summaryrefslogtreecommitdiff
path: root/polynomi.h
blob: e76b97655d64bbc97f271f19ab003bb8ff4a7203 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// polynomi.h - written and placed in the public domain by Wei Dai

//! \file
//! \headerfile polynomi.h
//! \brief Classes for polynomial basis and operations


#ifndef CRYPTOPP_POLYNOMI_H
#define CRYPTOPP_POLYNOMI_H

/*! \file */

#include "cryptlib.h"
#include "secblock.h"
#include "algebra.h"
#include "misc.h"

#include <iosfwd>
#include <vector>

NAMESPACE_BEGIN(CryptoPP)

//! represents single-variable polynomials over arbitrary rings
/*!	\nosubgrouping */
template <class T> class PolynomialOver
{
public:
	//! \name ENUMS, EXCEPTIONS, and TYPEDEFS
	//@{
		//! division by zero exception
		class DivideByZero : public Exception 
		{
		public: 
			DivideByZero() : Exception(OTHER_ERROR, "PolynomialOver<T>: division by zero") {}
		};

		//! specify the distribution for randomization functions
		class RandomizationParameter
		{
		public:
			RandomizationParameter(unsigned int coefficientCount, const typename T::RandomizationParameter &coefficientParameter )
				: m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}

		private:
			unsigned int m_coefficientCount;
			typename T::RandomizationParameter m_coefficientParameter;
			friend class PolynomialOver<T>;
		};

		typedef T Ring;
		typedef typename T::Element CoefficientType;
	//@}

	//! \name CREATORS
	//@{
		//! creates the zero polynomial
		PolynomialOver() {}

		//!
		PolynomialOver(const Ring &ring, unsigned int count)
			: m_coefficients((size_t)count, ring.Identity()) {}

		//! copy constructor
		PolynomialOver(const PolynomialOver<Ring> &t)
			: m_coefficients(t.m_coefficients.size()) {*this = t;}

		//! construct constant polynomial
		PolynomialOver(const CoefficientType &element)
			: m_coefficients(1, element) {}

		//! construct polynomial with specified coefficients, starting from coefficient of x^0
		template <typename Iterator> PolynomialOver(Iterator begin, Iterator end)
			: m_coefficients(begin, end) {}

		//! convert from string
		PolynomialOver(const char *str, const Ring &ring) {FromStr(str, ring);}

		//! convert from big-endian byte array
		PolynomialOver(const byte *encodedPolynomialOver, unsigned int byteCount);

		//! convert from Basic Encoding Rules encoded byte array
		explicit PolynomialOver(const byte *BEREncodedPolynomialOver);

		//! convert from BER encoded byte array stored in a BufferedTransformation object
		explicit PolynomialOver(BufferedTransformation &bt);

		//! create a random PolynomialOver<T>
		PolynomialOver(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring)
			{Randomize(rng, parameter, ring);}
	//@}

	//! \name ACCESSORS
	//@{
		//! the zero polynomial will return a degree of -1
		int Degree(const Ring &ring) const {return int(CoefficientCount(ring))-1;}
		//!
		unsigned int CoefficientCount(const Ring &ring) const;
		//! return coefficient for x^i
		CoefficientType GetCoefficient(unsigned int i, const Ring &ring) const;
	//@}

	//! \name MANIPULATORS
	//@{
		//!
		PolynomialOver<Ring>&  operator=(const PolynomialOver<Ring>& t);

		//!
		void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring);

		//! set the coefficient for x^i to value
		void SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring);

		//!
		void Negate(const Ring &ring);

		//!
		void swap(PolynomialOver<Ring> &t);
	//@}


	//! \name BASIC ARITHMETIC ON POLYNOMIALS
	//@{
		bool Equals(const PolynomialOver<Ring> &t, const Ring &ring) const;
		bool IsZero(const Ring &ring) const {return CoefficientCount(ring)==0;}

		PolynomialOver<Ring> Plus(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> Minus(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> Inverse(const Ring &ring) const;

		PolynomialOver<Ring> Times(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> DividedBy(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> Modulo(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> MultiplicativeInverse(const Ring &ring) const;
		bool IsUnit(const Ring &ring) const;

		PolynomialOver<Ring>& Accumulate(const PolynomialOver<Ring>& t, const Ring &ring);
		PolynomialOver<Ring>& Reduce(const PolynomialOver<Ring>& t, const Ring &ring);

		//!
		PolynomialOver<Ring> Doubled(const Ring &ring) const {return Plus(*this, ring);}
		//!
		PolynomialOver<Ring> Squared(const Ring &ring) const {return Times(*this, ring);}

		CoefficientType EvaluateAt(const CoefficientType &x, const Ring &ring) const;

		PolynomialOver<Ring>& ShiftLeft(unsigned int n, const Ring &ring);
		PolynomialOver<Ring>& ShiftRight(unsigned int n, const Ring &ring);

		//! calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree of d)
		static void Divide(PolynomialOver<Ring> &r, PolynomialOver<Ring> &q, const PolynomialOver<Ring> &a, const PolynomialOver<Ring> &d, const Ring &ring);
	//@}

	//! \name INPUT/OUTPUT
	//@{
		std::istream& Input(std::istream &in, const Ring &ring);
		std::ostream& Output(std::ostream &out, const Ring &ring) const;
	//@}

private:
	void FromStr(const char *str, const Ring &ring);

	std::vector<CoefficientType> m_coefficients;
};

//! Polynomials over a fixed ring
/*! Having a fixed ring allows overloaded operators */
template <class T, int instance> class PolynomialOverFixedRing : private PolynomialOver<T>
{
	typedef PolynomialOver<T> B;
	typedef PolynomialOverFixedRing<T, instance> ThisType;

public:
	typedef T Ring;
	typedef typename T::Element CoefficientType;
	typedef typename B::DivideByZero DivideByZero;
	typedef typename B::RandomizationParameter RandomizationParameter;

	//! \name CREATORS
	//@{
		//! creates the zero polynomial
		PolynomialOverFixedRing(unsigned int count = 0) : B(ms_fixedRing, count) {}

		//! copy constructor
		PolynomialOverFixedRing(const ThisType &t) : B(t) {}

		explicit PolynomialOverFixedRing(const B &t) : B(t) {}

		//! construct constant polynomial
		PolynomialOverFixedRing(const CoefficientType &element) : B(element) {}

		//! construct polynomial with specified coefficients, starting from coefficient of x^0
		template <typename Iterator> PolynomialOverFixedRing(Iterator first, Iterator last)
			: B(first, last) {}

		//! convert from string
		explicit PolynomialOverFixedRing(const char *str) : B(str, ms_fixedRing) {}

		//! convert from big-endian byte array
		PolynomialOverFixedRing(const byte *encodedPoly, unsigned int byteCount) : B(encodedPoly, byteCount) {}

		//! convert from Basic Encoding Rules encoded byte array
		explicit PolynomialOverFixedRing(const byte *BEREncodedPoly) : B(BEREncodedPoly) {}

		//! convert from BER encoded byte array stored in a BufferedTransformation object
		explicit PolynomialOverFixedRing(BufferedTransformation &bt) : B(bt) {}

		//! create a random PolynomialOverFixedRing
		PolynomialOverFixedRing(RandomNumberGenerator &rng, const RandomizationParameter &parameter) : B(rng, parameter, ms_fixedRing) {}

		static const ThisType &Zero();
		static const ThisType &One();
	//@}

	//! \name ACCESSORS
	//@{
		//! the zero polynomial will return a degree of -1
		int Degree() const {return B::Degree(ms_fixedRing);}
		//! degree + 1
		unsigned int CoefficientCount() const {return B::CoefficientCount(ms_fixedRing);}
		//! return coefficient for x^i
		CoefficientType GetCoefficient(unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
		//! return coefficient for x^i
		CoefficientType operator[](unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
	//@}

	//! \name MANIPULATORS
	//@{
		//!
		ThisType&  operator=(const ThisType& t) {B::operator=(t); return *this;}
		//!
		ThisType&  operator+=(const ThisType& t) {Accumulate(t, ms_fixedRing); return *this;}
		//!
		ThisType&  operator-=(const ThisType& t) {Reduce(t, ms_fixedRing); return *this;}
		//!
		ThisType&  operator*=(const ThisType& t) {return *this = *this*t;}
		//!
		ThisType&  operator/=(const ThisType& t) {return *this = *this/t;}
		//!
		ThisType&  operator%=(const ThisType& t) {return *this = *this%t;}

		//!
		ThisType&  operator<<=(unsigned int n) {ShiftLeft(n, ms_fixedRing); return *this;}
		//!
		ThisType&  operator>>=(unsigned int n) {ShiftRight(n, ms_fixedRing); return *this;}

		//! set the coefficient for x^i to value
		void SetCoefficient(unsigned int i, const CoefficientType &value) {B::SetCoefficient(i, value, ms_fixedRing);}

		//!
		void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter) {B::Randomize(rng, parameter, ms_fixedRing);}

		//!
		void Negate() {B::Negate(ms_fixedRing);}

		void swap(ThisType &t) {B::swap(t);}
	//@}

	//! \name UNARY OPERATORS
	//@{
		//!
		bool operator!() const {return CoefficientCount()==0;}
		//!
		ThisType operator+() const {return *this;}
		//!
		ThisType operator-() const {return ThisType(Inverse(ms_fixedRing));}
	//@}

	//! \name BINARY OPERATORS
	//@{
		//!
		friend ThisType operator>>(ThisType a, unsigned int n)	{return ThisType(a>>=n);}
		//!
		friend ThisType operator<<(ThisType a, unsigned int n)	{return ThisType(a<<=n);}
	//@}

	//! \name OTHER ARITHMETIC FUNCTIONS
	//@{
		//!
		ThisType MultiplicativeInverse() const {return ThisType(B::MultiplicativeInverse(ms_fixedRing));}
		//!
		bool IsUnit() const {return B::IsUnit(ms_fixedRing);}

		//!
		ThisType Doubled() const {return ThisType(B::Doubled(ms_fixedRing));}
		//!
		ThisType Squared() const {return ThisType(B::Squared(ms_fixedRing));}

		CoefficientType EvaluateAt(const CoefficientType &x) const {return B::EvaluateAt(x, ms_fixedRing);}

		//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
		static void Divide(ThisType &r, ThisType &q, const ThisType &a, const ThisType &d)
			{B::Divide(r, q, a, d, ms_fixedRing);}
	//@}

	//! \name INPUT/OUTPUT
	//@{
		//!
		friend std::istream& operator>>(std::istream& in, ThisType &a)
			{return a.Input(in, ms_fixedRing);}
		//!
		friend std::ostream& operator<<(std::ostream& out, const ThisType &a)
			{return a.Output(out, ms_fixedRing);}
	//@}

private:
	struct NewOnePolynomial
	{
		ThisType * operator()() const
		{
			return new ThisType(ms_fixedRing.MultiplicativeIdentity());
		}
	};

	static const Ring ms_fixedRing;
};

//! Ring of polynomials over another ring
template <class T> class RingOfPolynomialsOver : public AbstractEuclideanDomain<PolynomialOver<T> >
{
public:
	typedef T CoefficientRing;
	typedef PolynomialOver<T> Element;
	typedef typename Element::CoefficientType CoefficientType;
	typedef typename Element::RandomizationParameter RandomizationParameter;

	RingOfPolynomialsOver(const CoefficientRing &ring) : m_ring(ring) {}

	Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &parameter)
		{return Element(rng, parameter, m_ring);}

	bool Equal(const Element &a, const Element &b) const
		{return a.Equals(b, m_ring);}

	const Element& Identity() const
		{return this->result = m_ring.Identity();}

	const Element& Add(const Element &a, const Element &b) const
		{return this->result = a.Plus(b, m_ring);}

	Element& Accumulate(Element &a, const Element &b) const
		{a.Accumulate(b, m_ring); return a;}

	const Element& Inverse(const Element &a) const
		{return this->result = a.Inverse(m_ring);}

	const Element& Subtract(const Element &a, const Element &b) const
		{return this->result = a.Minus(b, m_ring);}

	Element& Reduce(Element &a, const Element &b) const
		{return a.Reduce(b, m_ring);}

	const Element& Double(const Element &a) const
		{return this->result = a.Doubled(m_ring);}

	const Element& MultiplicativeIdentity() const
		{return this->result = m_ring.MultiplicativeIdentity();}

	const Element& Multiply(const Element &a, const Element &b) const
		{return this->result = a.Times(b, m_ring);}

	const Element& Square(const Element &a) const
		{return this->result = a.Squared(m_ring);}

	bool IsUnit(const Element &a) const
		{return a.IsUnit(m_ring);}

	const Element& MultiplicativeInverse(const Element &a) const
		{return this->result = a.MultiplicativeInverse(m_ring);}

	const Element& Divide(const Element &a, const Element &b) const
		{return this->result = a.DividedBy(b, m_ring);}

	const Element& Mod(const Element &a, const Element &b) const
		{return this->result = a.Modulo(b, m_ring);}

	void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
		{Element::Divide(r, q, a, d, m_ring);}

	class InterpolationFailed : public Exception
	{
	public:
		InterpolationFailed() : Exception(OTHER_ERROR, "RingOfPolynomialsOver<T>: interpolation failed") {}
	};

	Element Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const;

	// a faster version of Interpolate(x, y, n).EvaluateAt(position)
	CoefficientType InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
/*
	void PrepareBulkInterpolation(CoefficientType *w, const CoefficientType x[], unsigned int n) const;
	void PrepareBulkInterpolationAt(CoefficientType *v, const CoefficientType &position, const CoefficientType x[], const CoefficientType w[], unsigned int n) const;
	CoefficientType BulkInterpolateAt(const CoefficientType y[], const CoefficientType v[], unsigned int n) const;
*/
protected:
	void CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;

	CoefficientRing m_ring;
};

template <class Ring, class Element>
void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n);
template <class Ring, class Element>
void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n);
template <class Ring, class Element>
Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n);

//!
template <class T, int instance>
inline bool operator==(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Equals(b, a.ms_fixedRing);}
//!
template <class T, int instance>
inline bool operator!=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return !(a==b);}

//!
template <class T, int instance>
inline bool operator> (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() > b.Degree();}
//!
template <class T, int instance>
inline bool operator>=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() >= b.Degree();}
//!
template <class T, int instance>
inline bool operator< (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() < b.Degree();}
//!
template <class T, int instance>
inline bool operator<=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() <= b.Degree();}

//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator+(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator-(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator*(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}

NAMESPACE_END

NAMESPACE_BEGIN(std)
template<class T> inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b)
{
	a.swap(b);
}
template<class T, int i> inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b)
{
	a.swap(b);
}
NAMESPACE_END

#endif