Crypto++ 8.0
inline uint64x2_p VecLoad(int off, const word64 src[2])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint64x2_p)vec_xl(off, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    // The 32-bit cast is not a typo. Compiler workaround.
    return (uint64x2_p)vec_xl(0, CONST_V32_CAST(addr));
#else
    return (uint64x2_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#endif
}

#endif  // VSX or ARCH_PWR8

/// \brief Loads a vector from an aligned byte array
/// \param src the byte array
/// \details VecLoadAligned() loads a vector from an aligned byte array.
/// \details VecLoadAligned() uses POWER9's <tt>vec_xl</tt> if available.
///  <tt>vec_ld</tt> is used if POWER9 is not available. The effective
///  address of <tt>src</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xl on POWER9, vec_ld on POWER8 and below
/// \sa VecLoad_ALTIVEC, VecLoad
/// \since Crypto++ 8.0
inline uint32x4_p VecLoadAligned(const byte src[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    CRYPTOPP_ASSERT(addr % 16 == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
#else
    return (uint32x4_p)vec_ld(0, CONST_V8_CAST(src));
#endif
}

/// \brief Loads a vector from an aligned byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details VecLoadAligned() loads a vector from an aligned byte array.
/// \details VecLoadAligned() uses POWER9's <tt>vec_xl</tt> if available.
///  <tt>vec_ld</tt> is used if POWER9 is not available. The effective
///  address of <tt>src</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xl on POWER9, vec_ld on POWER8 and below
/// \sa VecLoad_ALTIVEC, VecLoad
/// \since Crypto++ 8.0
inline uint32x4_p VecLoadAligned(int off, const byte src[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    CRYPTOPP_ASSERT(addr % 16 == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
#else
    return (uint32x4_p)vec_ld(off, CONST_V8_CAST(src));
#endif
}

/// \brief Loads a vector from an aligned word array
/// \param src the word array
/// \details VecLoadAligned() loads a vector from an aligned word array.
/// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
///  available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
///  The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoad
/// \since Crypto++ 8.0
inline uint32x4_p VecLoadAligned(const word32 src[4])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    CRYPTOPP_ASSERT(addr % 16 == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    return (uint32x4_p)vec_xl(0, CONST_V32_CAST(src));
#else
    return (uint32x4_p)vec_ld(0, CONST_V8_CAST(src));
#endif
}

/// \brief Loads a vector from an aligned word array
/// \param src the word array
/// \param off offset into the src word array
/// \details VecLoadAligned() loads a vector from an aligned word array.
/// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
///  available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
///  The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoad
/// \since Crypto++ 8.0
inline uint32x4_p VecLoadAligned(int off, const word32 src[4])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    CRYPTOPP_ASSERT(addr % 16 == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    return (uint32x4_p)vec_xl(0, CONST_V32_CAST(addr));
#else
    return (uint32x4_p)vec_ld(off, CONST_V8_CAST(src));
#endif
}

#if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Loads a vector from an aligned double word array
/// \param src the double word array
/// \details VecLoadAligned() loads a vector from an aligned double word array.
/// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
///  available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
///  The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoad
/// \since Crypto++ 8.0
inline uint64x2_p VecLoadAligned(const word64 src[4])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    CRYPTOPP_ASSERT(addr % 16 == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint64x2_p)vec_xl(0, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    // The 32-bit cast is not a typo. Compiler workaround.
    return (uint64x2_p)vec_xl(0, CONST_V32_CAST(src));
#else
    return (uint64x2_p)vec_ld(0, CONST_V8_CAST(src));
#endif
}

/// \brief Loads a vector from an aligned double word array
/// \param src the double word array
/// \param off offset into the src double word array
/// \details VecLoadAligned() loads a vector from an aligned double word array.
/// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
///  available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
///  The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoad
/// \since Crypto++ 8.0
inline uint64x2_p VecLoadAligned(int off, const word64 src[4])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    CRYPTOPP_ASSERT(addr % 16 == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    return (uint64x2_p)vec_xl(off, CONST_V8_CAST(src));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    // The 32-bit cast is not a typo. Compiler workaround.
    return (uint64x2_p)vec_xl(0, CONST_V32_CAST(addr));
#else
    return (uint64x2_p)vec_ld(off, CONST_V8_CAST(src));
#endif
}

#endif

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details VecLoadBE() loads a vector from a byte array. VecLoadBE
///  will reverse all bytes in the array on a little endian system.
/// \details VecLoadBE() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER7 or VSX are not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xl on POWER8, Altivec load on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoad, VecLoadAligned
/// \since Crypto++ 6.0
inline uint32x4_p VecLoadBE(const byte src[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
    // CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    return (uint32x4_p)vec_xl_be(0, CONST_V8_CAST(src));
#elif defined(CRYPTOPP_BIG_ENDIAN)
    return (uint32x4_p)VecLoad_ALTIVEC(0, CONST_V8_CAST(src));
#else
    return (uint32x4_p)VecReverseLE(VecLoad_ALTIVEC(CONST_V8_CAST(src)));
#endif
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details VecLoadBE() loads a vector from a byte array. VecLoadBE
///  will reverse all bytes in the array on a little endian system.
/// \details VecLoadBE() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecLoad_ALTIVEC() is used if POWER7 is not available.
///  VecLoad_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xl on POWER8, Altivec load on POWER7 and below
/// \sa VecLoad_ALTIVEC, VecLoad, VecLoadAligned
/// \since Crypto++ 6.0
inline uint32x4_p VecLoadBE(int off, const byte src[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
    // CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    return (uint32x4_p)vec_xl_be(off, CONST_V8_CAST(src));
#elif defined(CRYPTOPP_BIG_ENDIAN)
    return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
#else
    return (uint32x4_p)VecReverseLE(VecLoad_ALTIVEC(CONST_V8_CAST(addr)));
#endif
}

//@}

/// \name STORE OPERATIONS
//@{

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStore_ALTIVEC() stores a vector to a byte array.
/// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
///  of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
///  <tt>vec_ste</tt> is relatively expensive so you should provide aligned
///  memory addresses.
/// \details VecStore_ALTIVEC() is used when POWER7 or above
///  and unaligned loads is not available.
/// \par Wraps
///  vec_st, vec_ste, vec_lvsr, vec_perm
/// \sa VecStore, VecStoreAligned
/// \since Crypto++ 8.0
template<class T>
inline void VecStore_ALTIVEC(const T data, byte dest[16])
{
    // Avoid IsAlignedOn for convenience.
    uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    if (addr % 16 == 0)
    {
        vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, NCONST_V8_CAST(addr)));
        vec_ste((uint8x16_p) perm,  0, (unsigned char*) NCONST_V8_CAST(addr));
        vec_ste((uint16x8_p) perm,  1, (unsigned short*)NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm,  3, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm,  4, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm,  8, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm, 12, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint16x8_p) perm, 14, (unsigned short*)NCONST_V8_CAST(addr));
        vec_ste((uint8x16_p) perm, 15, (unsigned char*) NCONST_V8_CAST(addr));
    }
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details VecStore_ALTIVEC() stores a vector to a byte array.
/// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
///  of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
///  <tt>vec_ste</tt> is relatively expensive so you should provide aligned
///  memory addresses.
/// \details VecStore_ALTIVEC() is used when POWER7 or above
///  and unaligned loads is not available.
/// \par Wraps
///  vec_st, vec_ste, vec_lvsr, vec_perm
/// \sa VecStore, VecStoreAligned
/// \since Crypto++ 8.0
template<class T>
inline void VecStore_ALTIVEC(const T data, int off, byte dest[16])
{
    // Avoid IsAlignedOn for convenience.
    uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    if (addr % 16 == 0)
    {
        vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, NCONST_V8_CAST(addr)));
        vec_ste((uint8x16_p) perm,  0, (unsigned char*) NCONST_V8_CAST(addr));
        vec_ste((uint16x8_p) perm,  1, (unsigned short*)NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm,  3, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm,  4, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm,  8, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint32x4_p) perm, 12, (unsigned int*)  NCONST_V8_CAST(addr));
        vec_ste((uint16x8_p) perm, 14, (unsigned short*)NCONST_V8_CAST(addr));
        vec_ste((uint8x16_p) perm, 15, (unsigned char*) NCONST_V8_CAST(addr));
    }
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStore() stores a vector to a byte array.
/// \details VecStore() uses POWER9's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER9 is not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on POWER9 and above, Altivec store on POWER8 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 6.0
template<class T>
inline void VecStore(const T data, byte dest[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#else
    VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(dest));
#endif
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details VecStore() stores a vector to a byte array.
/// \details VecStore() uses POWER9's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER9 is not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on POWER9 and above, Altivec store on POWER8 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 6.0
template<class T>
inline void VecStore(const T data, int off, byte dest[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#else
    VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, word32 dest[4])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
#else
    VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest word array
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, int off, word32 dest[4])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
#else
    VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \details VecStore() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, word64 dest[2])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    // 32-bit cast is not a typo. Compiler workaround.
    vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
#else
    VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest word array
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \details VecStore() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, int off, word64 dest[2])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    // 32-bit cast is not a typo. Compiler workaround.
    vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
#else
    VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStoreAligned() stores a vector from an aligned byte array.
/// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
///  <tt>vec_st</tt> is used if POWER9 is not available. The effective
///  address of <tt>dest</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xst on POWER9 or above, vec_st on POWER8 and below
/// \sa VecStore_ALTIVEC, VecStore
/// \since Crypto++ 8.0
template<class T>
inline void VecStoreAligned(const T data, byte dest[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#else
    vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details VecStoreAligned() stores a vector from an aligned byte array.
/// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
///  <tt>vec_st</tt> is used if POWER9 is not available. The effective
///  address of <tt>dest</tt> must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xst on POWER9 or above, vec_st on POWER8 and below
/// \sa VecStore_ALTIVEC, VecStore
/// \since Crypto++ 8.0
template<class T>
inline void VecStoreAligned(const T data, int off, byte dest[16])
{
    // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks loads for short* and char*.
    // Power9/ISA 3.0 provides vec_xl for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#else
    vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStoreAligned() stores a vector from an aligned word array.
/// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
///  POWER7 <tt>vec_xst</tt> is used if POWER9 is not available. <tt>vec_st</tt>
///  is used if POWER7 is not available. The effective address of <tt>dest</tt>
///  must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStore
/// \since Crypto++ 8.0
template<class T>
inline void VecStoreAligned(const T data, word32 dest[4])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
#else
    vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest word array
/// \param dest the word array
/// \details VecStoreAligned() stores a vector from an aligned word array.
/// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
///  POWER7 <tt>vec_xst</tt> is used if POWER9 is not available. <tt>vec_st</tt>
///  is used if POWER7 is not available. The effective address of <tt>dest</tt>
///  must be 16-byte aligned for Altivec.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStore
/// \since Crypto++ 8.0
template<class T>
inline void VecStoreAligned(const T data, int off, word32 dest[4])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#elif defined(__VSX__) || defined(_ARCH_PWR8)
    vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
#else
    vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStoreBE() stores a vector to a byte array. VecStoreBE
///  will reverse all bytes in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 is not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 6.0
template <class T>
inline void VecStoreBE(const T data, byte dest[16])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst_be((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#elif defined(CRYPTOPP_BIG_ENDIAN)
    VecStore((uint8x16_p)data, NCONST_V8_CAST(addr));
#else
    VecStore((uint8x16_p)VecReverseLE(data), NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details VecStoreBE() stores a vector to a byte array. VecStoreBE
///  will reverse all bytes in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 is not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 6.0
template <class T>
inline void VecStoreBE(const T data, int off, byte dest[16])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst_be((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#elif defined(CRYPTOPP_BIG_ENDIAN)
    VecStore((uint8x16_p)data, NCONST_V8_CAST(addr));
#else
    VecStore((uint8x16_p)VecReverseLE(data), NCONST_V8_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStoreBE() stores a vector to a word array. VecStoreBE
///  will reverse all bytes in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 is not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 8.0
template <class T>
inline void VecStoreBE(const T data, word32 dest[4])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst_be((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
#elif defined(CRYPTOPP_BIG_ENDIAN)
    VecStore((uint32x4_p)data, NCONST_V32_CAST(addr));
#else
    VecStore((uint32x4_p)VecReverseLE(data), NCONST_V32_CAST(addr));
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest word array
/// \param dest the word array
/// \details VecStoreBE() stores a vector to a word array. VecStoreBE
///  will reverse all words in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
///  The instruction does not require aligned effective memory addresses.
///  VecStore_ALTIVEC() is used if POWER7 is not available.
///  VecStore_ALTIVEC() can be relatively expensive if extra instructions
///  are required to fix up unaligned memory addresses.
/// \par Wraps
///  vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
/// \sa VecStore_ALTIVEC, VecStoreAligned
/// \since Crypto++ 8.0
template <class T>
inline void VecStoreBE(const T data, int off, word32 dest[4])
{
    // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
    // word pointers. The ISA lacks stores for short* and char*.
    // Power9/ISA 3.0 provides vec_xst for all datatypes.

    const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
    CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
    CRYPTOPP_UNUSED(addr);

#if defined(_ARCH_PWR9)
    vec_xst_be((uint8x16_p)data, off, NCONST_V8_CAST(dest));
#elif defined(CRYPTOPP_BIG_ENDIAN)
    VecStore((uint32x4_p)data, NCONST_V32_CAST(addr));
#else
    VecStore((uint32x4_p)VecReverseLE(data), NCONST_V32_CAST(addr));
#endif
}

//@}

/// \name LOGICAL OPERATIONS
//@{

/// \brief AND two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecAnd() performs <tt>vec1 & vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \par Wraps
///  vec_and
/// \sa VecAnd64
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecAnd(const T1 vec1, const T2 vec2)
{
    return (T1)vec_and(vec1, (T1)vec2);
}

/// \brief OR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecOr() performs <tt>vec1 | vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \par Wraps
///  vec_or
/// \sa VecOr64
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecOr(const T1 vec1, const T2 vec2)
{
    return (T1)vec_or(vec1, (T1)vec2);
}

/// \brief XOR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecXor() performs <tt>vec1 ^ vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \par Wraps
///  vec_xor
/// \sa VecXor64
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecXor(const T1 vec1, const T2 vec2)
{
    return (T1)vec_xor(vec1, (T1)vec2);
}

//@}

/// \name ARITHMETIC OPERATIONS
//@{

/// \brief Add two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecAdd() performs <tt>vec1 + vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \par Wraps
///  vec_add
/// \sa VecAdd64
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecAdd(const T1 vec1, const T2 vec2)
{
    return (T1)vec_add(vec1, (T1)vec2);
}

/// \brief Subtract two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VecSub() performs <tt>vec1 - vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \par Wraps
///  vec_sub
/// \sa VecSub64
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecSub(const T1 vec1, const T2 vec2)
{
    return (T1)vec_sub(vec1, (T1)vec2);
}

//@}

/// \name PERMUTE OPERATIONS
//@{

/// \brief Permutes a vector
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec the vector
/// \param mask vector mask
/// \return vector
/// \details VecPermute() creates a new vector from vec according to mask.
///  mask is an uint8x16_p vector. The return vector is the same type as vec.
/// \par Wraps
///  vec_perm
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecPermute(const T1 vec, const T2 mask)
{
    return (T1)vec_perm(vec, vec, (uint8x16_p)mask);
}

/// \brief Permutes two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \param mask vector mask
/// \return vector
/// \details VecPermute() creates a new vector from vec1 and vec2 according to mask.
///  mask is an uint8x16_p vector. The return vector is the same type as vec.
/// \par Wraps
///  vec_perm
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecPermute(const T1 vec1, const T1 vec2, const T2 mask)
{
    return (T1)vec_perm(vec1, (T1)vec2, (uint8x16_p)mask);
}

//@}

/// \name SHIFT AND ROTATE OPERATIONS
//@{

/// \brief Shift a vector left
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \return vector
/// \details VecShiftLeftOctet() returns a new vector after shifting the
///  concatenation of the zero vector and the source vector by the specified
///  number of bytes. The return vector is the same type as vec.
/// \details On big endian machines VecShiftLeftOctet() is <tt>vec_sld(a, z,
///  c)</tt>. On little endian machines VecShiftLeftOctet() is translated to
///  <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
///  if on a big endian machine as shown below.
/// <pre>
///   uint8x16_p x = VecLoad(ptr);
///   uint8x16_p y = VecShiftLeftOctet<12>(x);
/// </pre>
/// \par Wraps
///  vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///  endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecShiftLeftOctet(const T vec)
{
    const T zero = {0};
    if (C >= 16)
    {
        // Out of range
        return zero;
    }
    else if (C == 0)
    {
        // Noop
        return vec;
    }
    else
    {
#if defined(CRYPTOPP_BIG_ENDIAN)
    enum { R=C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
#else
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
#endif
    }
}

/// \brief Shift a vector right
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \return vector
/// \details VecShiftRightOctet() returns a new vector after shifting the
///  concatenation of the zero vector and the source vector by the specified
///  number of bytes. The return vector is the same type as vec.
/// \details On big endian machines VecShiftRightOctet() is <tt>vec_sld(a, z,
///  c)</tt>. On little endian machines VecShiftRightOctet() is translated to
///  <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
///  if on a big endian machine as shown below.
/// <pre>
///   uint8x16_p x = VecLoad(ptr);
///   uint8x16_p y = VecShiftRightOctet<12>(y);
/// </pre>
/// \par Wraps
///  vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///  endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecShiftRightOctet(const T vec)
{
    const T zero = {0};
    if (C >= 16)
    {
        // Out of range
        return zero;
    }
    else if (C == 0)
    {
        // Noop
        return vec;
    }
    else
    {
#if defined(CRYPTOPP_BIG_ENDIAN)
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
#else
    enum { R=C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
#endif
    }
}

/// \brief Rotate a vector left
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \return vector
/// \details VecRotateLeftOctet() returns a new vector after rotating the
///  concatenation of the source vector with itself by the specified
///  number of bytes. The return vector is the same type as vec.
/// \par Wraps
///  vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///  endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecRotateLeftOctet(const T vec)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    enum { R = C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#else
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#endif
}

/// \brief Rotate a vector right
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \return vector
/// \details VecRotateRightOctet() returns a new vector after rotating the
///  concatenation of the source vector with itself by the specified
///  number of bytes. The return vector is the same type as vec.
/// \par Wraps
///  vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///  endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecRotateRightOctet(const T vec)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#else
    enum { R = C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#endif
}

/// \brief Rotate a vector left
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateLeft() rotates each element in a vector by
///  bit count. The return vector is the same type as vec.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 7.0
template<unsigned int C>
inline uint32x4_p VecRotateLeft(const uint32x4_p vec)
{
    const uint32x4_p m = {C, C, C, C};
    return vec_rl(vec, m);
}

/// \brief Rotate a vector right
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateRight() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 7.0
template<unsigned int C>
inline uint32x4_p VecRotateRight(const uint32x4_p vec)
{
    const uint32x4_p m = {32-C, 32-C, 32-C, 32-C};
    return vec_rl(vec, m);
}

/// \brief Shift a vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \return vector
/// \details VecShiftLeft() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \par Wraps
///  vec_sl
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint32x4_p VecShiftLeft(const uint32x4_p vec)
{
    const uint32x4_p m = {C, C, C, C};
    return vec_sl(vec, m);
}

/// \brief Shift a vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \return vector
/// \details VecShiftRight() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint32x4_p VecShiftRight(const uint32x4_p vec)
{
    const uint32x4_p m = {C, C, C, C};
    return vec_sr(vec, m);
}

// 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Rotate a vector left
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateLeft() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \details VecRotateLeft() with 64-bit elements is available on
///  POWER8 and above.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.0
template<unsigned int C>
inline uint64x2_p VecRotateLeft(const uint64x2_p vec)
{
    const uint64x2_p m = {C, C};
    return vec_rl(vec, m);
}

/// \brief Shift a vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \return vector
/// \details VecShiftLeft() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \details VecShiftLeft() with 64-bit elements is available on
///  POWER8 and above.
/// \par Wraps
///  vec_sl
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint64x2_p VecShiftLeft(const uint64x2_p vec)
{
    const uint64x2_p m = {C, C};
    return vec_sl(vec, m);
}

/// \brief Rotate a vector right
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateRight() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \details VecRotateRight() with 64-bit elements is available on
///  POWER8 and above.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.0
template<unsigned int C>
inline uint64x2_p VecRotateRight(const uint64x2_p vec)
{
    const uint64x2_p m = {64-C, 64-C};
    return vec_rl(vec, m);
}

/// \brief Shift a vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \return vector
/// \details VecShiftRight() rotates each element in a vector
///  by bit count. The return vector is the same type as vec.
/// \details VecShiftRight() with 64-bit elements is available on
///  POWER8 and above.
/// \par Wraps
///  vec_sr
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint64x2_p VecShiftRight(const uint64x2_p vec)
{
    const uint64x2_p m = {C, C};
    return vec_sr(vec, m);
}

#endif  // ARCH_PWR8

//@}

/// \name OTHER OPERATIONS
//@{

/// \brief Merge two vectors
/// \tparam T vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \par Wraps
///  vec_mergel
/// \since Crypto++ 8.1
template <class T>
inline T VecMergeLow(const T vec1, const T vec2)
{
    return vec_mergel(vec1, vec2);
}

/// \brief Merge two vectors
/// \tparam T vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \par Wraps
///  vec_mergeh
/// \since Crypto++ 8.1
template <class T>
inline T VecMergeHigh(const T vec1, const T vec2)
{
    return vec_mergeh(vec1, vec2);
}

/// \brief Broadcast 32-bit word to a vector
/// \param val the 32-bit value
/// \return vector
/// \par Wraps
///  vec_splats
/// \since Crypto++ 8.3
inline uint32x4_p VecSplatWord(word32 val)
{
    // Fix spurious GCC warning???
    CRYPTOPP_UNUSED(val);

    // Apple Altivec and XL C++ do not offer vec_splats.
    // GCC offers vec_splats back to -mcpu=power4.
#if defined(_ARCH_PWR4) && defined(__GNUC__)
    return vec_splats(val);
#else
    //const word32 x[4] = {val,val,val,val};
    //return VecLoad(x);
    const word32 x[4] = {val};
    return vec_splat(VecLoad(x),0);
#endif
}

/// \brief Broadcast 32-bit element to a vector
/// \tparam the element number
/// \param val the 32-bit value
/// \return vector
/// \par Wraps
///  vec_splat
/// \since Crypto++ 8.3
template <unsigned int N>
inline uint32x4_p VecSplatElement(const uint32x4_p val)
{
    return vec_splat(val, N);
}

#if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Broadcast 64-bit double word to a vector
/// \param val the 64-bit value
/// \return vector
/// \par Wraps
///  vec_splats
/// \since Crypto++ 8.3
inline uint64x2_p VecSplatWord(word64 val)
{
    // The PPC64 ABI says so.
    return vec_splats((unsigned long long)val);
}

/// \brief Broadcast 64-bit element to a vector
/// \tparam the element number
/// \param val the 64-bit value
/// \return vector
/// \par Wraps
///  vec_splat
/// \since Crypto++ 8.3
template <unsigned int N>
inline uint64x2_p VecSplatElement(const uint64x2_p val)
{
#if defined(__VSX__) || defined(_ARCH_PWR8)
    return vec_splat(val, N);
#else
    enum {E=N&1};
    if (E == 0)
    {
        const uint8x16_p m = {0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7};
        return vec_perm(val, val, m);
    }
    else // (E == 1)
    {
        const uint8x16_p m = {8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15};
        return vec_perm(val, val, m);
    }
#endif
}
#endif

/// \brief Extract a dword from a vector
/// \tparam T vector type
/// \param val the vector
/// \return vector created from low dword
/// \details VecGetLow() extracts the low dword from a vector. The low dword
///  is composed of the least significant bits and occupies bytes 8 through 15
///  when viewed as a big endian array. The return vector is the same type as
///  the original vector and padded with 0's in the most significant bit positions.
/// \par Wraps
///  vec_sld
/// \since Crypto++ 7.0
template <class T>
inline T VecGetLow(const T val)
{
#if defined(CRYPTOPP_BIG_ENDIAN) && (defined(__VSX__) || defined(_ARCH_PWR8))
    const T zero = {0};
    return (T)VecMergeLow((uint64x2_p)zero, (uint64x2_p)val);
#else
    return VecShiftRightOctet<8>(VecShiftLeftOctet<8>(val));
#endif
}

/// \brief Extract a dword from a vector
/// \tparam T vector type
/// \param val the vector
/// \return vector created from high dword
/// \details VecGetHigh() extracts the high dword from a vector. The high dword
///  is composed of the most significant bits and occupies bytes 0 through 7
///  when viewed as a big endian array. The return vector is the same type as
///  the original vector and padded with 0's in the most significant bit positions.
/// \par Wraps
///  vec_sld
/// \since Crypto++ 7.0
template <class T>
inline T VecGetHigh(const T val)
{
#if defined(CRYPTOPP_BIG_ENDIAN) && (defined(__VSX__) || defined(_ARCH_PWR8))
    const T zero = {0};
    return (T)VecMergeHigh((uint64x2_p)zero, (uint64x2_p)val);
#else
    return VecShiftRightOctet<8>(val);
#endif
}

/// \brief Exchange high and low double words
/// \tparam T vector type
/// \param vec the vector
/// \return vector
/// \par Wraps
///  vec_sld
/// \since Crypto++ 7.0
template <class T>
inline T VecSwapWords(const T vec)
{
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 8);
}

//@}

/// \name COMPARISON
//@{

/// \brief Compare two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return true if vec1 equals vec2, false otherwise
/// \details VecEqual() performs a bitwise compare. The vector element types do
///  not matter.
/// \par Wraps
///  vec_all_eq
/// \since Crypto++ 8.0
template <class T1, class T2>
inline bool VecEqual(const T1 vec1, const T2 vec2)
{
    return 1 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
}

/// \brief Compare two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return true if vec1 does not equal vec2, false otherwise
/// \details VecNotEqual() performs a bitwise compare. The vector element types do
///  not matter.
/// \par Wraps
///  vec_all_eq
/// \since Crypto++ 8.0
template <class T1, class T2>
inline bool VecNotEqual(const T1 vec1, const T2 vec2)
{
    return 0 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
}

//@}

////////////////// 32-bit Altivec /////////////////

/// \name 32-BIT ALTIVEC
//@{

/// \brief Add two vectors as if uint64x2_p
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecAdd64() performs <tt>vec1 + vec2</tt>. VecAdd64() performs as
///  if adding two uint64x2_p vectors. On POWER7 and below VecAdd64() manages
///  the carries from the elements.
/// \par Wraps
///  vec_add for POWER8, vec_addc, vec_perm, vec_add for Altivec
/// \since Crypto++ 8.3
inline uint32x4_p VecAdd64(const uint32x4_p& vec1, const uint32x4_p& vec2)
{
    // 64-bit elements available at POWER7 with VSX, but addudm requires POWER8
#if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
    return (uint32x4_p)vec_add((uint64x2_p)vec1, (uint64x2_p)vec2);
#else
    // The carry mask selects carrys for elements 1 and 3 and sets
    // remaining elements to 0. The results is then shifted so the
    // carried values are added to elements 0 and 2.
#if defined(CRYPTOPP_BIG_ENDIAN)
    const uint32x4_p zero = {0, 0, 0, 0};
    const uint32x4_p mask = {0, 1, 0, 1};
#else
    const uint32x4_p zero = {0, 0, 0, 0};
    const uint32x4_p mask = {1, 0, 1, 0};
#endif

    uint32x4_p cy = vec_addc(vec1, vec2);
    uint32x4_p res = vec_add(vec1, vec2);
    cy = vec_and(mask, cy);
    cy = vec_sld (cy, zero, 4);
    return vec_add(res, cy);
#endif
}

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Add two vectors as if uint64x2_p
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecAdd64() performs <tt>vec1 + vec2</tt>. VecAdd64() performs as
///  if adding two uint64x2_p vectors. On POWER7 and below VecAdd64() manages
///  the carries from the elements.
/// \par Wraps
///  vec_add for POWER8
/// \since Crypto++ 8.3
inline uint64x2_p VecAdd64(const uint64x2_p& vec1, const uint64x2_p& vec2)
{
    // 64-bit elements available at POWER7 with VSX, but addudm requires POWER8
    const uint64x2_p res = vec_add(vec1, vec2);

#if defined(CRYPTOPP_DEBUG)
    // Test 32-bit add in debug builds while we are here.
    const uint32x4_p x = (uint32x4_p)vec1;
    const uint32x4_p y = (uint32x4_p)vec2;
    const uint32x4_p r = VecAdd64(x, y);

    CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
#endif

    return res;
}
#endif

/// \brief Subtract two vectors as if uint64x2_p
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VecSub64() performs <tt>vec1 - vec2</tt>. VecSub64() performs as
///  if subtracting two uint64x2_p vectors. On POWER7 and below VecSub64()
///  manages the borrows from the elements.
/// \par Wraps
///  vec_sub for POWER8, vec_subc, vec_andc, vec_perm, vec_sub for Altivec
/// \since Crypto++ 8.3
inline uint32x4_p VecSub64(const uint32x4_p& vec1, const uint32x4_p& vec2)
{
#if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
    // 64-bit elements available at POWER7 with VSX, but subudm requires POWER8
    return (uint32x4_p)vec_sub((uint64x2_p)vec1, (uint64x2_p)vec2);
#else
    // The borrow mask selects borrows for elements 1 and 3 and sets
    // remaining elements to 0. The results is then shifted so the
    // borrowed values are subtracted from elements 0 and 2.
#if defined(CRYPTOPP_BIG_ENDIAN)
    const uint32x4_p zero = {0, 0, 0, 0};
    const uint32x4_p mask = {0, 1, 0, 1};
#else
    const uint32x4_p zero = {0, 0, 0, 0};
    const uint32x4_p mask = {1, 0, 1, 0};
#endif

    // subc sets the complement of borrow, so we have to
    // un-complement it using andc.
    uint32x4_p bw = vec_subc(vec1, vec2);
    uint32x4_p res = vec_sub(vec1, vec2);
    bw = vec_andc(mask, bw);
    bw = vec_sld (bw, zero, 4);
    return vec_sub(res, bw);
#endif
}

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Subtract two vectors as if uint64x2_p
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VecSub64() performs <tt>vec1 - vec2</tt>. VecSub64() performs as
///  if subtracting two uint64x2_p vectors. On POWER7 and below VecSub64()
///  manages the borrows from the elements.
/// \par Wraps
///  vec_sub for POWER8
/// \since Crypto++ 8.3
inline uint64x2_p VecSub64(const uint64x2_p& vec1, const uint64x2_p& vec2)
{
    // 64-bit elements available at POWER7 with VSX, but subudm requires POWER8
    const uint64x2_p res = vec_sub(vec1, vec2);

#if defined(CRYPTOPP_DEBUG)
    // Test 32-bit sub in debug builds while we are here.
    const uint32x4_p x = (uint32x4_p)vec1;
    const uint32x4_p y = (uint32x4_p)vec2;
    const uint32x4_p r = VecSub64(x, y);

    CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
#endif

    return res;
}
#endif

/// \brief Rotate a vector left as if uint64x2_p
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateLeft() rotates each element in a vector by bit count.
///  vec is rotated as if uint64x2_p.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.3
template<unsigned int C>
inline uint32x4_p VecRotateLeft64(const uint32x4_p vec)
{
#if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
    // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
    return (uint32x4_p)VecRotateLeft<C>((uint64x2_p)vec);
#else
    // C=0, 32, or 64 needs special handling. That is S32 and S64 below.
    enum {S64=C&63, S32=C&31, BR=(S64>=32)};

    // Get the low bits, shift them to high bits
    uint32x4_p t1 = VecShiftLeft<S32>(vec);
    // Get the high bits, shift them to low bits
    uint32x4_p t2 = VecShiftRight<32-S32>(vec);

    if (S64 == 0)
    {
        const uint8x16_p m = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
        return VecPermute(vec, m);
    }
    else if (S64 == 32)
    {
        const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
        return VecPermute(vec, m);
    }
    else if (BR)  // Big rotate amount?
    {
        const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
        t1 = VecPermute(t1, m);
    }
    else
    {
        const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
        t2 = VecPermute(t2, m);
    }

    return vec_or(t1, t2);
#endif
}

/// \brief Rotate a vector left as if uint64x2_p
/// \param vec the vector
/// \return vector
/// \details VecRotateLeft<8>() rotates each element in a vector
///  by 8-bits. vec is rotated as if uint64x2_p. This specialization
///  is used by algorithms like Speck128.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.3
template<>
inline uint32x4_p VecRotateLeft64<8>(const uint32x4_p vec)
{
#if (CRYPTOPP_BIG_ENDIAN)
    const uint8x16_p m = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
    return VecPermute(vec, m);
#else
    const uint8x16_p m = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
    return VecPermute(vec, m);
#endif
}

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Rotate a vector left as if uint64x2_p
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateLeft64() rotates each element in a vector by
///  bit count. vec is rotated as if uint64x2_p.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.3
template<unsigned int C>
inline uint64x2_p VecRotateLeft64(const uint64x2_p vec)
{
    // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
    const uint64x2_p res = VecRotateLeft<C>(vec);

#if defined(CRYPTOPP_DEBUG)
    // Test 32-bit rotate in debug builds while we are here.
    const uint32x4_p x = (uint32x4_p)vec;
    const uint32x4_p r = VecRotateLeft64<C>(x);

    CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
#endif

    return res;
}
#endif

/// \brief Rotate a vector right as if uint64x2_p
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateRight64() rotates each element in a vector by
///  bit count. vec is rotated as if uint64x2_p.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.3
template<unsigned int C>
inline uint32x4_p VecRotateRight64(const uint32x4_p vec)
{
#if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
    // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
    return (uint32x4_p)VecRotateRight<C>((uint64x2_p)vec);
#else
    // C=0, 32, or 64 needs special handling. That is S32 and S64 below.
    enum {S64=C&63, S32=C&31, BR=(S64>=32)};

    // Get the low bits, shift them to high bits
    uint32x4_p t1 = VecShiftRight<S32>(vec);
    // Get the high bits, shift them to low bits
    uint32x4_p t2 = VecShiftLeft<32-S32>(vec);

    if (S64 == 0)
    {
        const uint8x16_p m = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
        return VecPermute(vec, m);
    }
    else if (S64 == 32)
    {
        const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
        return VecPermute(vec, m);
    }
    else if (BR)  // Big rotate amount?
    {
        const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
        t1 = VecPermute(t1, m);
    }
    else
    {
        const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
        t2 = VecPermute(t2, m);
    }

    return vec_or(t1, t2);
#endif
}

/// \brief Rotate a vector right as if uint64x2_p
/// \param vec the vector
/// \return vector
/// \details VecRotateRight64<8>() rotates each element in a vector
///  by 8-bits. vec is rotated as if uint64x2_p. This specialization
///  is used by algorithms like Speck128.
/// \details vec is rotated as if uint64x2_p.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.3
template<>
inline uint32x4_p VecRotateRight64<8>(const uint32x4_p vec)
{
#if (CRYPTOPP_BIG_ENDIAN)
    const uint8x16_p m = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
    return VecPermute(vec, m);
#else
    const uint8x16_p m = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
    return VecPermute(vec, m);
#endif
}

#if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Rotate a vector right as if uint64x2_p
/// \tparam C rotate bit count
/// \param vec the vector
/// \return vector
/// \details VecRotateRight64() rotates each element in a vector by
///  bit count. vec is rotated as if uint64x2_p.
/// \par Wraps
///  vec_rl
/// \since Crypto++ 8.3
template<unsigned int C>
inline uint64x2_p VecRotateRight64(const uint64x2_p vec)
{
    // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
    const uint64x2_p res = VecRotateRight<C>(vec);

#if defined(CRYPTOPP_DEBUG)
    // Test 32-bit rotate in debug builds while we are here.
    const uint32x4_p x = (uint32x4_p)vec;
    const uint32x4_p r = VecRotateRight64<C>(x);

    CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
#endif

    return res;
}
#endif

/// \brief AND two vectors as if uint64x2_p
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecAnd64() performs <tt>vec1 & vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \details VecAnd64() is a convenience function that simply performs a VecAnd().
/// \par Wraps
///  vec_and
/// \since Crypto++ 8.3
template <class T1, class T2>
inline T1 VecAnd64(const T1 vec1, const T2 vec2)
{
    return (T1)vec_and(vec1, (T1)vec2);
}

/// \brief OR two vectors as if uint64x2_p
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecOr64() performs <tt>vec1 | vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \details VecOr64() is a convenience function that simply performs a VecOr().
/// \par Wraps
///  vec_or
/// \since Crypto++ 8.3
template <class T1, class T2>
inline T1 VecOr64(const T1 vec1, const T2 vec2)
{
    return (T1)vec_or(vec1, (T1)vec2);
}

/// \brief XOR two vectors as if uint64x2_p
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \return vector
/// \details VecXor64() performs <tt>vec1 ^ vec2</tt>.
///  vec2 is cast to the same type as vec1. The return vector
///  is the same type as vec1.
/// \details VecXor64() is a convenience function that simply performs a VecXor().
/// \par Wraps
///  vec_xor
/// \since Crypto++ 8.3
template <class T1, class T2>
inline T1 VecXor64(const T1 vec1, const T2 vec2)
{
    return (T1)vec_xor(vec1, (T1)vec2);
}

/// \brief Broadcast 64-bit double word to a vector
/// \param val the 64-bit value
/// \return vector
/// \par Wraps
///  vec_splats
/// \since Crypto++ 8.3
inline uint32x4_p VecSplatWord64(word64 val)
{
#if defined(_ARCH_PWR8)
    // The PPC64 ABI says so.
    return (uint32x4_p)vec_splats((unsigned long long)val);
#else
    const word64 x[2] = {val,val};
    return (uint32x4_p)VecLoad((const word32*)x);
#endif
}

/// \brief Broadcast 64-bit element to a vector as if uint64x2_p
/// \tparam the element number
/// \param val the 64-bit value
/// \return vector
/// \par Wraps
///  vec_splat
/// \since Crypto++ 8.3
template <unsigned int N>
inline uint32x4_p VecSplatElement64(const uint32x4_p val)
{
#if defined(__VSX__) || defined(_ARCH_PWR8)
    return (uint32x4_p)vec_splat((uint64x2_p)val, N);
#else
    enum {E=N&1};
    if (E == 0)
    {
        const uint8x16_p m = {0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7};
        return (uint32x4_p)vec_perm(val, val, m);
    }
    else // (E == 1)
    {
        const uint8x16_p m = {8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15};
        return (uint32x4_p)vec_perm(val, val, m);
    }
#endif
}

#if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Broadcast 64-bit element to a vector
/// \tparam the element number
/// \param val the 64-bit value
/// \return vector
/// \since Crypto++ 8.3
template <unsigned int N>
inline uint64x2_p VecSplatElement64(const uint64x2_p val)
{
    return vec_splat(val, N);
}
#endif

//@}

//////////////////////// Power8 Crypto ////////////////////////

// __CRYPTO__ alone is not enough. Clang will define __CRYPTO__
// when it is not available, like with Power7. Sigh...
#if (defined(_ARCH_PWR8) && defined(__CRYPTO__)) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \name POLYNOMIAL MULTIPLICATION
//@{

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \return vector product
/// \details VecPolyMultiply() performs polynomial multiplication. POWER8
///  polynomial multiplication multiplies the high and low terms, and then
///  XOR's the high and low products. That is, the result is <tt>ah*bh XOR
///  al*bl</tt>. It is different behavior than Intel polynomial
///  multiplication. To obtain a single product without the XOR, then set
///  one of the high or low terms to 0. For example, setting <tt>ah=0</tt>
///  results in <tt>0*bh XOR al*bl = al*bl</tt>.
/// \par Wraps
///  __vpmsumw, __builtin_altivec_crypto_vpmsumw and __builtin_crypto_vpmsumw.
/// \since Crypto++ 8.1
inline uint32x4_p VecPolyMultiply(const uint32x4_p& a, const uint32x4_p& b)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return __vpmsumw (a, b);
#elif defined(__clang__)
    return __builtin_altivec_crypto_vpmsumw (a, b);
#else
    return __builtin_crypto_vpmsumw (a, b);
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \return vector product
/// \details VecPolyMultiply() performs polynomial multiplication. POWER8
///  polynomial multiplication multiplies the high and low terms, and then
///  XOR's the high and low products. That is, the result is <tt>ah*bh XOR
///  al*bl</tt>. It is different behavior than Intel polynomial
///  multiplication. To obtain a single product without the XOR, then set
///  one of the high or low terms to 0. For example, setting <tt>ah=0</tt>
///  results in <tt>0*bh XOR al*bl = al*bl</tt>.
/// \par Wraps
///  __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.1
inline uint64x2_p VecPolyMultiply(const uint64x2_p& a, const uint64x2_p& b)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return __vpmsumd (a, b);
#elif defined(__clang__)
    return __builtin_altivec_crypto_vpmsumd (a, b);
#else
    return __builtin_crypto_vpmsumd (a, b);
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \return vector product
/// \details VecIntelMultiply00() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x00)</tt>.
///  The <tt>0x00</tt> indicates the low 64-bits of <tt>a</tt> and <tt>b</tt>
///  are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
/// \par Wraps
///  __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecIntelMultiply00(const uint64x2_p& a, const uint64x2_p& b)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(VecGetHigh(a), VecGetHigh(b)));
#else
    return VecPolyMultiply(VecGetHigh(a), VecGetHigh(b));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \return vector product
/// \details VecIntelMultiply01 performs() polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x01)</tt>.
///  The <tt>0x01</tt> indicates the low 64-bits of <tt>a</tt> and high
///  64-bits of <tt>b</tt> are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
/// \par Wraps
///  __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecIntelMultiply01(const uint64x2_p& a, const uint64x2_p& b)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(a, VecGetHigh(b)));
#else
    return VecPolyMultiply(a, VecGetHigh(b));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \return vector product
/// \details VecIntelMultiply10() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x10)</tt>.
///  The <tt>0x10</tt> indicates the high 64-bits of <tt>a</tt> and low
///  64-bits of <tt>b</tt> are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
/// \par Wraps
///  __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecIntelMultiply10(const uint64x2_p& a, const uint64x2_p& b)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(VecGetHigh(a), b));
#else
    return VecPolyMultiply(VecGetHigh(a), b);
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \return vector product
/// \details VecIntelMultiply11() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x11)</tt>.
///  The <tt>0x11</tt> indicates the high 64-bits of <tt>a</tt> and <tt>b</tt>
///  are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
/// \par Wraps
///  __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecIntelMultiply11(const uint64x2_p& a, const uint64x2_p& b)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(VecGetLow(a), b));
#else
    return VecPolyMultiply(VecGetLow(a), b);
#endif
}

//@}

/// \name AES ENCRYPTION
//@{

/// \brief One round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecEncrypt() performs one round of AES encryption of state
///  using subkey key. The return vector is the same type as state.
/// \details VecEncrypt() is available on POWER8 and above.
/// \par Wraps
///  __vcipher, __builtin_altivec_crypto_vcipher, __builtin_crypto_vcipher
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecEncrypt(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief Final round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecEncryptLast() performs the final round of AES encryption
///  of state using subkey key. The return vector is the same type as state.
/// \details VecEncryptLast() is available on POWER8 and above.
/// \par Wraps
///  __vcipherlast, __builtin_altivec_crypto_vcipherlast, __builtin_crypto_vcipherlast
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecEncryptLast(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief One round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecDecrypt() performs one round of AES decryption of state
///  using subkey key. The return vector is the same type as state.
/// \details VecDecrypt() is available on POWER8 and above.
/// \par Wraps
///  __vncipher, __builtin_altivec_crypto_vncipher, __builtin_crypto_vncipher
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecDecrypt(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief Final round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecDecryptLast() performs the final round of AES decryption
///  of state using subkey key. The return vector is the same type as state.
/// \details VecDecryptLast() is available on POWER8 and above.
/// \par Wraps
///  __vncipherlast, __builtin_altivec_crypto_vncipherlast, __builtin_crypto_vncipherlast
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecDecryptLast(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

//@}

/// \name SHA DIGESTS
//@{

/// \brief SHA256 Sigma functions
/// \tparam func function
/// \tparam fmask function mask
/// \tparam T vector type
/// \param data the block to transform
/// \details VecSHA256() selects sigma0, sigma1, Sigma0, Sigma1 based on
///  func and fmask. The return vector is the same type as data.
/// \details VecSHA256() is available on POWER8 and above.
/// \par Wraps
///  __vshasigmaw, __builtin_altivec_crypto_vshasigmaw, __builtin_crypto_vshasigmaw
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <int func, int fmask, class T>
inline T VecSHA256(const T data)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T)__vshasigmaw((uint32x4_p)data, func, fmask);
#elif defined(__clang__)
    return (T)__builtin_altivec_crypto_vshasigmaw((uint32x4_p)data, func, fmask);
#elif defined(__GNUC__)
    return (T)__builtin_crypto_vshasigmaw((uint32x4_p)data, func, fmask);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief SHA512 Sigma functions
/// \tparam func function
/// \tparam fmask function mask
/// \tparam T vector type
/// \param data the block to transform
/// \details VecSHA512() selects sigma0, sigma1, Sigma0, Sigma1 based on
///  func and fmask. The return vector is the same type as data.
/// \details VecSHA512() is available on POWER8 and above.
/// \par Wraps
///  __vshasigmad, __builtin_altivec_crypto_vshasigmad, __builtin_crypto_vshasigmad
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <int func, int fmask, class T>
inline T VecSHA512(const T data)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T)__vshasigmad((uint64x2_p)data, func, fmask);
#elif defined(__clang__)
    return (T)__builtin_altivec_crypto_vshasigmad((uint64x2_p)data, func, fmask);
#elif defined(__GNUC__)
    return (T)__builtin_crypto_vshasigmad((uint64x2_p)data, func, fmask);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

//@}

#endif  // __CRYPTO__

#endif  // _ALTIVEC_

NAMESPACE_END

#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif

#endif  // CRYPTOPP_PPC_CRYPTO_H