summaryrefslogtreecommitdiff
path: root/hmqv.h
blob: 3834a6199f7f8d1dc04ec7b0b44c1e3a3f053d1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// hmqv.h - written and placed in the public domain by Uri Blumenthal
//          Shamelessly based upon Jeffrey Walton's FHMQV and Wei Dai's MQV source files

#ifndef CRYPTOPP_HMQV_H
#define CRYPTOPP_HMQV_H

/// \file hmqv.h
/// \brief Classes for Hashed Menezes-Qu-Vanstone key agreement in GF(p)
/// \since Crypto++ 5.6.4

#include "gfpcrypt.h"
#include "algebra.h"
#include "sha.h"

NAMESPACE_BEGIN(CryptoPP)

/// \brief Hashed Menezes-Qu-Vanstone in GF(p)
/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
///   Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
/// \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
/// \since Crypto++ 5.6.4
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption, class HASH = SHA512>
class HMQV_Domain: public AuthenticatedKeyAgreementDomain
{
public:
  typedef GROUP_PARAMETERS GroupParameters;
  typedef typename GroupParameters::Element Element;
  typedef HMQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION, HASH> Domain;

  virtual ~HMQV_Domain() {}

  HMQV_Domain(bool clientRole = true): m_role(clientRole ? RoleClient : RoleServer) {}

  HMQV_Domain(const GroupParameters &params, bool clientRole = true)
    : m_role(clientRole ? RoleClient : RoleServer), m_groupParameters(params) {}

  HMQV_Domain(BufferedTransformation &bt, bool clientRole = true)
    : m_role(clientRole ? RoleClient : RoleServer)
  {m_groupParameters.BERDecode(bt);}

  template <class T1>
  HMQV_Domain(T1 v1, bool clientRole = true)
    : m_role(clientRole ? RoleClient : RoleServer)
  {m_groupParameters.Initialize(v1);}

  template <class T1, class T2>
  HMQV_Domain(T1 v1, T2 v2, bool clientRole = true)
    : m_role(clientRole ? RoleClient : RoleServer)
  {m_groupParameters.Initialize(v1, v2);}

  template <class T1, class T2, class T3>
  HMQV_Domain(T1 v1, T2 v2, T3 v3, bool clientRole = true)
    : m_role(clientRole ? RoleClient : RoleServer)
  {m_groupParameters.Initialize(v1, v2, v3);}

  template <class T1, class T2, class T3, class T4>
  HMQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4, bool clientRole = true)
    : m_role(clientRole ? RoleClient : RoleServer)
  {m_groupParameters.Initialize(v1, v2, v3, v4);}

public:

  const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
  GroupParameters & AccessGroupParameters(){return m_groupParameters;}

  CryptoParameters & AccessCryptoParameters(){return AccessAbstractGroupParameters();}

  /// return length of agreed value produced
  unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
  /// return length of static private keys in this domain
  unsigned int StaticPrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
  /// return length of static public keys in this domain
  unsigned int StaticPublicKeyLength() const{return GetAbstractGroupParameters().GetEncodedElementSize(true);}

  /// generate static private key
  /*! \pre size of privateKey == PrivateStaticKeyLength() */
  void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
  {
    Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
    x.Encode(privateKey, StaticPrivateKeyLength());
  }

  /// generate static public key
  /*! \pre size of publicKey == PublicStaticKeyLength() */
  void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
  {
    CRYPTOPP_UNUSED(rng);
    const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
    Integer x(privateKey, StaticPrivateKeyLength());
    Element y = params.ExponentiateBase(x);
    params.EncodeElement(true, y, publicKey);
  }

  unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
  unsigned int EphemeralPublicKeyLength() const{return StaticPublicKeyLength();}

  /// return length of ephemeral private keys in this domain
  void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
  {
    const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
    Integer x(rng, Integer::One(), params.GetMaxExponent());
    x.Encode(privateKey, StaticPrivateKeyLength());
    Element y = params.ExponentiateBase(x);
    params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
  }

  /// return length of ephemeral public keys in this domain
  void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
  {
    CRYPTOPP_UNUSED(rng);
    memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
  }

  /// derive agreed value from your private keys and couterparty's public keys, return false in case of failure
  /*! \note The ephemeral public key will always be validated.
  If you have previously validated the static public key, use validateStaticOtherPublicKey=false to save time.
  \pre size of agreedValue == AgreedValueLength()
  \pre length of staticPrivateKey == StaticPrivateKeyLength()
  \pre length of ephemeralPrivateKey == EphemeralPrivateKeyLength()
  \pre length of staticOtherPublicKey == StaticPublicKeyLength()
  \pre length of ephemeralOtherPublicKey == EphemeralPublicKeyLength()
  */
  bool Agree(byte *agreedValue,
    const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
    const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
    bool validateStaticOtherPublicKey=true) const
  {
    byte *XX = NULLPTR, *YY = NULLPTR, *AA = NULLPTR, *BB = NULLPTR;
    size_t xxs = 0, yys = 0, aas = 0, bbs = 0;

    // Depending on the role, this will hold either A's or B's static
    // (long term) public key. AA or BB will then point into tt.
    SecByteBlock tt(StaticPublicKeyLength());

    try
    {
      this->GetMaterial().DoQuickSanityCheck();
      const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();

      if(m_role == RoleServer)
      {
        Integer b(staticPrivateKey, StaticPrivateKeyLength());
        Element B = params.ExponentiateBase(b);
        params.EncodeElement(true, B, tt);

        XX = const_cast<byte*>(ephemeralOtherPublicKey);
        xxs = EphemeralPublicKeyLength();
        YY = const_cast<byte*>(ephemeralPrivateKey) + StaticPrivateKeyLength();
        yys = EphemeralPublicKeyLength();
        AA = const_cast<byte*>(staticOtherPublicKey);
        aas = StaticPublicKeyLength();
        BB = tt.BytePtr();
        bbs = tt.SizeInBytes();
      }
      else if(m_role == RoleClient)
      {
        Integer a(staticPrivateKey, StaticPrivateKeyLength());
        Element A = params.ExponentiateBase(a);
        params.EncodeElement(true, A, tt);

        XX = const_cast<byte*>(ephemeralPrivateKey) + StaticPrivateKeyLength();
        xxs = EphemeralPublicKeyLength();
        YY = const_cast<byte*>(ephemeralOtherPublicKey);
        yys = EphemeralPublicKeyLength();
        AA = tt.BytePtr();
        aas = tt.SizeInBytes();
        BB = const_cast<byte*>(staticOtherPublicKey);
        bbs = StaticPublicKeyLength();
      }
      else
      {
        CRYPTOPP_ASSERT(0);
        return false;
      }

      // DecodeElement calls ValidateElement at level 1. Level 1 only calls
      // VerifyPoint to ensure the element is in G*. If the other's PublicKey is
      // requested to be validated, we manually call ValidateElement at level 3.
      Element VV1 = params.DecodeElement(staticOtherPublicKey, false);
      if(!params.ValidateElement(validateStaticOtherPublicKey ? 3 : 1, VV1, NULLPTR))
        return false;

      // DecodeElement calls ValidateElement at level 1. Level 1 only calls
      // VerifyPoint to ensure the element is in G*. Crank it up.
      Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, false);
      if(!params.ValidateElement(3, VV2, NULLPTR))
        return false;

      // const Integer& p = params.GetGroupOrder(); // not used, remove later
      const Integer& q = params.GetSubgroupOrder();
      const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);

      Integer d, e;
      SecByteBlock dd(len), ee(len);

      // Compute $d = \hat{H}(X, \hat{B})$
      Hash(NULLPTR, XX, xxs, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
      d.Decode(dd.BytePtr(), dd.SizeInBytes());

      // Compute $e = \hat{H}(Y, \hat{A})$
      Hash(NULLPTR, YY, yys, AA, aas, ee.BytePtr(), ee.SizeInBytes());
      e.Decode(ee.BytePtr(), ee.SizeInBytes());

      Element sigma;
      if(m_role == RoleServer)
      {
        Integer y(ephemeralPrivateKey, StaticPrivateKeyLength());
        Integer b(staticPrivateKey, StaticPrivateKeyLength());
        Integer s_B = (y + e * b) % q;

        Element A = params.DecodeElement(AA, false);
        Element X = params.DecodeElement(XX, false);

        Element t1 = params.ExponentiateElement(A, d);
        Element t2 = m_groupParameters.MultiplyElements(X, t1);

        // $\sigma_B}=(X \cdot A^{d})^{s_B}
        sigma = params.ExponentiateElement(t2, s_B);
      }
      else
      {
        Integer x(ephemeralPrivateKey, StaticPrivateKeyLength());
        Integer a(staticPrivateKey, StaticPrivateKeyLength());
        Integer s_A = (x + d * a) % q;

        Element B = params.DecodeElement(BB, false);
        Element Y = params.DecodeElement(YY, false);

        Element t1 = params.ExponentiateElement(B, e);
        Element t2 = m_groupParameters.MultiplyElements(Y, t1);

        // $\sigma_A}=(Y \cdot B^{e})^{s_A}
        sigma = params.ExponentiateElement(t2, s_A);
      }
      Hash(&sigma, NULLPTR, 0, NULLPTR, 0, agreedValue, AgreedValueLength());
    }
    catch (DL_BadElement &)
    {
      return false;
    }
    return true;
  }

protected:
  // Hash invocation by client and server differ only in what keys
  // each provides.

  inline void Hash(const Element* sigma,
    const byte* e1, size_t e1len, // Ephemeral key and key length
    const byte* s1, size_t s1len, // Static key and key length
    byte* digest, size_t dlen) const
  {
    HASH hash;
    size_t idx = 0, req = dlen;
    size_t blk = STDMIN(dlen, (size_t)HASH::DIGESTSIZE);

    if(sigma)
    {
      if (e1len != 0 || s1len != 0) {
        CRYPTOPP_ASSERT(0);
      }
      Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
      SecByteBlock sbb(x.MinEncodedSize());
      x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
      hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
    } else {
      if (e1len == 0 || s1len == 0) {
        CRYPTOPP_ASSERT(0);
      }
      hash.Update(e1, e1len);
      hash.Update(s1, s1len);
    }

    hash.TruncatedFinal(digest, blk);
    req -= blk;

    // All this to catch tail bytes for large curves and small hashes
    while(req != 0)
    {
      hash.Update(&digest[idx], (size_t)HASH::DIGESTSIZE);

      idx += (size_t)HASH::DIGESTSIZE;
      blk = STDMIN(req, (size_t)HASH::DIGESTSIZE);
      hash.TruncatedFinal(&digest[idx], blk);

      req -= blk;
    }
  }

private:

  // The paper uses Initiator and Recipient - make it classical.
  enum KeyAgreementRole{ RoleServer = 1, RoleClient };

  DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
  const DL_GroupParameters<Element> & GetAbstractGroupParameters() const{return m_groupParameters;}

  GroupParameters m_groupParameters;
  KeyAgreementRole m_role;
};

/// \brief Hashed Menezes-Qu-Vanstone in GF(p)
/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
///   Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
/// \sa HMQV, MQV_Domain, FHMQV_Domain, AuthenticatedKeyAgreementDomain
/// \since Crypto++ 5.6.4
typedef HMQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> HMQV;

NAMESPACE_END

#endif