summaryrefslogtreecommitdiff
path: root/hc128.cpp
blob: 74f67c1710c89972c4944d64cfb81d38fd62c272 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// hc128.cpp - written and placed in the public domain by Jeffrey Walton
//             based on public domain code by Hongjun Wu.
//
//             The reference materials and source files are available at
//             The eSTREAM Project, http://www.ecrypt.eu.org/stream/e2-hc128.html.

#include "pch.h"
#include "config.h"

#include "hc128.h"
#include "secblock.h"
#include "misc.h"

/*h1 function*/
#define h1(x, y) {           \
     byte a,c;               \
     a = (byte) (x);         \
     c = (byte) ((x) >> 16); \
     y = (m_T[512+a])+(m_T[512+256+c]); \
}

/*h2 function*/
#define h2(x, y) {           \
     byte a,c;               \
     a = (byte) (x);         \
     c = (byte) ((x) >> 16); \
     y = (m_T[a])+(m_T[256+c]); \
}

/*one step of HC-128, update P and generate 32 bits keystream*/
#define step_P(u,v,a,b,c,d,n){           \
     word32 tem0,tem1,tem2,tem3;         \
     h1(m_X[(d)],tem3);                  \
     tem0 = rotrConstant<23>(m_T[(v)]);  \
     tem1 = rotrConstant<10>(m_X[(c)]);  \
     tem2 = rotrConstant<8>(m_X[(b)]);   \
     (m_T[(u)]) += tem2+(tem0 ^ tem1);   \
     (m_X[(a)]) = (m_T[(u)]);            \
     (n) = tem3 ^ (m_T[(u)]);            \
}

/*one step of HC-128, update Q and generate 32 bits keystream*/
#define step_Q(u,v,a,b,c,d,n){                \
     word32 tem0,tem1,tem2,tem3;              \
     h2(m_Y[(d)],tem3);                       \
     tem0 = rotrConstant<(32-23)>(m_T[(v)]);  \
     tem1 = rotrConstant<(32-10)>(m_Y[(c)]);  \
     tem2 = rotrConstant<(32-8)>(m_Y[(b)]);   \
     (m_T[(u)]) += tem2 + (tem0 ^ tem1);      \
     (m_Y[(a)]) = (m_T[(u)]);                 \
     (n) = tem3 ^ (m_T[(u)]) ;                \
}

/*update table P*/
#define update_P(u,v,a,b,c,d){                \
     word32 tem0,tem1,tem2,tem3;              \
     tem0 = rotrConstant<23>(m_T[(v)]);       \
     tem1 = rotrConstant<10>(m_X[(c)]);       \
     tem2 = rotrConstant<8>(m_X[(b)]);        \
     h1(m_X[(d)],tem3);                       \
     (m_T[(u)]) = ((m_T[(u)]) + tem2+(tem0^tem1)) ^ tem3;  \
     (m_X[(a)]) = (m_T[(u)]);                 \
}

/*update table Q*/
#define update_Q(u,v,a,b,c,d){                \
     word32 tem0,tem1,tem2,tem3;              \
     tem0 = rotrConstant<(32-23)>(m_T[(v)]);  \
     tem1 = rotrConstant<(32-10)>(m_Y[(c)]);  \
     tem2 = rotrConstant<(32-8)>(m_Y[(b)]);   \
     h2(m_Y[(d)],tem3);                       \
     (m_T[(u)]) = ((m_T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
     (m_Y[(a)]) = (m_T[(u)]);                 \
}

ANONYMOUS_NAMESPACE_BEGIN

using CryptoPP::word32;
using CryptoPP::rotrConstant;

inline word32 f1(word32 x)
{
	return rotrConstant<7>(x) ^ rotrConstant<18>(x) ^ ((x) >> 3);
}

inline word32 f2(word32 x)
{
	return rotrConstant<17>(x) ^ rotrConstant<19>(x) ^ ((x) >> 10);
}

ANONYMOUS_NAMESPACE_END

NAMESPACE_BEGIN(CryptoPP)

/*16 steps of HC-128, generate 512 bits keystream*/
void HC128Policy::GenerateKeystream(word32 keystream[16])
{
	unsigned int cc = m_ctr & 0x1ff;
	unsigned int dd = (cc + 16) & 0x1ff;

	if (m_ctr < 512)
	{
		m_ctr = (m_ctr + 16) & 0x3ff;
		step_P(cc + 0, cc + 1, 0, 6, 13, 4, keystream[0]);
		step_P(cc + 1, cc + 2, 1, 7, 14, 5, keystream[1]);
		step_P(cc + 2, cc + 3, 2, 8, 15, 6, keystream[2]);
		step_P(cc + 3, cc + 4, 3, 9, 0, 7, keystream[3]);
		step_P(cc + 4, cc + 5, 4, 10, 1, 8, keystream[4]);
		step_P(cc + 5, cc + 6, 5, 11, 2, 9, keystream[5]);
		step_P(cc + 6, cc + 7, 6, 12, 3, 10, keystream[6]);
		step_P(cc + 7, cc + 8, 7, 13, 4, 11, keystream[7]);
		step_P(cc + 8, cc + 9, 8, 14, 5, 12, keystream[8]);
		step_P(cc + 9, cc + 10, 9, 15, 6, 13, keystream[9]);
		step_P(cc + 10, cc + 11, 10, 0, 7, 14, keystream[10]);
		step_P(cc + 11, cc + 12, 11, 1, 8, 15, keystream[11]);
		step_P(cc + 12, cc + 13, 12, 2, 9, 0, keystream[12]);
		step_P(cc + 13, cc + 14, 13, 3, 10, 1, keystream[13]);
		step_P(cc + 14, cc + 15, 14, 4, 11, 2, keystream[14]);
		step_P(cc + 15, dd + 0, 15, 5, 12, 3, keystream[15]);
	}
	else
	{
		m_ctr = (m_ctr + 16) & 0x3ff;
		step_Q(512 + cc + 0, 512 + cc + 1, 0, 6, 13, 4, keystream[0]);
		step_Q(512 + cc + 1, 512 + cc + 2, 1, 7, 14, 5, keystream[1]);
		step_Q(512 + cc + 2, 512 + cc + 3, 2, 8, 15, 6, keystream[2]);
		step_Q(512 + cc + 3, 512 + cc + 4, 3, 9, 0, 7, keystream[3]);
		step_Q(512 + cc + 4, 512 + cc + 5, 4, 10, 1, 8, keystream[4]);
		step_Q(512 + cc + 5, 512 + cc + 6, 5, 11, 2, 9, keystream[5]);
		step_Q(512 + cc + 6, 512 + cc + 7, 6, 12, 3, 10, keystream[6]);
		step_Q(512 + cc + 7, 512 + cc + 8, 7, 13, 4, 11, keystream[7]);
		step_Q(512 + cc + 8, 512 + cc + 9, 8, 14, 5, 12, keystream[8]);
		step_Q(512 + cc + 9, 512 + cc + 10, 9, 15, 6, 13, keystream[9]);
		step_Q(512 + cc + 10, 512 + cc + 11, 10, 0, 7, 14, keystream[10]);
		step_Q(512 + cc + 11, 512 + cc + 12, 11, 1, 8, 15, keystream[11]);
		step_Q(512 + cc + 12, 512 + cc + 13, 12, 2, 9, 0, keystream[12]);
		step_Q(512 + cc + 13, 512 + cc + 14, 13, 3, 10, 1, keystream[13]);
		step_Q(512 + cc + 14, 512 + cc + 15, 14, 4, 11, 2, keystream[14]);
		step_Q(512 + cc + 15, 512 + dd + 0, 15, 5, 12, 3, keystream[15]);
	}
}

/*16 steps of HC-128, without generating keystream, */
/*but use the outputs to update P and Q*/
void HC128Policy::SetupUpdate()  /*each time 16 steps*/
{
	unsigned int cc = m_ctr & 0x1ff;
	unsigned int dd = (cc + 16) & 0x1ff;

	if (m_ctr < 512)
	{
		m_ctr = (m_ctr + 16) & 0x3ff;
		update_P(cc + 0, cc + 1, 0, 6, 13, 4);
		update_P(cc + 1, cc + 2, 1, 7, 14, 5);
		update_P(cc + 2, cc + 3, 2, 8, 15, 6);
		update_P(cc + 3, cc + 4, 3, 9, 0, 7);
		update_P(cc + 4, cc + 5, 4, 10, 1, 8);
		update_P(cc + 5, cc + 6, 5, 11, 2, 9);
		update_P(cc + 6, cc + 7, 6, 12, 3, 10);
		update_P(cc + 7, cc + 8, 7, 13, 4, 11);
		update_P(cc + 8, cc + 9, 8, 14, 5, 12);
		update_P(cc + 9, cc + 10, 9, 15, 6, 13);
		update_P(cc + 10, cc + 11, 10, 0, 7, 14);
		update_P(cc + 11, cc + 12, 11, 1, 8, 15);
		update_P(cc + 12, cc + 13, 12, 2, 9, 0);
		update_P(cc + 13, cc + 14, 13, 3, 10, 1);
		update_P(cc + 14, cc + 15, 14, 4, 11, 2);
		update_P(cc + 15, dd + 0, 15, 5, 12, 3);
	}
	else
	{
		m_ctr = (m_ctr + 16) & 0x3ff;
		update_Q(512 + cc + 0, 512 + cc + 1, 0, 6, 13, 4);
		update_Q(512 + cc + 1, 512 + cc + 2, 1, 7, 14, 5);
		update_Q(512 + cc + 2, 512 + cc + 3, 2, 8, 15, 6);
		update_Q(512 + cc + 3, 512 + cc + 4, 3, 9, 0, 7);
		update_Q(512 + cc + 4, 512 + cc + 5, 4, 10, 1, 8);
		update_Q(512 + cc + 5, 512 + cc + 6, 5, 11, 2, 9);
		update_Q(512 + cc + 6, 512 + cc + 7, 6, 12, 3, 10);
		update_Q(512 + cc + 7, 512 + cc + 8, 7, 13, 4, 11);
		update_Q(512 + cc + 8, 512 + cc + 9, 8, 14, 5, 12);
		update_Q(512 + cc + 9, 512 + cc + 10, 9, 15, 6, 13);
		update_Q(512 + cc + 10, 512 + cc + 11, 10, 0, 7, 14);
		update_Q(512 + cc + 11, 512 + cc + 12, 11, 1, 8, 15);
		update_Q(512 + cc + 12, 512 + cc + 13, 12, 2, 9, 0);
		update_Q(512 + cc + 13, 512 + cc + 14, 13, 3, 10, 1);
		update_Q(512 + cc + 14, 512 + cc + 15, 14, 4, 11, 2);
		update_Q(512 + cc + 15, 512 + dd + 0, 15, 5, 12, 3);
	}
}

void HC128Policy::CipherSetKey(const NameValuePairs &params, const byte *userKey, size_t keylen)
{
	CRYPTOPP_UNUSED(params);

	GetUserKey(LITTLE_ENDIAN_ORDER, m_key.begin(), 4, userKey, keylen);
	for (unsigned int i = 4; i < 8; i++)
		m_key[i] = m_key[i - 4];
}

void HC128Policy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
	while (iterationCount--)
	{
		word32 keystream[16];
		GenerateKeystream(keystream);

		PutWord(false, LITTLE_ENDIAN_ORDER, output + 0, keystream[0]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 4, keystream[1]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 8, keystream[2]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 12, keystream[3]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 16, keystream[4]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 20, keystream[5]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 24, keystream[6]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 28, keystream[7]);

		PutWord(false, LITTLE_ENDIAN_ORDER, output + 32, keystream[8]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 36, keystream[9]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 40, keystream[10]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 44, keystream[11]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 48, keystream[12]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 52, keystream[13]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 56, keystream[14]);
		PutWord(false, LITTLE_ENDIAN_ORDER, output + 60, keystream[15]);

		// If AdditiveCipherTemplate does not have an accumulated keystream
		//  then it will ask OperateKeystream to generate one. Optionally it
		//  will ask for an XOR of the input with the keystream while
		//  writing the result to the output buffer. In all cases the
		//  keystream is written to the output buffer. The optional part is
		//  adding the input buffer and keystream.
		if ((operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL))
		{
			xorbuf(output, input, BYTES_PER_ITERATION);
			input += BYTES_PER_ITERATION;
		}

		output += BYTES_PER_ITERATION;
	}
}

void HC128Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
	CRYPTOPP_UNUSED(keystreamBuffer);

	GetUserKey(LITTLE_ENDIAN_ORDER, m_iv.begin(), 4, iv, length);
	for (unsigned int i = 4; i < 8; i++)
		m_iv[i] = m_iv[i - 4];

	/* expand the key and IV into the table T */
	/* (expand the key and IV into the table P and Q) */

	for (unsigned int i = 0; i < 8; i++)
		m_T[i] = m_key[i];
	for (unsigned int i = 8; i < 16; i++)
		m_T[i] = m_iv[i - 8];

	for (unsigned int i = 16; i < (256 + 16); i++)
		m_T[i] = f2(m_T[i - 2]) + m_T[i - 7] + f1(m_T[i - 15]) + m_T[i - 16] + i;

	for (unsigned int i = 0; i < 16; i++)
		m_T[i] = m_T[256 + i];

	for (unsigned int i = 16; i < 1024; i++)
		m_T[i] = f2(m_T[i - 2]) + m_T[i - 7] + f1(m_T[i - 15]) + m_T[i - 16] + 256 + i;

	/* initialize counter1024, X and Y */
	m_ctr = 0;
	for (unsigned int i = 0; i < 16; i++)
		m_X[i] = m_T[512 - 16 + i];
	for (unsigned int i = 0; i < 16; i++)
		m_Y[i] = m_T[512 + 512 - 16 + i];

	/* run the cipher 1024 steps before generating the output */
	for (unsigned int i = 0; i < 64; i++)
		SetupUpdate();
}

NAMESPACE_END