summaryrefslogtreecommitdiff
path: root/integer.h
blob: 589906157849747f8a64aab1d6a206a485f7f0e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#ifndef CRYPTOPP_INTEGER_H
#define CRYPTOPP_INTEGER_H

/** \file */

#include "cryptlib.h"
#include "secblock.h"

#include <iosfwd>
#include <algorithm>

#ifdef CRYPTOPP_X86ASM_AVAILABLE

#ifdef _M_IX86
	#if (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 500)) || (defined(__ICL) && (__ICL >= 500))
		#define SSE2_INTRINSICS_AVAILABLE
		#define CRYPTOPP_MM_MALLOC_AVAILABLE
	#elif defined(_MSC_VER)
		// _mm_free seems to be the only way to tell if the Processor Pack is installed or not
		#include <malloc.h>
		#if defined(_mm_free)
			#define SSE2_INTRINSICS_AVAILABLE
			#define CRYPTOPP_MM_MALLOC_AVAILABLE
		#endif
	#endif
#endif

// SSE2 intrinsics work in GCC 3.3 or later
#if defined(__SSE2__) && (__GNUC_MAJOR__ > 3 || __GNUC_MINOR__ > 2)
	#define SSE2_INTRINSICS_AVAILABLE
#endif

#endif

NAMESPACE_BEGIN(CryptoPP)

#if defined(SSE2_INTRINSICS_AVAILABLE)
	template <class T>
	class AlignedAllocator : public AllocatorBase<T>
	{
	public:
		CRYPTOPP_INHERIT_ALLOCATOR_TYPES

		pointer allocate(size_type n, const void *);
		void deallocate(void *p, size_type n);
		pointer reallocate(T *p, size_type oldSize, size_type newSize, bool preserve)
		{
			return StandardReallocate(*this, p, oldSize, newSize, preserve);
		}

	#if !(defined(CRYPTOPP_MALLOC_ALIGNMENT_IS_16) || defined(CRYPTOPP_MEMALIGN_AVAILABLE) || defined(CRYPTOPP_MM_MALLOC_AVAILABLE))
	#define CRYPTOPP_NO_ALIGNED_ALLOC
		AlignedAllocator() : m_pBlock(NULL) {}
	protected:
		void *m_pBlock;
	#endif
	};

	template class CRYPTOPP_DLL AlignedAllocator<word>;
	typedef SecBlock<word, AlignedAllocator<word> > SecAlignedWordBlock;
#else
	typedef SecWordBlock SecAlignedWordBlock;
#endif

void CRYPTOPP_DLL DisableSSE2();

//! multiple precision integer and basic arithmetics
/*! This class can represent positive and negative integers
	with absolute value less than (256**sizeof(word)) ** (256**sizeof(int)).
	\nosubgrouping
*/
class CRYPTOPP_DLL Integer : public ASN1Object
{
public:
	//! \name ENUMS, EXCEPTIONS, and TYPEDEFS
	//@{
		//! division by zero exception
		class DivideByZero : public Exception
		{
		public:
			DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
		};

		//!
		class RandomNumberNotFound : public Exception
		{
		public:
			RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
		};

		//!
		enum Sign {POSITIVE=0, NEGATIVE=1};

		//!
		enum Signedness {
		//!
			UNSIGNED,
		//!
			SIGNED};

		//!
		enum RandomNumberType {
		//!
			ANY,
		//!
			PRIME};
	//@}

	//! \name CREATORS
	//@{
		//! creates the zero integer
		Integer();

		//! copy constructor
		Integer(const Integer& t);

		//! convert from signed long
		Integer(signed long value);

		//! convert from lword
		Integer(Sign s, lword value);

		//! convert from two words
		Integer(Sign s, word highWord, word lowWord);

		//! convert from string
		/*! str can be in base 2, 8, 10, or 16.  Base is determined by a
			case insensitive suffix of 'h', 'o', or 'b'.  No suffix means base 10.
		*/
		explicit Integer(const char *str);
		explicit Integer(const wchar_t *str);

		//! convert from big-endian byte array
		Integer(const byte *encodedInteger, unsigned int byteCount, Signedness s=UNSIGNED);

		//! convert from big-endian form stored in a BufferedTransformation
		Integer(BufferedTransformation &bt, unsigned int byteCount, Signedness s=UNSIGNED);

		//! convert from BER encoded byte array stored in a BufferedTransformation object
		explicit Integer(BufferedTransformation &bt);

		//! create a random integer
		/*! The random integer created is uniformly distributed over [0, 2**bitcount). */
		Integer(RandomNumberGenerator &rng, unsigned int bitcount);

		//! avoid calling constructors for these frequently used integers
		static const Integer &Zero();
		//! avoid calling constructors for these frequently used integers
		static const Integer &One();
		//! avoid calling constructors for these frequently used integers
		static const Integer &Two();

		//! create a random integer of special type
		/*! Ideally, the random integer created should be uniformly distributed
			over {x | min <= x <= max and x is of rnType and x % mod == equiv}.
			However the actual distribution may not be uniform because sequential
			search is used to find an appropriate number from a random starting
			point.
			May return (with very small probability) a pseudoprime when a prime
			is requested and max > lastSmallPrime*lastSmallPrime (lastSmallPrime
			is declared in nbtheory.h).
			\throw RandomNumberNotFound if the set is empty.
		*/
		Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());

		//! return the integer 2**e
		static Integer Power2(unsigned int e);
	//@}

	//! \name ENCODE/DECODE
	//@{
		//! minimum number of bytes to encode this integer
		/*! MinEncodedSize of 0 is 1 */
		unsigned int MinEncodedSize(Signedness=UNSIGNED) const;
		//! encode in big-endian format
		/*! unsigned means encode absolute value, signed means encode two's complement if negative.
			if outputLen < MinEncodedSize, the most significant bytes will be dropped
			if outputLen > MinEncodedSize, the most significant bytes will be padded
		*/
		unsigned int Encode(byte *output, unsigned int outputLen, Signedness=UNSIGNED) const;
		//!
		unsigned int Encode(BufferedTransformation &bt, unsigned int outputLen, Signedness=UNSIGNED) const;

		//! encode using Distinguished Encoding Rules, put result into a BufferedTransformation object
		void DEREncode(BufferedTransformation &bt) const;

		//! encode absolute value as big-endian octet string
		void DEREncodeAsOctetString(BufferedTransformation &bt, unsigned int length) const;

		//! encode absolute value in OpenPGP format, return length of output
		unsigned int OpenPGPEncode(byte *output, unsigned int bufferSize) const;
		//! encode absolute value in OpenPGP format, put result into a BufferedTransformation object
		unsigned int OpenPGPEncode(BufferedTransformation &bt) const;

		//!
		void Decode(const byte *input, unsigned int inputLen, Signedness=UNSIGNED);
		//! 
		//* Precondition: bt.MaxRetrievable() >= inputLen
		void Decode(BufferedTransformation &bt, unsigned int inputLen, Signedness=UNSIGNED);

		//!
		void BERDecode(const byte *input, unsigned int inputLen);
		//!
		void BERDecode(BufferedTransformation &bt);

		//! decode nonnegative value as big-endian octet string
		void BERDecodeAsOctetString(BufferedTransformation &bt, unsigned int length);

		class OpenPGPDecodeErr : public Exception
		{
		public: 
			OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
		};

		//!
		void OpenPGPDecode(const byte *input, unsigned int inputLen);
		//!
		void OpenPGPDecode(BufferedTransformation &bt);
	//@}

	//! \name ACCESSORS
	//@{
		//! return true if *this can be represented as a signed long
		bool IsConvertableToLong() const;
		//! return equivalent signed long if possible, otherwise undefined
		signed long ConvertToLong() const;

		//! number of significant bits = floor(log2(abs(*this))) + 1
		unsigned int BitCount() const;
		//! number of significant bytes = ceiling(BitCount()/8)
		unsigned int ByteCount() const;
		//! number of significant words = ceiling(ByteCount()/sizeof(word))
		unsigned int WordCount() const;

		//! return the i-th bit, i=0 being the least significant bit
		bool GetBit(unsigned int i) const;
		//! return the i-th byte
		byte GetByte(unsigned int i) const;
		//! return n lowest bits of *this >> i
		unsigned long GetBits(unsigned int i, unsigned int n) const;

		//!
		bool IsZero() const {return !*this;}
		//!
		bool NotZero() const {return !IsZero();}
		//!
		bool IsNegative() const {return sign == NEGATIVE;}
		//!
		bool NotNegative() const {return !IsNegative();}
		//!
		bool IsPositive() const {return NotNegative() && NotZero();}
		//!
		bool NotPositive() const {return !IsPositive();}
		//!
		bool IsEven() const {return GetBit(0) == 0;}
		//!
		bool IsOdd() const	{return GetBit(0) == 1;}
	//@}

	//! \name MANIPULATORS
	//@{
		//!
		Integer&  operator=(const Integer& t);

		//!
		Integer&  operator+=(const Integer& t);
		//!
		Integer&  operator-=(const Integer& t);
		//!
		Integer&  operator*=(const Integer& t)	{return *this = Times(t);}
		//!
		Integer&  operator/=(const Integer& t)	{return *this = DividedBy(t);}
		//!
		Integer&  operator%=(const Integer& t)	{return *this = Modulo(t);}
		//!
		Integer&  operator/=(word t)  {return *this = DividedBy(t);}
		//!
		Integer&  operator%=(word t)  {return *this = Modulo(t);}

		//!
		Integer&  operator<<=(unsigned int);
		//!
		Integer&  operator>>=(unsigned int);

		//!
		void Randomize(RandomNumberGenerator &rng, unsigned int bitcount);
		//!
		void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
		//! set this Integer to a random element of {x | min <= x <= max and x is of rnType and x % mod == equiv}
		/*! returns false if the set is empty */
		bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());

		bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs);
		void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs)
		{
			if (!GenerateRandomNoThrow(rng, params))
				throw RandomNumberNotFound();
		}

		//! set the n-th bit to value
		void SetBit(unsigned int n, bool value=1);
		//! set the n-th byte to value
		void SetByte(unsigned int n, byte value);

		//!
		void Negate();
		//!
		void SetPositive() {sign = POSITIVE;}
		//!
		void SetNegative() {if (!!(*this)) sign = NEGATIVE;}

		//!
		void swap(Integer &a);
	//@}

	//! \name UNARY OPERATORS
	//@{
		//!
		bool		operator!() const;
		//!
		Integer 	operator+() const {return *this;}
		//!
		Integer 	operator-() const;
		//!
		Integer&	operator++();
		//!
		Integer&	operator--();
		//!
		Integer 	operator++(int) {Integer temp = *this; ++*this; return temp;}
		//!
		Integer 	operator--(int) {Integer temp = *this; --*this; return temp;}
	//@}

	//! \name BINARY OPERATORS
	//@{
		//! signed comparison
		/*! \retval -1 if *this < a
			\retval  0 if *this = a
			\retval  1 if *this > a
		*/
		int Compare(const Integer& a) const;

		//!
		Integer Plus(const Integer &b) const;
		//!
		Integer Minus(const Integer &b) const;
		//!
		Integer Times(const Integer &b) const;
		//!
		Integer DividedBy(const Integer &b) const;
		//!
		Integer Modulo(const Integer &b) const;
		//!
		Integer DividedBy(word b) const;
		//!
		word Modulo(word b) const;

		//!
		Integer operator>>(unsigned int n) const	{return Integer(*this)>>=n;}
		//!
		Integer operator<<(unsigned int n) const	{return Integer(*this)<<=n;}
	//@}

	//! \name OTHER ARITHMETIC FUNCTIONS
	//@{
		//!
		Integer AbsoluteValue() const;
		//!
		Integer Doubled() const {return Plus(*this);}
		//!
		Integer Squared() const {return Times(*this);}
		//! extract square root, if negative return 0, else return floor of square root
		Integer SquareRoot() const;
		//! return whether this integer is a perfect square
		bool IsSquare() const;

		//! is 1 or -1
		bool IsUnit() const;
		//! return inverse if 1 or -1, otherwise return 0
		Integer MultiplicativeInverse() const;

		//! modular multiplication
		CRYPTOPP_DLL friend Integer a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
		//! modular exponentiation
		CRYPTOPP_DLL friend Integer a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);

		//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
		static void Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
		//! use a faster division algorithm when divisor is short
		static void Divide(word &r, Integer &q, const Integer &a, word d);

		//! returns same result as Divide(r, q, a, Power2(n)), but faster
		static void DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);

		//! greatest common divisor
		static Integer Gcd(const Integer &a, const Integer &n);
		//! calculate multiplicative inverse of *this mod n
		Integer InverseMod(const Integer &n) const;
		//!
		word InverseMod(word n) const;
	//@}

	//! \name INPUT/OUTPUT
	//@{
		//!
		friend CRYPTOPP_DLL std::istream& operator>>(std::istream& in, Integer &a);
		//!
		friend CRYPTOPP_DLL std::ostream& operator<<(std::ostream& out, const Integer &a);
	//@}

private:
	friend class ModularArithmetic;
	friend class MontgomeryRepresentation;
	friend class HalfMontgomeryRepresentation;

	Integer(word value, unsigned int length);

	int PositiveCompare(const Integer &t) const;
	friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);
	friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);
	friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);
	friend void PositiveDivide(Integer &remainder, Integer &quotient, const Integer &dividend, const Integer &divisor);

	SecAlignedWordBlock reg;
	Sign sign;
};

//!
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
//!
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
//!
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
//!
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
//!
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
//!
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
//!
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
//!
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
//!
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
//!
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
//!
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
//!
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
//!
inline CryptoPP::word    operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}

NAMESPACE_END

NAMESPACE_BEGIN(std)
template<> inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b)
{
	a.swap(b);
}
NAMESPACE_END

#endif