summaryrefslogtreecommitdiff
path: root/hc256.cpp
blob: 9259b87a743882c29b8c8111122554fcc0bb0b86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// hc256.cpp - written and placed in the public domain by Jeffrey Walton
//             based on public domain code by Hongjun Wu.
//
//             The reference materials and source files are available at
//             The eSTREAM Project, http://www.ecrypt.eu.org/stream/hc256.html.

#include "pch.h"
#include "config.h"

#include "hc256.h"
#include "secblock.h"
#include "misc.h"

ANONYMOUS_NAMESPACE_BEGIN

using CryptoPP::word32;
using CryptoPP::rotrConstant;

inline word32 f1(word32 x)
{
	return rotrConstant<7>(x) ^ rotrConstant<18>(x) ^ (x >> 3);
}

inline word32 f2(word32 x)
{
	return rotrConstant<17>(x) ^ rotrConstant<19>(x) ^ (x >> 10);
}

ANONYMOUS_NAMESPACE_END

NAMESPACE_BEGIN(CryptoPP)

inline word32 HC256Policy::H1(word32 u)
{
	word32 tem;
	byte a, b, c, d;
	a = (byte)(u);
	b = (byte)(u >> 8);
	c = (byte)(u >> 16);
	d = (byte)(u >> 24);
	tem = m_Q[a] + m_Q[256 + b] + m_Q[512 + c] + m_Q[768 + d];
	return (tem);
}

inline word32 HC256Policy::H2(word32 u)
{
	word32 tem;
	byte a, b, c, d;
	a = (byte)(u);
	b = (byte)(u >> 8);
	c = (byte)(u >> 16);
	d = (byte)(u >> 24);
	tem = m_P[a] + m_P[256 + b] + m_P[512 + c] + m_P[768 + d];
	return (tem);
}

inline word32 HC256Policy::Generate() /*one step of the cipher*/
{
	word32 i, i3, i10, i12, i1023;
	word32 output;

	i = m_ctr & 0x3ff;
	i3 = (i - 3) & 0x3ff;
	i10 = (i - 10) & 0x3ff;
	i12 = (i - 12) & 0x3ff;
	i1023 = (i - 1023) & 0x3ff;

	if (m_ctr < 1024) {
		m_P[i] = m_P[i] + m_P[i10] + (rotrConstant<10>(m_P[i3]) ^ rotrConstant<23>(m_P[i1023])) + m_Q[(m_P[i3] ^ m_P[i1023]) & 0x3ff];
		output = H1(m_P[i12]) ^ m_P[i];
	}
	else {
		m_Q[i] = m_Q[i] + m_Q[i10] + (rotrConstant<10>(m_Q[i3]) ^ rotrConstant<23>(m_Q[i1023])) + m_P[(m_Q[i3] ^ m_Q[i1023]) & 0x3ff];
		output = H2(m_Q[i12]) ^ m_Q[i];
	}
	m_ctr = (m_ctr + 1) & 0x7ff;
	return (output);
}

void HC256Policy::CipherSetKey(const NameValuePairs &params, const byte *userKey, size_t keylen)
{
	CRYPTOPP_UNUSED(params); CRYPTOPP_UNUSED(keylen);
	CRYPTOPP_ASSERT(keylen == 32);

	for (unsigned int i = 0; i < 8; i++)
		m_key[i] = 0;

	for (unsigned int i = 0; i < 32; i++)
	{
		m_key[i >> 2] = m_key[i >> 2] | userKey[i];
		m_key[i >> 2] = rotlConstant<8>(m_key[i >> 2]);
	}
}

void HC256Policy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
	while (iterationCount--)
	{
		PutWord(false, LITTLE_ENDIAN_ORDER, output +  0, Generate());
		PutWord(false, LITTLE_ENDIAN_ORDER, output +  4, Generate());
		PutWord(false, LITTLE_ENDIAN_ORDER, output +  8, Generate());
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 12, Generate());

		// If AdditiveCipherTemplate does not have an accumulated keystream
		//  then it will ask OperateKeystream to generate one. Optionally it
		//  will ask for an XOR of the input with the keystream while
		//  writing the result to the output buffer. In all cases the
		//  keystream is written to the output buffer. The optional part is
		//  adding the input buffer and keystream.
		if ((operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL))
		{
			xorbuf(output, input, BYTES_PER_ITERATION);
			input += BYTES_PER_ITERATION;
		}

		output += BYTES_PER_ITERATION;
	}
}

void HC256Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
	CRYPTOPP_UNUSED(keystreamBuffer); CRYPTOPP_UNUSED(length);
	CRYPTOPP_ASSERT(length == 32);

	/* initialize the iv */
	word32 W[2560];
	for (unsigned int i = 0; i < 8; i++)
		m_iv[i] = 0;

	for (unsigned int i = 0; i < 32; i++)
	{
		m_iv[i >> 2] = m_iv[i >> 2] | iv[i];
		m_iv[i >> 2] = rotlConstant<8>(m_iv[i >> 2]);
	}

	/* setup the table P and Q */

	for (unsigned int i = 0; i < 8; i++)
		W[i] = m_key[i];
	for (unsigned int i = 8; i < 16; i++)
		W[i] = m_iv[i - 8];

	for (unsigned int i = 16; i < 2560; i++)
		W[i] = f2(W[i - 2]) + W[i - 7] + f1(W[i - 15]) + W[i - 16] + i;

	for (unsigned int i = 0; i < 1024; i++)
		m_P[i] = W[i + 512];
	for (unsigned int i = 0; i < 1024; i++)
		m_Q[i] = W[i + 1536];

	m_ctr = 0;

	/* run the cipher 4096 steps before generating the output */
	for (unsigned int i = 0; i < 4096; i++)
		Generate();
}

NAMESPACE_END