1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
// gf2n.h - originally written and placed in the public domain by Wei Dai
/// \file gf2n.h
/// \brief Classes and functions for schemes over GF(2^n)
#ifndef CRYPTOPP_GF2N_H
#define CRYPTOPP_GF2N_H
#include "cryptlib.h"
#include "secblock.h"
#include "algebra.h"
#include "misc.h"
#include "asn.h"
#include <iosfwd>
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif
NAMESPACE_BEGIN(CryptoPP)
/// \brief Polynomial with Coefficients in GF(2)
/*! \nosubgrouping */
class CRYPTOPP_DLL PolynomialMod2
{
public:
/// \name ENUMS, EXCEPTIONS, and TYPEDEFS
//@{
/// \brief Excpetion thrown when divide by zero is encountered
class DivideByZero : public Exception
{
public:
DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {}
};
typedef unsigned int RandomizationParameter;
//@}
/// \name CREATORS
//@{
/// \brief Construct the zero polynomial
PolynomialMod2();
/// Copy construct a PolynomialMod2
PolynomialMod2(const PolynomialMod2& t);
/// \brief Construct a PolynomialMod2 from a word
/// \details value should be encoded with the least significant bit as coefficient to x^0
/// and most significant bit as coefficient to x^(WORD_BITS-1)
/// bitLength denotes how much memory to allocate initially
PolynomialMod2(word value, size_t bitLength=WORD_BITS);
/// \brief Construct a PolynomialMod2 from big-endian byte array
PolynomialMod2(const byte *encodedPoly, size_t byteCount)
{Decode(encodedPoly, byteCount);}
/// \brief Construct a PolynomialMod2 from big-endian form stored in a BufferedTransformation
PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
{Decode(encodedPoly, byteCount);}
/// \brief Create a uniformly distributed random polynomial
/// \details Create a random polynomial uniformly distributed over all polynomials with degree less than bitcount
PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
{Randomize(rng, bitcount);}
/// \brief Provides x^i
/// \returns x^i
static PolynomialMod2 CRYPTOPP_API Monomial(size_t i);
/// \brief Provides x^t0 + x^t1 + x^t2
/// \returns x^t0 + x^t1 + x^t2
static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);
/// \brief Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4
/// \returns x^t0 + x^t1 + x^t2 + x^t3 + x^t4
static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);
/// \brief Provides x^(n-1) + ... + x + 1
/// \returns x^(n-1) + ... + x + 1
static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n);
/// \brief The Zero polinomial
/// \returns the zero polynomial
static const PolynomialMod2 & CRYPTOPP_API Zero();
/// \brief The One polinomial
/// \returns the one polynomial
static const PolynomialMod2 & CRYPTOPP_API One();
//@}
/// \name ENCODE/DECODE
//@{
/// minimum number of bytes to encode this polynomial
/*! MinEncodedSize of 0 is 1 */
unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}
/// encode in big-endian format
/// \details if outputLen < MinEncodedSize, the most significant bytes will be dropped
/// if outputLen > MinEncodedSize, the most significant bytes will be padded
void Encode(byte *output, size_t outputLen) const;
///
void Encode(BufferedTransformation &bt, size_t outputLen) const;
///
void Decode(const byte *input, size_t inputLen);
///
//* Precondition: bt.MaxRetrievable() >= inputLen
void Decode(BufferedTransformation &bt, size_t inputLen);
/// encode value as big-endian octet string
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
/// decode value as big-endian octet string
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
//@}
/// \name ACCESSORS
//@{
/// number of significant bits = Degree() + 1
unsigned int BitCount() const;
/// number of significant bytes = ceiling(BitCount()/8)
unsigned int ByteCount() const;
/// number of significant words = ceiling(ByteCount()/sizeof(word))
unsigned int WordCount() const;
/// return the n-th bit, n=0 being the least significant bit
bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}
/// return the n-th byte
byte GetByte(size_t n) const;
/// the zero polynomial will return a degree of -1
signed int Degree() const {return (signed int)(BitCount()-1U);}
/// degree + 1
unsigned int CoefficientCount() const {return BitCount();}
/// return coefficient for x^i
int GetCoefficient(size_t i) const
{return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}
/// return coefficient for x^i
int operator[](unsigned int i) const {return GetCoefficient(i);}
///
bool IsZero() const {return !*this;}
///
bool Equals(const PolynomialMod2 &rhs) const;
//@}
/// \name MANIPULATORS
//@{
///
PolynomialMod2& operator=(const PolynomialMod2& t);
///
PolynomialMod2& operator&=(const PolynomialMod2& t);
///
PolynomialMod2& operator^=(const PolynomialMod2& t);
///
PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;}
///
PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;}
///
PolynomialMod2& operator*=(const PolynomialMod2& t);
///
PolynomialMod2& operator/=(const PolynomialMod2& t);
///
PolynomialMod2& operator%=(const PolynomialMod2& t);
///
PolynomialMod2& operator<<=(unsigned int);
///
PolynomialMod2& operator>>=(unsigned int);
///
void Randomize(RandomNumberGenerator &rng, size_t bitcount);
///
void SetBit(size_t i, int value = 1);
/// set the n-th byte to value
void SetByte(size_t n, byte value);
///
void SetCoefficient(size_t i, int value) {SetBit(i, value);}
///
void swap(PolynomialMod2 &a) {reg.swap(a.reg);}
//@}
/// \name UNARY OPERATORS
//@{
///
bool operator!() const;
///
PolynomialMod2 operator+() const {return *this;}
///
PolynomialMod2 operator-() const {return *this;}
//@}
/// \name BINARY OPERATORS
//@{
///
PolynomialMod2 And(const PolynomialMod2 &b) const;
///
PolynomialMod2 Xor(const PolynomialMod2 &b) const;
///
PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}
///
PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}
///
PolynomialMod2 Times(const PolynomialMod2 &b) const;
///
PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;
///
PolynomialMod2 Modulo(const PolynomialMod2 &b) const;
///
PolynomialMod2 operator>>(unsigned int n) const;
///
PolynomialMod2 operator<<(unsigned int n) const;
//@}
/// \name OTHER ARITHMETIC FUNCTIONS
//@{
/// sum modulo 2 of all coefficients
unsigned int Parity() const;
/// check for irreducibility
bool IsIrreducible() const;
/// is always zero since we're working modulo 2
PolynomialMod2 Doubled() const {return Zero();}
///
PolynomialMod2 Squared() const;
/// only 1 is a unit
bool IsUnit() const {return Equals(One());}
/// return inverse if *this is a unit, otherwise return 0
PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}
/// greatest common divisor
static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n);
/// calculate multiplicative inverse of *this mod n
PolynomialMod2 InverseMod(const PolynomialMod2 &) const;
/// calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d);
//@}
/// \name INPUT/OUTPUT
//@{
///
friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);
//@}
private:
friend class GF2NT;
friend class GF2NT233;
SecWordBlock reg;
};
///
inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Equals(b);}
///
inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return !(a==b);}
/// compares degree
inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() > b.Degree();}
/// compares degree
inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() >= b.Degree();}
/// compares degree
inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() < b.Degree();}
/// compares degree
inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() <= b.Degree();}
///
inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}
///
inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}
///
inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}
///
inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}
///
inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}
///
inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}
///
inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}
// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,
// but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>;
CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>;
CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >;
/// \brief GF(2^n) with Polynomial Basis
class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> >
{
public:
GF2NP(const PolynomialMod2 &modulus);
virtual GF2NP * Clone() const {return new GF2NP(*this);}
virtual void DEREncode(BufferedTransformation &bt) const
{CRYPTOPP_UNUSED(bt); CRYPTOPP_ASSERT(false);} // no ASN.1 syntax yet for general polynomial basis
void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
void BERDecodeElement(BufferedTransformation &in, Element &a) const;
bool Equal(const Element &a, const Element &b) const
{CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}
bool IsUnit(const Element &a) const
{CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree()); return !!a;}
unsigned int MaxElementBitLength() const
{return m;}
unsigned int MaxElementByteLength() const
{return (unsigned int)BitsToBytes(MaxElementBitLength());}
Element SquareRoot(const Element &a) const;
Element HalfTrace(const Element &a) const;
// returns z such that z^2 + z == a
Element SolveQuadraticEquation(const Element &a) const;
protected:
unsigned int m;
};
/// \brief GF(2^n) with Trinomial Basis
class CRYPTOPP_DLL GF2NT : public GF2NP
{
public:
// polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);
GF2NP * Clone() const {return new GF2NT(*this);}
void DEREncode(BufferedTransformation &bt) const;
const Element& Multiply(const Element &a, const Element &b) const;
const Element& Square(const Element &a) const
{return Reduced(a.Squared());}
const Element& MultiplicativeInverse(const Element &a) const;
protected:
const Element& Reduced(const Element &a) const;
unsigned int t0, t1;
mutable PolynomialMod2 result;
};
/// \brief GF(2^n) for b233 and k233
/// \details GF2NT233 is a specialization of GF2NT that provides Multiply()
/// and Square() operations when carryless multiplies is available.
class CRYPTOPP_DLL GF2NT233 : public GF2NT
{
public:
// polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
GF2NT233(unsigned int t0, unsigned int t1, unsigned int t2);
GF2NP * Clone() const {return new GF2NT233(*this);}
const Element& Multiply(const Element &a, const Element &b) const;
const Element& Square(const Element &a) const;
};
/// \brief GF(2^n) with Pentanomial Basis
class CRYPTOPP_DLL GF2NPP : public GF2NP
{
public:
// polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4
GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)
: GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t1(t1), t2(t2), t3(t3) {}
GF2NP * Clone() const {return new GF2NPP(*this);}
void DEREncode(BufferedTransformation &bt) const;
private:
unsigned int t1, t2, t3;
};
// construct new GF2NP from the ASN.1 sequence Characteristic-two
CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);
NAMESPACE_END
#ifndef __BORLANDC__
NAMESPACE_BEGIN(std)
template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
{
a.swap(b);
}
NAMESPACE_END
#endif
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif
|