summaryrefslogtreecommitdiff
path: root/modes.cpp
blob: 031e26fb2fa9e518dfaea91c132b7d083dfbc727 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// modes.cpp - originally written and placed in the public domain by Wei Dai

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS

#include "modes.h"
#include "misc.h"

#if defined(CRYPTOPP_DEBUG)
#include "des.h"
#endif

NAMESPACE_BEGIN(CryptoPP)

#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void Modes_TestInstantiations()
{
	CFB_Mode<DES>::Encryption m0;
	CFB_Mode<DES>::Decryption m1;
	OFB_Mode<DES>::Encryption m2;
	CTR_Mode<DES>::Encryption m3;
	ECB_Mode<DES>::Encryption m4;
	CBC_Mode<DES>::Encryption m5;
}
#endif

void CipherModeBase::ResizeBuffers()
{
	m_register.New(m_cipher->BlockSize());
}

void CFB_ModePolicy::Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
{
	CRYPTOPP_ASSERT(input);	CRYPTOPP_ASSERT(output);
	CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());
	CRYPTOPP_ASSERT(m_temp.size() == BlockSize());
	CRYPTOPP_ASSERT(iterationCount > 0);

	const unsigned int s = BlockSize();
	if (dir == ENCRYPTION)
	{
		m_cipher->ProcessAndXorBlock(m_register, input, output);
		if (iterationCount > 1)
			m_cipher->AdvancedProcessBlocks(output, PtrAdd(input,s), PtrAdd(output,s), (iterationCount-1)*s, 0);
		std::memcpy(m_register, PtrAdd(output,(iterationCount-1)*s), s);
	}
	else
	{
		// make copy first in case of in-place decryption
		std::memcpy(m_temp, PtrAdd(input,(iterationCount-1)*s), s);
		if (iterationCount > 1)
			m_cipher->AdvancedProcessBlocks(input, PtrAdd(input,s), PtrAdd(output,s), (iterationCount-1)*s, BlockTransformation::BT_ReverseDirection);
		m_cipher->ProcessAndXorBlock(m_register, input, output);
		std::memcpy(m_register, m_temp, s);
	}
}

void CFB_ModePolicy::TransformRegister()
{
	CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());
	CRYPTOPP_ASSERT(m_temp.size() == BlockSize());

	const ptrdiff_t updateSize = BlockSize()-m_feedbackSize;
	m_cipher->ProcessBlock(m_register, m_temp);
	memmove_s(m_register, m_register.size(), PtrAdd(m_register.begin(),m_feedbackSize), updateSize);
	memcpy_s(PtrAdd(m_register.begin(),updateSize), m_register.size()-updateSize, m_temp, m_feedbackSize);
}

void CFB_ModePolicy::CipherResynchronize(const byte *iv, size_t length)
{
	CRYPTOPP_ASSERT(length == BlockSize());
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());

	CopyOrZero(m_register, m_register.size(), iv, length);
	TransformRegister();
}

void CFB_ModePolicy::SetFeedbackSize(unsigned int feedbackSize)
{
	if (feedbackSize > BlockSize())
		throw InvalidArgument("CFB_Mode: invalid feedback size");
	m_feedbackSize = feedbackSize ? feedbackSize : BlockSize();
}

void CFB_ModePolicy::ResizeBuffers()
{
	CipherModeBase::ResizeBuffers();
	m_temp.New(BlockSize());
}

byte* CFB_ModePolicy::GetRegisterBegin()
{
	CRYPTOPP_ASSERT(!m_register.empty());
	CRYPTOPP_ASSERT(BlockSize() >= m_feedbackSize);
	return PtrAdd(m_register.begin(), BlockSize() - m_feedbackSize);
}

void OFB_ModePolicy::WriteKeystream(byte *keystreamBuffer, size_t iterationCount)
{
	CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());
	CRYPTOPP_ASSERT(iterationCount > 0);

	const unsigned int s = BlockSize();
	m_cipher->ProcessBlock(m_register, keystreamBuffer);
	if (iterationCount > 1)
		m_cipher->AdvancedProcessBlocks(keystreamBuffer, NULLPTR, PtrAdd(keystreamBuffer, s), s*(iterationCount-1), 0);
	std::memcpy(m_register, PtrAdd(keystreamBuffer, (iterationCount-1)*s), s);
}

void OFB_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
	CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());
	CRYPTOPP_ASSERT(length == BlockSize());

	CopyOrZero(m_register, m_register.size(), iv, length);
}

void CTR_ModePolicy::SeekToIteration(lword iterationCount)
{
	int carry=0;
	for (int i=BlockSize()-1; i>=0; i--)
	{
		unsigned int sum = m_register[i] + (byte)iterationCount + carry;
		m_counterArray[i] = byte(sum & 0xff);
		carry = sum >> 8;
		iterationCount >>= 8;
	}
}

void CTR_ModePolicy::IncrementCounterBy256()
{
	IncrementCounterByOne(m_counterArray, BlockSize()-1);
}

void CTR_ModePolicy::OperateKeystream(KeystreamOperation /*operation*/, byte *output, const byte *input, size_t iterationCount)
{
	CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
	CRYPTOPP_ASSERT(m_counterArray.size() == BlockSize());

	const unsigned int s = BlockSize();
	const unsigned int inputIncrement = input ? s : 0;

	while (iterationCount)
	{
		const byte lsb = m_counterArray[s-1];
		const size_t blocks = UnsignedMin(iterationCount, 256U-lsb);

		m_cipher->AdvancedProcessBlocks(m_counterArray, input, output, blocks*s, BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_AllowParallel);
		if ((m_counterArray[s-1] = byte(lsb + blocks)) == 0)
			IncrementCounterBy256();

		output = PtrAdd(output, blocks*s);
		input = PtrAdd(input, blocks*inputIncrement);
		iterationCount -= blocks;
	}
}

void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
	CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());
	CRYPTOPP_ASSERT(length == BlockSize());

	CopyOrZero(m_register, m_register.size(), iv, length);
	m_counterArray.Assign(m_register.begin(), m_register.size());
}

void BlockOrientedCipherModeBase::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params)
{
	m_cipher->SetKey(key, length, params);
	ResizeBuffers();
	if (IsResynchronizable())
	{
		size_t ivLength;
		const byte *iv = GetIVAndThrowIfInvalid(params, ivLength);
		Resynchronize(iv, (int)ivLength);
	}
}

void BlockOrientedCipherModeBase::ResizeBuffers()
{
	CipherModeBase::ResizeBuffers();
	m_buffer.New(BlockSize());
}

void ECB_OneWay::ProcessData(byte *outString, const byte *inString, size_t length)
{
	CRYPTOPP_ASSERT(length%BlockSize()==0);
	m_cipher->AdvancedProcessBlocks(inString, NULLPTR, outString, length, BlockTransformation::BT_AllowParallel);
}

void CBC_Encryption::ProcessData(byte *outString, const byte *inString, size_t length)
{
	CRYPTOPP_ASSERT(length%BlockSize()==0);
	CRYPTOPP_ASSERT(m_register.size() == BlockSize());
	if (!length) return;

	const unsigned int blockSize = BlockSize();
	m_cipher->AdvancedProcessBlocks(inString, m_register, outString, blockSize, BlockTransformation::BT_XorInput);
	if (length > blockSize)
		m_cipher->AdvancedProcessBlocks(PtrAdd(inString,blockSize), outString, PtrAdd(outString,blockSize), length-blockSize, BlockTransformation::BT_XorInput);
	std::memcpy(m_register, PtrAdd(outString, length - blockSize), blockSize);
}

size_t CBC_CTS_Encryption::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
	CRYPTOPP_UNUSED(outLength);
	const size_t used = inLength;
	const unsigned int blockSize = BlockSize();

	if (inLength <= blockSize)
	{
		if (!m_stolenIV)
			throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing");

		// steal from IV
		std::memcpy(outString, m_register, inLength);
		outString = m_stolenIV;
	}
	else
	{
		// steal from next to last block
		xorbuf(m_register, inString, blockSize);
		m_cipher->ProcessBlock(m_register);
		inString = PtrAdd(inString, blockSize);
		inLength -= blockSize;
		std::memcpy(PtrAdd(outString, blockSize), m_register, inLength);
	}

	// output last full ciphertext block
	xorbuf(m_register, inString, inLength);
	m_cipher->ProcessBlock(m_register);
	std::memcpy(outString, m_register, blockSize);

	return used;
}

void CBC_Decryption::ResizeBuffers()
{
	BlockOrientedCipherModeBase::ResizeBuffers();
	m_temp.New(BlockSize());
}

void CBC_Decryption::ProcessData(byte *outString, const byte *inString, size_t length)
{
	CRYPTOPP_ASSERT(length%BlockSize()==0);
	if (!length) {return;}

	// save copy now in case of in-place decryption
	const unsigned int blockSize = BlockSize();
	std::memcpy(m_temp, PtrAdd(inString, length-blockSize), blockSize);
	if (length > blockSize)
		m_cipher->AdvancedProcessBlocks(PtrAdd(inString,blockSize), inString, PtrAdd(outString,blockSize), length-blockSize, BlockTransformation::BT_ReverseDirection|BlockTransformation::BT_AllowParallel);
	m_cipher->ProcessAndXorBlock(inString, m_register, outString);
	m_register.swap(m_temp);
}

size_t CBC_CTS_Decryption::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
	CRYPTOPP_UNUSED(outLength);
	const byte *pn1, *pn2;
	const size_t used = inLength;
	const bool stealIV = inLength <= BlockSize();
	const unsigned int blockSize = BlockSize();

	if (stealIV)
	{
		pn1 = inString;
		pn2 = m_register;
	}
	else
	{
		pn1 = PtrAdd(inString, blockSize);
		pn2 = inString;
		inLength -= blockSize;
	}

	// decrypt last partial plaintext block
	std::memcpy(m_temp, pn2, blockSize);
	m_cipher->ProcessBlock(m_temp);
	xorbuf(m_temp, pn1, inLength);

	if (stealIV)
	{
		std::memcpy(outString, m_temp, inLength);
	}
	else
	{
		std::memcpy(PtrAdd(outString, blockSize), m_temp, inLength);
		// decrypt next to last plaintext block
		std::memcpy(m_temp, pn1, inLength);
		m_cipher->ProcessBlock(m_temp);
		xorbuf(outString, m_temp, m_register, blockSize);
	}

	return used;
}

NAMESPACE_END

#endif