1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
|
// gfpcrypt.h - originally written and placed in the public domain by Wei Dai
// RFC6979 deterministic signatures added by Douglas Roark
// ECGDSA added by Jeffrey Walton
/// \file gfpcrypt.h
/// \brief Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
#ifndef CRYPTOPP_GFPCRYPT_H
#define CRYPTOPP_GFPCRYPT_H
#include "config.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4189 4231 4275)
#endif
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "modexppc.h"
#include "algparam.h"
#include "smartptr.h"
#include "sha.h"
#include "asn.h"
#include "hmac.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;
/// \brief Integer-based GroupParameters specialization
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> >
{
typedef DL_GroupParameters_IntegerBased ThisClass;
public:
virtual ~DL_GroupParameters_IntegerBased() {}
/// \brief Initialize a group parameters over integers
/// \param params the group parameters
void Initialize(const DL_GroupParameters_IntegerBased ¶ms)
{Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
/// \brief Create a group parameters over integers
/// \param rng a RandomNumberGenerator derived class
/// \param pbits the size of p, in bits
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
{GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
/// \brief Initialize a group parameters over integers
/// \param p the modulus
/// \param g the generator
void Initialize(const Integer &p, const Integer &g)
{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
/// \brief Initialize a group parameters over integers
/// \param p the modulus
/// \param q the subgroup order
/// \param g the generator
void Initialize(const Integer &p, const Integer &q, const Integer &g)
{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
// ASN1Object interface
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
/// \brief Generate a random key
/// \param rng a RandomNumberGenerator to produce keying material
/// \param alg additional initialization parameters
/// \details Recognised NameValuePairs are ModulusSize and
/// SubgroupOrderSize (optional)
/// \throws KeyingErr if a key can't be generated or algorithm parameters
/// are invalid
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
/// \brief Get a named value
/// \param name the name of the object or value to retrieve
/// \param valueType reference to a variable that receives the value
/// \param pValue void pointer to a variable that receives the value
/// \returns true if the value was retrieved, false otherwise
/// \details GetVoidValue() retrieves the value of name if it exists.
/// \note GetVoidValue() is an internal function and should be implemented
/// by derived classes. Users should use one of the other functions instead.
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
/// \brief Initialize or reinitialize this key
/// \param source NameValuePairs to assign
void AssignFrom(const NameValuePairs &source);
// DL_GroupParameters
const Integer & GetSubgroupOrder() const {return m_q;}
Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
/// \brief Determine if subgroup membership check is fast
/// \returns true or false
bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
/// \brief Encodes the element
/// \param reversible flag indicating the encoding format
/// \param element reference to the element to encode
/// \param encoded destination byte array for the encoded element
/// \details EncodeElement() must be implemented in a derived class.
/// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
/// \sa GetEncodedElementSize(), DecodeElement(), <A
/// HREF="http://github.com/weidai11/cryptopp/issues/40">Cygwin
/// i386 crash at -O3</A>
void EncodeElement(bool reversible, const Element &element, byte *encoded) const;
/// \brief Retrieve the encoded element's size
/// \param reversible flag indicating the encoding format
/// \returns encoded element's size, in bytes
/// \details The format of the encoded element varies by the underlying
/// type of the element and the reversible flag.
/// \sa EncodeElement(), DecodeElement()
unsigned int GetEncodedElementSize(bool reversible) const;
/// \brief Decodes the element
/// \param encoded byte array with the encoded element
/// \param checkForGroupMembership flag indicating if the element should be validated
/// \returns Element after decoding
/// \details DecodeElement() must be implemented in a derived class.
/// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
/// \sa GetEncodedElementSize(), EncodeElement()
Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
/// \brief Converts an element to an Integer
/// \param element the element to convert to an Integer
/// \returns Element after converting to an Integer
/// \details ConvertElementToInteger() must be implemented in a derived class.
Integer ConvertElementToInteger(const Element &element) const
{return element;}
/// \brief Retrieve the maximum exponent for the group
/// \returns the maximum exponent for the group
Integer GetMaxExponent() const;
/// \brief Retrieve the OID of the algorithm
/// \returns OID of the algorithm
OID GetAlgorithmID() const;
/// \brief Retrieve the modulus for the group
/// \returns the modulus for the group
virtual const Integer & GetModulus() const =0;
/// \brief Set group parameters
/// \param p the prime modulus
/// \param g the group generator
virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
/// \brief Set subgroup order
/// \param q the subgroup order
void SetSubgroupOrder(const Integer &q)
{m_q = q; ParametersChanged();}
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}
protected:
Integer ComputeGroupOrder(const Integer &modulus) const
{return modulus-(GetFieldType() == 1 ? 1 : -1);}
// GF(p) = 1, GF(p^2) = 2
virtual int GetFieldType() const =0;
virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
private:
Integer m_q;
};
/// \brief Integer-based GroupParameters default implementation
/// \tparam GROUP_PRECOMP group parameters precomputation specialization
/// \tparam BASE_PRECOMP base class precomputation specialization
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element> >
class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
{
typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;
public:
typedef typename GROUP_PRECOMP::Element Element;
virtual ~DL_GroupParameters_IntegerBasedImpl() {}
// GeneratibleCryptoMaterial interface
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
void AssignFrom(const NameValuePairs &source)
{AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
// IntegerGroupParameters
/// \brief Retrieve the modulus for the group
/// \returns the modulus for the group
const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();}
/// \brief Retrieves a reference to the group generator
/// \returns const reference to the group generator
const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}
void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together
{this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}
// non-inherited
bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
{return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();}
bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
{return !operator==(rhs);}
};
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;
/// \brief GF(p) group parameters
class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
{
public:
virtual ~DL_GroupParameters_GFP() {}
/// \brief Determines if an element is an identity
/// \param element element to check
/// \returns true if the element is an identity, false otherwise
/// \details The identity element or or neutral element is a special element
/// in a group that leaves other elements unchanged when combined with it.
/// \details IsIdentity() must be implemented in a derived class.
bool IsIdentity(const Integer &element) const {return element == Integer::One();}
/// \brief Exponentiates a base to multiple exponents
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousExponentiate() raises the base to each exponent in
/// the exponents array and stores the result at the respective position in
/// the results array.
/// \details SimultaneousExponentiate() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
/// \brief Get a named value
/// \param name the name of the object or value to retrieve
/// \param valueType reference to a variable that receives the value
/// \param pValue void pointer to a variable that receives the value
/// \returns true if the value was retrieved, false otherwise
/// \details GetVoidValue() retrieves the value of name if it exists.
/// \note GetVoidValue() is an internal function and should be implemented
/// by derived classes. Users should use one of the other functions instead.
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
}
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const;
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
protected:
int GetFieldType() const {return 1;}
};
/// \brief GF(p) group parameters that default to safe primes
class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP
{
public:
typedef NoCofactorMultiplication DefaultCofactorOption;
virtual ~DL_GroupParameters_GFP_DefaultSafePrime() {}
protected:
unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
};
/// \brief GDSA algorithm
/// \tparam T FieldElement type or class
template <class T>
class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}
virtual ~DL_Algorithm_GDSA() {}
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
r %= q;
Integer kInv = k.InverseMod(q);
s = (kInv * (x*r + e)) % q;
CRYPTOPP_ASSERT(!!r && !!s);
}
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
if (r>=q || r<1 || s>=q || s<1)
return false;
Integer w = s.InverseMod(q);
Integer u1 = (e * w) % q;
Integer u2 = (r * w) % q;
// verify r == (g^u1 * y^u2 mod p) mod q
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
}
};
/// \brief DSA signature algorithm based on RFC 6979
/// \tparam T FieldElement type or class
/// \tparam H HashTransformation derived class
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
/// \since Crypto++ 6.0
template <class T, class H>
class DL_Algorithm_DSA_RFC6979 : public DL_Algorithm_GDSA<T>, public DeterministicSignatureAlgorithm
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-RFC6979";}
virtual ~DL_Algorithm_DSA_RFC6979() {}
bool IsProbabilistic() const
{return false;}
bool IsDeterministic() const
{return true;}
// Deterministic K
Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
{
static const byte zero = 0, one = 1;
const size_t qlen = q.BitCount();
const size_t rlen = BitsToBytes(qlen);
// Step (a) - formatted E(m)
SecByteBlock BH(e.MinEncodedSize());
e.Encode(BH, BH.size());
BH = bits2octets(BH, q);
// Step (a) - private key to byte array
SecByteBlock BX(STDMAX(rlen, x.MinEncodedSize()));
x.Encode(BX, BX.size());
// Step (b)
SecByteBlock V(H::DIGESTSIZE);
std::fill(V.begin(), V.begin()+H::DIGESTSIZE, one);
// Step (c)
SecByteBlock K(H::DIGESTSIZE);
std::fill(K.begin(), K.begin()+H::DIGESTSIZE, zero);
// Step (d)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.Update(&zero, 1);
m_hmac.Update(BX, BX.size());
m_hmac.Update(BH, BH.size());
m_hmac.TruncatedFinal(K, K.size());
// Step (e)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
// Step (f)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.Update(&one, 1);
m_hmac.Update(BX, BX.size());
m_hmac.Update(BH, BH.size());
m_hmac.TruncatedFinal(K, K.size());
// Step (g)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
Integer k;
SecByteBlock temp(rlen);
for (;;)
{
// We want qlen bits, but we support only hash functions with an output length
// multiple of 8; hence, we will gather rlen bits, i.e., rolen octets.
size_t toff = 0;
while (toff < rlen)
{
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
size_t cc = STDMIN(V.size(), temp.size() - toff);
memcpy_s(temp+toff, temp.size() - toff, V, cc);
toff += cc;
}
k = bits2int(temp, qlen);
if (k > 0 && k < q)
break;
// k is not in the proper range; update K and V, and loop.
m_hmac.Update(V, V.size());
m_hmac.Update(&zero, 1);
m_hmac.TruncatedFinal(K, K.size());
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
}
return k;
}
protected:
Integer bits2int(const SecByteBlock& bits, size_t qlen) const
{
Integer ret(bits, bits.size());
size_t blen = bits.size()*8;
if (blen > qlen)
ret >>= blen - qlen;
return ret;
}
// RFC 6979 support function. Takes an integer and converts it into bytes that
// are the same length as an elliptic curve's order.
SecByteBlock int2octets(const Integer& val, size_t rlen) const
{
SecByteBlock block(val.MinEncodedSize());
val.Encode(block, val.MinEncodedSize());
if (block.size() == rlen)
return block;
// The least significant bytes are the ones we need to preserve.
SecByteBlock t(rlen);
if (block.size() > rlen)
{
size_t offset = block.size() - rlen;
std::memcpy(t, block + offset, rlen);
}
else // block.size() < rlen
{
size_t offset = rlen - block.size();
memset(t, '\x00', offset);
std::memcpy(t + offset, block, rlen - offset);
}
return t;
}
// Turn a stream of bits into a set of bytes with the same length as an elliptic
// curve's order.
SecByteBlock bits2octets(const SecByteBlock& in, const Integer& q) const
{
Integer b2 = bits2int(in, q.BitCount());
Integer b1 = b2 - q;
return int2octets(b1.IsNegative() ? b2 : b1, q.ByteCount());
}
private:
mutable H m_hash;
mutable HMAC<H> m_hmac;
};
/// \brief German Digital Signature Algorithm
/// \tparam T FieldElement type or class
/// \details The Digital Signature Scheme ECGDSA does not define the algorithm over integers. Rather, the
/// signature algorithm is only defined over elliptic curves. However, The library design is such that the
/// generic algorithm reside in <tt>gfpcrypt.h</tt>.
/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">
/// The Digital Signature Scheme ECGDSA (October 24, 2006)</A>
template <class T>
class DL_Algorithm_GDSA_ISO15946 : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "GDSA-ISO15946";}
virtual ~DL_Algorithm_GDSA_ISO15946() {}
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
// r = x(k * G) mod q
r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q;
// s = (k * r - h(m)) * d_A mod q
s = (k * r - e) * x % q;
CRYPTOPP_ASSERT(!!r && !!s);
}
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
if (r>=q || r<1 || s>=q || s<1)
return false;
const Integer& rInv = r.InverseMod(q);
const Integer u1 = (rInv * e) % q;
const Integer u2 = (rInv * s) % q;
// verify x(G^u1 + P_A^u2) mod q
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
}
};
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA1>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA224>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA256>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA384>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA512>;
/// \brief NR algorithm
/// \tparam T FieldElement type or class
template <class T>
class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "NR";}
virtual ~DL_Algorithm_NR() {}
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
r = (r + e) % q;
s = (k - x*r) % q;
CRYPTOPP_ASSERT(!!r);
}
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
if (r>=q || r<1 || s>=q)
return false;
// check r == (m_g^s * m_y^r + m) mod m_q
return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
}
};
/// \brief Discrete Log (DL) public key in GF(p) groups
/// \tparam GP GroupParameters derived class
/// \details DSA public key format is defined in 7.3.3 of RFC 2459. The private key format is defined in 12.9 of PKCS #11 v2.10.
template <class GP>
class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP>
{
public:
virtual ~DL_PublicKey_GFP() {}
/// \brief Initialize a public key over GF(p)
/// \param params the group parameters
/// \param y the public element
void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &y)
{this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);}
/// \brief Initialize a public key over GF(p)
/// \param p the modulus
/// \param g the generator
/// \param y the public element
void Initialize(const Integer &p, const Integer &g, const Integer &y)
{this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);}
/// \brief Initialize a public key over GF(p)
/// \param p the modulus
/// \param q the subgroup order
/// \param g the generator
/// \param y the public element
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
{this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
{this->SetPublicElement(Integer(bt));}
void DEREncodePublicKey(BufferedTransformation &bt) const
{this->GetPublicElement().DEREncode(bt);}
};
/// \brief Discrete Log (DL) private key in GF(p) groups
/// \tparam GP GroupParameters derived class
template <class GP>
class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP>
{
public:
virtual ~DL_PrivateKey_GFP();
/// \brief Create a private key
/// \param rng a RandomNumberGenerator derived class
/// \param modulusBits the size of the modulus, in bits
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
{this->GenerateRandomWithKeySize(rng, modulusBits);}
/// \brief Create a private key
/// \param rng a RandomNumberGenerator derived class
/// \param p the modulus
/// \param g the generator
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
/// \brief Create a private key
/// \param rng a RandomNumberGenerator derived class
/// \param p the modulus
/// \param q the subgroup order
/// \param g the generator
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
/// \brief Initialize a private key over GF(p)
/// \param params the group parameters
/// \param x the private exponent
void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &x)
{this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);}
/// \brief Initialize a private key over GF(p)
/// \param p the modulus
/// \param g the generator
/// \param x the private exponent
void Initialize(const Integer &p, const Integer &g, const Integer &x)
{this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);}
/// \brief Initialize a private key over GF(p)
/// \param p the modulus
/// \param q the subgroup order
/// \param g the generator
/// \param x the private exponent
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
{this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);}
};
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
template <class GP>
DL_PrivateKey_GFP<GP>::~DL_PrivateKey_GFP() {}
/// \brief Discrete Log (DL) signing/verification keys in GF(p) groups
struct DL_SignatureKeys_GFP
{
typedef DL_GroupParameters_GFP GroupParameters;
typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
};
/// \brief Discrete Log (DL) encryption/decryption keys in GF(p) groups
struct DL_CryptoKeys_GFP
{
typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters;
typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
};
/// \brief DSA signature scheme
/// \tparam H HashTransformation derived class
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
/// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
template <class H>
struct GDSA : public DL_SS<
DL_SignatureKeys_GFP,
DL_Algorithm_GDSA<Integer>,
DL_SignatureMessageEncodingMethod_DSA,
H>
{
};
/// \brief NR signature scheme
/// \tparam H HashTransformation derived class
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
template <class H>
struct NR : public DL_SS<
DL_SignatureKeys_GFP,
DL_Algorithm_NR<Integer>,
DL_SignatureMessageEncodingMethod_NR,
H>
{
};
/// \brief DSA group parameters
/// \details These are GF(p) group parameters that are allowed by the DSA standard
/// \sa DL_Keys_DSA
/// \since Crypto++ 1.0
class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP
{
public:
virtual ~DL_GroupParameters_DSA() {}
/// \brief Check the group for errors
/// \param rng RandomNumberGenerator for objects which use randomized testing
/// \param level level of thoroughness
/// \returns true if the tests succeed, false otherwise
/// \details ValidateGroup() also checks that the lengths of p and q are allowed
/// by the DSA standard.
/// \details There are four levels of thoroughness:
/// <ul>
/// <li>0 - using this object won't cause a crash or exception
/// <li>1 - this object will probably function, and encrypt, sign, other operations correctly
/// <li>2 - ensure this object will function correctly, and perform reasonable security checks
/// <li>3 - perform reasonable security checks, and do checks that may take a long time
/// </ul>
/// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
/// Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
/// \brief Generate a random key or crypto parameters
/// \param rng a RandomNumberGenerator to produce keying material
/// \param alg additional initialization parameters
/// \details NameValuePairs can be ModulusSize alone; or Modulus, SubgroupOrder, and
/// SubgroupGenerator. ModulusSize must be between <tt>DSA::MIN_PRIME_LENGTH</tt> and
/// <tt>DSA::MAX_PRIME_LENGTH</tt>, and divisible by <tt>DSA::PRIME_LENGTH_MULTIPLE</tt>.
/// \details An example of changing the modulus size using NameValuePairs is shown below.
/// <pre>
/// AlgorithmParameters params = MakeParameters
/// (Name::ModulusSize(), 2048);
///
/// DL_GroupParameters_DSA groupParams;
/// groupParams.GenerateRandom(prng, params);
/// </pre>
/// \throws KeyingErr if a key can't be generated or algorithm parameters are invalid.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
/// \brief Check the prime length for errors
/// \param pbits number of bits in the prime number
/// \returns true if the tests succeed, false otherwise
static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
{return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
/// \brief DSA prime length
enum {
/// \brief Minimum prime length
MIN_PRIME_LENGTH = 1024,
/// \brief Maximum prime length
MAX_PRIME_LENGTH = 3072,
/// \brief Prime length multiple
PRIME_LENGTH_MULTIPLE = 1024
};
};
template <class H>
class DSA2;
/// \brief DSA keys
/// \sa DL_GroupParameters_DSA
/// \since Crypto++ 1.0
struct DL_Keys_DSA
{
typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey;
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> > PrivateKey;
};
/// \brief DSA signature scheme
/// \tparam H HashTransformation derived class
/// \details The class is named DSA2 instead of DSA for backwards compatibility because
/// DSA was a non-template class.
/// \details DSA default method GenerateRandom uses a 2048-bit modulus and a 224-bit subgoup by default.
/// The modulus can be changed using the following code:
/// <pre>
/// DSA::PrivateKey privateKey;
/// privateKey.GenerateRandomWithKeySize(prng, 2048);
/// </pre>
/// \details The subgroup order can be changed using the following code:
/// <pre>
/// AlgorithmParameters params = MakeParameters
/// (Name::ModulusSize(), 2048)
/// (Name::SubgroupOrderSize(), 256);
///
/// DSA::PrivateKey privateKey;
/// privateKey.GenerateRandom(prng, params);
/// </pre>
/// \sa <a href="http://en.wikipedia.org/wiki/Digital_Signature_Algorithm">DSA</a>, as specified in FIPS 186-3,
/// <a href="https://www.cryptopp.com/wiki/Digital_Signature_Algorithm">Digital Signature Algorithm</a> on the wiki, and
/// <a href="https://www.cryptopp.com/wiki/NameValuePairs">NameValuePairs</a> on the wiki.
/// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2, Crypto++ 6.1 for 2048-bit modulus.
template <class H>
class DSA2 : public DL_SS<
DL_Keys_DSA,
DL_Algorithm_GDSA<Integer>,
DL_SignatureMessageEncodingMethod_DSA,
H,
DSA2<H> >
{
public:
static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();}
};
/// \brief DSA deterministic signature scheme
/// \tparam H HashTransformation derived class
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
/// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
template <class H>
struct DSA_RFC6979 : public DL_SS<
DL_SignatureKeys_GFP,
DL_Algorithm_DSA_RFC6979<Integer, H>,
DL_SignatureMessageEncodingMethod_DSA,
H,
DSA_RFC6979<H> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("DSA-RFC6979/") + H::StaticAlgorithmName();}
};
/// DSA with SHA-1, typedef'd for backwards compatibility
typedef DSA2<SHA1> DSA;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> >;
/// \brief P1363 based XOR Encryption Method
/// \tparam MAC MessageAuthenticationCode derived class used for MAC computation
/// \tparam DHAES_MODE flag indicating DHAES mode
/// \tparam LABEL_OCTETS flag indicating the label is octet count
/// \details DL_EncryptionAlgorithm_Xor is based on an early P1363 draft, which itself appears to be based on an
/// early Certicom SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used it in its Integrated
/// Ecryption Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you need this method for Crypto++ 4.2 compatibility, then use the ECIES template class with
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you need this method for Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES template class with
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=ture</tt> and <tt>LABEL_OCTETS=false</tt>.
/// \details Bouncy Castle 1.54 and Botan 1.11 compatibility are the default template parameters.
/// \since Crypto++ 4.0
template <class MAC, bool DHAES_MODE, bool LABEL_OCTETS=false>
class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm
{
public:
virtual ~DL_EncryptionAlgorithm_Xor() {}
bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;}
size_t GetSymmetricKeyLength(size_t plaintextLength) const
{return plaintextLength + static_cast<size_t>(MAC::DEFAULT_KEYLENGTH);}
size_t GetSymmetricCiphertextLength(size_t plaintextLength) const
{return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const
{return SaturatingSubtract(ciphertextLength, static_cast<size_t>(MAC::DIGESTSIZE));}
void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters) const
{
CRYPTOPP_UNUSED(rng);
const byte *cipherKey = NULLPTR, *macKey = NULLPTR;
if (DHAES_MODE)
{
macKey = key;
cipherKey = key + MAC::DEFAULT_KEYLENGTH;
}
else
{
cipherKey = key;
macKey = key + plaintextLength;
}
ConstByteArrayParameter encodingParameters;
parameters.GetValue(Name::EncodingParameters(), encodingParameters);
if (plaintextLength) // Coverity finding
xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
MAC mac(macKey);
mac.Update(ciphertext, plaintextLength);
mac.Update(encodingParameters.begin(), encodingParameters.size());
if (DHAES_MODE)
{
byte L[8];
PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
mac.Update(L, 8);
}
mac.Final(ciphertext + plaintextLength);
}
DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters) const
{
size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
const byte *cipherKey, *macKey;
if (DHAES_MODE)
{
macKey = key;
cipherKey = key + MAC::DEFAULT_KEYLENGTH;
}
else
{
cipherKey = key;
macKey = key + plaintextLength;
}
ConstByteArrayParameter encodingParameters;
parameters.GetValue(Name::EncodingParameters(), encodingParameters);
MAC mac(macKey);
mac.Update(ciphertext, plaintextLength);
mac.Update(encodingParameters.begin(), encodingParameters.size());
if (DHAES_MODE)
{
byte L[8];
PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
mac.Update(L, 8);
}
if (!mac.Verify(ciphertext + plaintextLength))
return DecodingResult();
if (plaintextLength) // Coverity finding
xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
return DecodingResult(plaintextLength);
}
};
/// _
template <class T, bool DHAES_MODE, class KDF>
class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T>
{
public:
virtual ~DL_KeyDerivationAlgorithm_P1363() {}
bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;}
void Derive(const DL_GroupParameters<T> ¶ms, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs ¶meters) const
{
SecByteBlock agreedSecret;
if (DHAES_MODE)
{
agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
}
else
{
agreedSecret.New(params.GetEncodedElementSize(false));
params.EncodeElement(false, agreedElement, agreedSecret);
}
ConstByteArrayParameter derivationParameters;
parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters);
KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size());
}
};
/// \brief Discrete Log Integrated Encryption Scheme
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
/// \tparam DHAES_MODE flag indicating if the MAC includes addition context parameters such as the label
/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
/// \details DLIES is an Integer based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation Method (KEM)
/// with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
/// You should prefer an Integrated Encryption Scheme over homegrown schemes.
/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
/// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
/// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the DLIES template class with
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the DLIES
/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
/// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
/// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
/// \details Below is an example of constructing a Crypto++ 4.2 compatible DLIES encryptor and decryptor.
/// <pre>
/// AutoSeededRandomPool prng;
/// DL_PrivateKey_GFP<DL_GroupParameters_GFP> key;
/// key.Initialize(prng, 2048);
///
/// DLIES<SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
/// DLIES<SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
/// </pre>
/// \sa ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">Discrete Log Integrated Encryption Scheme (DLIES)</a>,
/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
/// Curve Integrated Encryption Schemes</A>
/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
template <class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS=false>
struct DLIES
: public DL_ES<
DL_CryptoKeys_GFP,
DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
DLIES<> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized
};
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif
|