summaryrefslogtreecommitdiff
path: root/gcm.cpp
blob: 5433b35b43ef68da77615365fa50ace6e78954ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// gcm.cpp - originally written and placed in the public domain by Wei Dai.
//           ARM and Aarch64 added by Jeffrey Walton. The ARM carryless
//           multiply routines are less efficient because they shadow x86.
//           The precomputed key table integration makes it tricky to use the
//           more efficient ARMv8 implementation of the multiply and reduce.

// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code

#include "pch.h"
#include "config.h"

#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM

// Visual Studio .Net 2003 compiler crash
#if defined(_MSC_VER) && (_MSC_VER < 1400)
# pragma optimize("", off)
#endif

#include "gcm.h"
#include "cpu.h"

#if defined(CRYPTOPP_DISABLE_GCM_ASM)
# undef CRYPTOPP_X86_ASM_AVAILABLE
# undef CRYPTOPP_X32_ASM_AVAILABLE
# undef CRYPTOPP_X64_ASM_AVAILABLE
# undef CRYPTOPP_SSE2_ASM_AVAILABLE
#endif

NAMESPACE_BEGIN(CryptoPP)

#if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64)
// Different assemblers accept different mnemonics: 'movd eax, xmm0' vs
//   'movd rax, xmm0' vs 'mov eax, xmm0' vs 'mov rax, xmm0'
#if defined(CRYPTOPP_DISABLE_MIXED_ASM)
// 'movd eax, xmm0' only. REG_WORD() macro not used. Clang path.
# define USE_MOVD_REG32 1
#elif defined(__GNUC__) || defined(_MSC_VER)
// 'movd eax, xmm0' or 'movd rax, xmm0'. REG_WORD() macro supplies REG32 or REG64.
# define USE_MOVD_REG32_OR_REG64 1
#else
// 'mov eax, xmm0' or 'mov rax, xmm0'. REG_WORD() macro supplies REG32 or REG64.
# define USE_MOV_REG32_OR_REG64 1
#endif
#endif  // CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64

word16 GCM_Base::s_reductionTable[256];
volatile bool GCM_Base::s_reductionTableInitialized = false;

void GCM_Base::GCTR::IncrementCounterBy256()
{
    IncrementCounterByOne(m_counterArray+BlockSize()-4, 3);
}

static inline void Xor16(byte *a, const byte *b, const byte *c)
{
    CRYPTOPP_ASSERT(IsAlignedOn(a,GetAlignmentOf<word64>()));
    CRYPTOPP_ASSERT(IsAlignedOn(b,GetAlignmentOf<word64>()));
    CRYPTOPP_ASSERT(IsAlignedOn(c,GetAlignmentOf<word64>()));
    ((word64 *)(void *)a)[0] = ((word64 *)(void *)b)[0] ^ ((word64 *)(void *)c)[0];
    ((word64 *)(void *)a)[1] = ((word64 *)(void *)b)[1] ^ ((word64 *)(void *)c)[1];
}

#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
// SunCC 5.10-5.11 compiler crash. Move GCM_Xor16_SSE2 out-of-line, and place in
// a source file with a SSE architecture switch. Also see GH #226 and GH #284.
extern void GCM_Xor16_SSE2(byte *a, const byte *b, const byte *c);
#endif  // SSE2

#if CRYPTOPP_ARM_NEON_AVAILABLE
extern void GCM_Xor16_NEON(byte *a, const byte *b, const byte *c);
#endif

#if CRYPTOPP_POWER8_AVAILABLE
extern void GCM_Xor16_POWER8(byte *a, const byte *b, const byte *c);
#endif

#if CRYPTOPP_CLMUL_AVAILABLE
extern void GCM_SetKeyWithoutResync_CLMUL(const byte *hashKey, byte *mulTable, unsigned int tableSize);
extern size_t GCM_AuthenticateBlocks_CLMUL(const byte *data, size_t len, const byte *mtable, byte *hbuffer);
const unsigned int s_cltableSizeInBlocks = 8;
extern void GCM_ReverseHashBufferIfNeeded_CLMUL(byte *hashBuffer);
#endif  // CRYPTOPP_CLMUL_AVAILABLE

#if CRYPTOPP_ARM_PMULL_AVAILABLE
extern void GCM_SetKeyWithoutResync_PMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize);
extern size_t GCM_AuthenticateBlocks_PMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer);
const unsigned int s_cltableSizeInBlocks = 8;
extern void GCM_ReverseHashBufferIfNeeded_PMULL(byte *hashBuffer);
#endif  // CRYPTOPP_ARM_PMULL_AVAILABLE

#if CRYPTOPP_POWER8_VMULL_AVAILABLE
extern void GCM_SetKeyWithoutResync_VMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize);
extern size_t GCM_AuthenticateBlocks_VMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer);
const unsigned int s_cltableSizeInBlocks = 8;
extern void GCM_ReverseHashBufferIfNeeded_VMULL(byte *hashBuffer);
#endif  // CRYPTOPP_POWER8_VMULL_AVAILABLE

void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs &params)
{
    BlockCipher &blockCipher = AccessBlockCipher();
    blockCipher.SetKey(userKey, keylength, params);

    // GCM is only defined for 16-byte block ciphers at the moment.
    // However, variable blocksize support means we have to defer
    // blocksize checks to runtime after the key is set. Also see
    // https://github.com/weidai11/cryptopp/issues/408.
    const unsigned int blockSize = blockCipher.BlockSize();
    CRYPTOPP_ASSERT(blockSize == REQUIRED_BLOCKSIZE);
    if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE)
        throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16");

    int tableSize, i, j, k;

#if CRYPTOPP_CLMUL_AVAILABLE
    if (HasCLMUL())
    {
        // Avoid "parameter not used" error and suppress Coverity finding
        (void)params.GetIntValue(Name::TableSize(), tableSize);
        tableSize = s_cltableSizeInBlocks * blockSize;
        CRYPTOPP_ASSERT(tableSize > static_cast<int>(blockSize));
    }
    else
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
    if (HasPMULL())
    {
        // Avoid "parameter not used" error and suppress Coverity finding
        (void)params.GetIntValue(Name::TableSize(), tableSize);
        tableSize = s_cltableSizeInBlocks * blockSize;
        CRYPTOPP_ASSERT(tableSize > static_cast<int>(blockSize));
    }
    else
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
    if (HasPMULL())
    {
        // Avoid "parameter not used" error and suppress Coverity finding
        (void)params.GetIntValue(Name::TableSize(), tableSize);
        tableSize = s_cltableSizeInBlocks * blockSize;
        CRYPTOPP_ASSERT(tableSize > static_cast<int>(blockSize));
    }
    else
#endif
    {
        if (params.GetIntValue(Name::TableSize(), tableSize))
            tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024;
        else
            tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024;

        //#if defined(_MSC_VER) && (_MSC_VER < 1400)
        // VC 2003 workaround: compiler generates bad code for 64K tables
        //tableSize = 2*1024;
        //#endif
    }

    m_buffer.resize(3*blockSize + tableSize);
    byte *mulTable = MulTable();
    byte *hashKey = HashKey();
    std::memset(hashKey, 0, REQUIRED_BLOCKSIZE);
    blockCipher.ProcessBlock(hashKey);

#if CRYPTOPP_CLMUL_AVAILABLE
    if (HasCLMUL())
    {
        GCM_SetKeyWithoutResync_CLMUL(hashKey, mulTable, tableSize);
        return;
    }
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
    if (HasPMULL())
    {
        GCM_SetKeyWithoutResync_PMULL(hashKey, mulTable, tableSize);
        return;
    }
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
    if (HasPMULL())
    {
        GCM_SetKeyWithoutResync_VMULL(hashKey, mulTable, tableSize);
        return;
    }
#endif

    word64 V0, V1;
    typedef BlockGetAndPut<word64, BigEndian> Block;
    Block::Get(hashKey)(V0)(V1);

    if (tableSize == 64*1024)
    {
        for (i=0; i<128; i++)
        {
            k = i%8;
            Block::Put(NULLPTR, mulTable+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1);

            int x = (int)V1 & 1;
            V1 = (V1>>1) | (V0<<63);
            V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
        }

        for (i=0; i<16; i++)
        {
            std::memset(mulTable+i*256*16, 0, 16);
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
            if (HasSSE2())
                for (j=2; j<=0x80; j*=2)
                    for (k=1; k<j; k++)
                        GCM_Xor16_SSE2(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
            else
#elif CRYPTOPP_ARM_NEON_AVAILABLE
            if (HasNEON())
                for (j=2; j<=0x80; j*=2)
                    for (k=1; k<j; k++)
                        GCM_Xor16_NEON(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
            else
#elif CRYPTOPP_POWER8_AVAILABLE
            if (HasPower8())
                for (j=2; j<=0x80; j*=2)
                    for (k=1; k<j; k++)
                        GCM_Xor16_POWER8(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
            else
#endif
                for (j=2; j<=0x80; j*=2)
                    for (k=1; k<j; k++)
                        Xor16(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
        }
    }
    else
    {
        if (!s_reductionTableInitialized)
        {
            s_reductionTable[0] = 0;
            word16 x = 0x01c2;
            s_reductionTable[1] = ByteReverse(x);
            for (unsigned int ii=2; ii<=0x80; ii*=2)
            {
                x <<= 1;
                s_reductionTable[ii] = ByteReverse(x);
                for (unsigned int jj=1; jj<ii; jj++)
                    s_reductionTable[ii+jj] = s_reductionTable[ii] ^ s_reductionTable[jj];
            }
            s_reductionTableInitialized = true;
        }

        for (i=0; i<128-24; i++)
        {
            k = i%32;
            if (k < 4)
                Block::Put(NULLPTR, mulTable+1024+(i/32)*256+(size_t(1)<<(7-k)))(V0)(V1);
            else if (k < 8)
                Block::Put(NULLPTR, mulTable+(i/32)*256+(size_t(1)<<(11-k)))(V0)(V1);

            int x = (int)V1 & 1;
            V1 = (V1>>1) | (V0<<63);
            V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
        }

        for (i=0; i<4; i++)
        {
            std::memset(mulTable+i*256, 0, 16);
            std::memset(mulTable+1024+i*256, 0, 16);
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
            if (HasSSE2())
                for (j=2; j<=8; j*=2)
                    for (k=1; k<j; k++)
                    {
                        GCM_Xor16_SSE2(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
                        GCM_Xor16_SSE2(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
                    }
            else
#elif CRYPTOPP_ARM_NEON_AVAILABLE
            if (HasNEON())
                for (j=2; j<=8; j*=2)
                    for (k=1; k<j; k++)
                    {
                        GCM_Xor16_NEON(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
                        GCM_Xor16_NEON(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
                    }
            else
#elif CRYPTOPP_POWER8_AVAILABLE
            if (HasPower8())
                for (j=2; j<=8; j*=2)
                    for (k=1; k<j; k++)
                    {
                        GCM_Xor16_POWER8(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
                        GCM_Xor16_POWER8(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
                    }
            else
#endif
                for (j=2; j<=8; j*=2)
                    for (k=1; k<j; k++)
                    {
                        Xor16(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
                        Xor16(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
                    }
        }
    }
}

inline void GCM_Base::ReverseHashBufferIfNeeded()
{
#if CRYPTOPP_CLMUL_AVAILABLE
    if (HasCLMUL())
    {
        GCM_ReverseHashBufferIfNeeded_CLMUL(HashBuffer());
    }
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
    if (HasPMULL())
    {
        GCM_ReverseHashBufferIfNeeded_PMULL(HashBuffer());
    }
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
    if (HasPMULL())
    {
        GCM_ReverseHashBufferIfNeeded_VMULL(HashBuffer());
    }
#endif
}

void GCM_Base::Resync(const byte *iv, size_t len)
{
    BlockCipher &cipher = AccessBlockCipher();
    byte *hashBuffer = HashBuffer();

    if (len == 12)
    {
        std::memcpy(hashBuffer, iv, len);
        std::memset(hashBuffer+len, 0, 3);
        hashBuffer[len+3] = 1;
    }
    else
    {
        size_t origLen = len;
        std::memset(hashBuffer, 0, HASH_BLOCKSIZE);

        if (len >= HASH_BLOCKSIZE)
        {
            len = GCM_Base::AuthenticateBlocks(iv, len);
            iv += (origLen - len);
        }

        if (len > 0)
        {
            std::memcpy(m_buffer, iv, len);
            std::memset(m_buffer+len, 0, HASH_BLOCKSIZE-len);
            GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
        }

        PutBlock<word64, BigEndian, true>(NULLPTR, m_buffer)(0)(origLen*8);
        GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);

        ReverseHashBufferIfNeeded();
    }

    if (m_state >= State_IVSet)
        m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE);
    else
        m_ctr.SetCipherWithIV(cipher, hashBuffer);

    m_ctr.Seek(HASH_BLOCKSIZE);

    std::memset(hashBuffer, 0, HASH_BLOCKSIZE);
}

unsigned int GCM_Base::OptimalDataAlignment() const
{
    return
#if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
        HasSSE2() ? 16 :
#elif CRYPTOPP_ARM_NEON_AVAILABLE
        HasNEON() ? 4 :
#elif CRYPTOPP_POWER8_AVAILABLE
        HasPower8() ? 16 :
#endif
        GetBlockCipher().OptimalDataAlignment();
}

#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4731)    // frame pointer register 'ebp' modified by inline assembly code
#endif

#endif    // Not CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void GCM_AuthenticateBlocks_2K_SSE2(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable);
void GCM_AuthenticateBlocks_64K_SSE2(const byte *data, size_t blocks, word64 *hashBuffer);
}
#endif

#ifndef CRYPTOPP_GENERATE_X64_MASM

size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len)
{
#if CRYPTOPP_CLMUL_AVAILABLE
    if (HasCLMUL())
    {
        return GCM_AuthenticateBlocks_CLMUL(data, len, MulTable(), HashBuffer());
    }
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
    if (HasPMULL())
    {
        return GCM_AuthenticateBlocks_PMULL(data, len, MulTable(), HashBuffer());
    }
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
    if (HasPMULL())
    {
        return GCM_AuthenticateBlocks_VMULL(data, len, MulTable(), HashBuffer());
    }
#endif

    typedef BlockGetAndPut<word64, NativeByteOrder> Block;
    word64 *hashBuffer = (word64 *)(void *)HashBuffer();
    CRYPTOPP_ASSERT(IsAlignedOn(hashBuffer,GetAlignmentOf<word64>()));

    switch (2*(m_buffer.size()>=64*1024)
#if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
        + HasSSE2()
//#elif CRYPTOPP_ARM_NEON_AVAILABLE
//      + HasNEON()
#endif
        )
    {
    case 0:        // non-SSE2 and 2K tables
        {
        byte *mulTable = MulTable();
        word64 x0 = hashBuffer[0], x1 = hashBuffer[1];

        do
        {
            word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1;
            Block::Get(data)(y0)(y1);
            x0 ^= y0;
            x1 ^= y1;

            data += HASH_BLOCKSIZE;
            len -= HASH_BLOCKSIZE;

            #define READ_TABLE_WORD64_COMMON(a, b, c, d)    *(word64 *)(void *)(mulTable+(a*1024)+(b*256)+c+d*8)

            #if (CRYPTOPP_LITTLE_ENDIAN)
                #if CRYPTOPP_BOOL_SLOW_WORD64
                    word32 z0 = (word32)x0;
                    word32 z1 = (word32)(x0>>32);
                    word32 z2 = (word32)x1;
                    word32 z3 = (word32)(x1>>32);
                    #define READ_TABLE_WORD64(a, b, c, d, e)    READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e)
                #else
                    #define READ_TABLE_WORD64(a, b, c, d, e)    READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e)
                #endif
                #define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8)
                #define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8;
            #else
                #define READ_TABLE_WORD64(a, b, c, d, e)    READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e)
                #define GF_MOST_SIG_8BITS(a) (a##1 & 0xff)
                #define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8;
            #endif

            #define GF_MUL_32BY128(op, a, b, c)                                            \
                a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0); \
                a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1); \
                b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0); \
                b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1); \
                c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0); \
                c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1); \
                d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0); \
                d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1); \

            GF_MUL_32BY128(=, 0, 0, 0)
            GF_MUL_32BY128(^=, 0, 1, 1)
            GF_MUL_32BY128(^=, 1, 0, 2)
            GF_MUL_32BY128(^=, 1, 1, 3)

            word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16;
            GF_SHIFT_8(d)
            c0 ^= d0; c1 ^= d1;
            r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8;
            GF_SHIFT_8(c)
            b0 ^= c0; b1 ^= c1;
            r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)];
            GF_SHIFT_8(b)
            a0 ^= b0; a1 ^= b1;
            a0 ^= ConditionalByteReverse<word64>(LITTLE_ENDIAN_ORDER, r);
            x0 = a0; x1 = a1;
        }
        while (len >= HASH_BLOCKSIZE);

        hashBuffer[0] = x0; hashBuffer[1] = x1;
        return len;
        }

    case 2:        // non-SSE2 and 64K tables
        {
        byte *mulTable = MulTable();
        word64 x0 = hashBuffer[0], x1 = hashBuffer[1];

        do
        {
            word64 y0, y1, a0, a1;
            Block::Get(data)(y0)(y1);
            x0 ^= y0;
            x1 ^= y1;

            data += HASH_BLOCKSIZE;
            len -= HASH_BLOCKSIZE;

            #undef READ_TABLE_WORD64_COMMON
            #undef READ_TABLE_WORD64

            #define READ_TABLE_WORD64_COMMON(a, c, d)    *(word64 *)(void *)(mulTable+(a)*256*16+(c)+(d)*8)

            #if (CRYPTOPP_LITTLE_ENDIAN)
                #if CRYPTOPP_BOOL_SLOW_WORD64
                    word32 z0 = (word32)x0;
                    word32 z1 = (word32)(x0>>32);
                    word32 z2 = (word32)x1;
                    word32 z3 = (word32)(x1>>32);
                    #define READ_TABLE_WORD64(b, c, d, e)    READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e)
                #else
                    #define READ_TABLE_WORD64(b, c, d, e)    READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
                #endif
            #else
                #define READ_TABLE_WORD64(b, c, d, e)    READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
            #endif

            #define GF_MUL_8BY128(op, b, c, d)        \
                a0 op READ_TABLE_WORD64(b, c, d, 0);\
                a1 op READ_TABLE_WORD64(b, c, d, 1);\

            GF_MUL_8BY128(=, 0, 0, 0)
            GF_MUL_8BY128(^=, 0, 0, 1)
            GF_MUL_8BY128(^=, 0, 0, 2)
            GF_MUL_8BY128(^=, 0, 0, 3)
            GF_MUL_8BY128(^=, 0, 1, 0)
            GF_MUL_8BY128(^=, 0, 1, 1)
            GF_MUL_8BY128(^=, 0, 1, 2)
            GF_MUL_8BY128(^=, 0, 1, 3)
            GF_MUL_8BY128(^=, 1, 2, 0)
            GF_MUL_8BY128(^=, 1, 2, 1)
            GF_MUL_8BY128(^=, 1, 2, 2)
            GF_MUL_8BY128(^=, 1, 2, 3)
            GF_MUL_8BY128(^=, 1, 3, 0)
            GF_MUL_8BY128(^=, 1, 3, 1)
            GF_MUL_8BY128(^=, 1, 3, 2)
            GF_MUL_8BY128(^=, 1, 3, 3)

            x0 = a0; x1 = a1;
        }
        while (len >= HASH_BLOCKSIZE);

        hashBuffer[0] = x0; hashBuffer[1] = x1;
        return len;
        }
#endif    // #ifndef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
    case 1:        // SSE2 and 2K tables
        GCM_AuthenticateBlocks_2K_SSE2(data, len/16, hashBuffer, s_reductionTable);
        return len % 16;
    case 3:        // SSE2 and 64K tables
        GCM_AuthenticateBlocks_64K_SSE2(data, len/16, hashBuffer);
        return len % 16;
#endif

#if CRYPTOPP_SSE2_ASM_AVAILABLE

    case 1:        // SSE2 and 2K tables
        {
        #ifdef __GNUC__
            __asm__ __volatile__
            (
            INTEL_NOPREFIX
        #elif defined(CRYPTOPP_GENERATE_X64_MASM)
            ALIGN   8
            GCM_AuthenticateBlocks_2K_SSE2    PROC FRAME
            rex_push_reg rsi
            push_reg rdi
            push_reg rbx
            .endprolog
            mov rsi, r8
            mov r11, r9
        #else
            AS2(    mov        WORD_REG(cx), data        )
            AS2(    mov        WORD_REG(dx), len         )
            AS2(    mov        WORD_REG(si), hashBuffer  )
            AS2(    shr        WORD_REG(dx), 4           )
        #endif

        #if CRYPTOPP_BOOL_X32
            AS1(push    rbx)
            AS1(push    rbp)
        #else
            AS_PUSH_IF86(    bx)
            AS_PUSH_IF86(    bp)
        #endif

        #ifdef __GNUC__
            AS2(    mov      AS_REG_7, WORD_REG(di))
        #elif CRYPTOPP_BOOL_X86
            AS2(    lea      AS_REG_7, s_reductionTable)
        #endif

        AS2(    movdqa   xmm0, [WORD_REG(si)]            )

        #define MUL_TABLE_0 WORD_REG(si) + 32
        #define MUL_TABLE_1 WORD_REG(si) + 32 + 1024
        #define RED_TABLE AS_REG_7

        ASL(0)
        AS2(    movdqu   xmm4, [WORD_REG(cx)]            )
        AS2(    pxor     xmm0, xmm4                      )

        AS2(    movd     ebx, xmm0                       )
        AS2(    mov      eax, AS_HEX(f0f0f0f0)           )
        AS2(    and      eax, ebx                        )
        AS2(    shl      ebx, 4                          )
        AS2(    and      ebx, AS_HEX(f0f0f0f0)           )
        AS2(    movzx    edi, ah                         )
        AS2(    movdqa   xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]    )
        AS2(    movzx    edi, al                         )
        AS2(    movdqa   xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]    )
        AS2(    shr      eax, 16                         )
        AS2(    movzx    edi, ah                         )
        AS2(    movdqa   xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]    )
        AS2(    movzx    edi, al                         )
        AS2(    movdqa   xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]    )

        #define SSE2_MUL_32BITS(i)                                                       \
            AS2(    psrldq  xmm0, 4                                                     )\
            AS2(    movd    eax, xmm0                                                   )\
            AS2(    and     eax, AS_HEX(f0f0f0f0)                                       )\
            AS2(    movzx   edi, bh                                                     )\
            AS2(    pxor    xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]  )\
            AS2(    movzx   edi, bl                                                     )\
            AS2(    pxor    xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]  )\
            AS2(    shr     ebx, 16                                                     )\
            AS2(    movzx   edi, bh                                                     )\
            AS2(    pxor    xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]  )\
            AS2(    movzx   edi, bl                                                     )\
            AS2(    pxor    xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]  )\
            AS2(    movd    ebx, xmm0                                                   )\
            AS2(    shl     ebx, 4                                                      )\
            AS2(    and     ebx, AS_HEX(f0f0f0f0)                                       )\
            AS2(    movzx   edi, ah                                                     )\
            AS2(    pxor    xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]      )\
            AS2(    movzx   edi, al                                                     )\
            AS2(    pxor    xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]      )\
            AS2(    shr     eax, 16                                                     )\
            AS2(    movzx   edi, ah                                                     )\
            AS2(    pxor    xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]      )\
            AS2(    movzx   edi, al                                                     )\
            AS2(    pxor    xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]      )\

        SSE2_MUL_32BITS(1)
        SSE2_MUL_32BITS(2)
        SSE2_MUL_32BITS(3)

        AS2(    movzx   edi, bh                    )
        AS2(    pxor    xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]    )
        AS2(    movzx   edi, bl                    )
        AS2(    pxor    xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]    )
        AS2(    shr     ebx, 16                    )
        AS2(    movzx   edi, bh                    )
        AS2(    pxor    xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]    )
        AS2(    movzx   edi, bl                    )
        AS2(    pxor    xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]    )

        AS2(    movdqa  xmm0, xmm3                 )
        AS2(    pslldq  xmm3, 1                    )
        AS2(    pxor    xmm2, xmm3                 )
        AS2(    movdqa  xmm1, xmm2                 )
        AS2(    pslldq  xmm2, 1                    )
        AS2(    pxor    xmm5, xmm2                 )

        AS2(    psrldq  xmm0, 15                   )
#if USE_MOVD_REG32
        AS2(    movd    edi, xmm0                  )
#elif USE_MOV_REG32_OR_REG64
        AS2(    mov     WORD_REG(di), xmm0         )
#else    // GNU Assembler
        AS2(    movd    WORD_REG(di), xmm0         )
#endif
        AS2(    movzx   eax, WORD PTR [RED_TABLE + WORD_REG(di)*2]  )
        AS2(    shl     eax, 8                     )

        AS2(    movdqa  xmm0, xmm5                 )
        AS2(    pslldq  xmm5, 1                    )
        AS2(    pxor    xmm4, xmm5                 )

        AS2(    psrldq  xmm1, 15                   )
#if USE_MOVD_REG32
        AS2(    movd    edi, xmm1                  )
#elif USE_MOV_REG32_OR_REG64
        AS2(    mov     WORD_REG(di), xmm1         )
#else
        AS2(    movd    WORD_REG(di), xmm1         )
#endif
        AS2(    xor     ax, WORD PTR [RED_TABLE + WORD_REG(di)*2]  )
        AS2(    shl     eax, 8                     )

        AS2(    psrldq  xmm0, 15                   )
#if USE_MOVD_REG32
        AS2(    movd    edi, xmm0                  )
#elif USE_MOV_REG32_OR_REG64
        AS2(    mov     WORD_REG(di), xmm0         )
#else
        AS2(    movd    WORD_REG(di), xmm0         )
#endif
        AS2(    xor     ax, WORD PTR [RED_TABLE + WORD_REG(di)*2]  )

        AS2(    movd    xmm0, eax                  )
        AS2(    pxor    xmm0, xmm4                 )

        AS2(    add     WORD_REG(cx), 16           )
        AS2(    sub     WORD_REG(dx), 1            )
        // ATT_NOPREFIX
        ASJ(    jnz,    0, b                       )
        INTEL_NOPREFIX
        AS2(    movdqa  [WORD_REG(si)], xmm0       )

        #if CRYPTOPP_BOOL_X32
            AS1(pop        rbp)
            AS1(pop        rbx)
        #else
            AS_POP_IF86(    bp)
            AS_POP_IF86(    bx)
        #endif

        #ifdef __GNUC__
                ATT_PREFIX
                    :
                    : "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable)
                    : "memory", "cc", "%eax", "%ebx"
#if (CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64)
                    , PERCENT_REG(AS_REG_7), "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5"
#endif
                );
        #elif defined(CRYPTOPP_GENERATE_X64_MASM)
            pop rbx
            pop rdi
            pop rsi
            ret
            GCM_AuthenticateBlocks_2K_SSE2 ENDP
        #endif

        return len%16;
        }
    case 3:        // SSE2 and 64K tables
        {
        #ifdef __GNUC__
            __asm__ __volatile__
            (
            INTEL_NOPREFIX
        #elif defined(CRYPTOPP_GENERATE_X64_MASM)
            ALIGN   8
            GCM_AuthenticateBlocks_64K_SSE2    PROC FRAME
            rex_push_reg rsi
            push_reg rdi
            .endprolog
            mov rsi, r8
        #else
            AS2(    mov        WORD_REG(cx), data       )
            AS2(    mov        WORD_REG(dx), len        )
            AS2(    mov        WORD_REG(si), hashBuffer )
            AS2(    shr        WORD_REG(dx), 4          )
        #endif

        AS2(    movdqa    xmm0, [WORD_REG(si)]          )

        #undef MUL_TABLE
        #define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16

        ASL(1)
        AS2(    movdqu    xmm1, [WORD_REG(cx)]          )
        AS2(    pxor    xmm1, xmm0                      )
        AS2(    pxor    xmm0, xmm0                      )

        #undef SSE2_MUL_32BITS
        #define SSE2_MUL_32BITS(i)                                   \
            AS2(    movd    eax, xmm1                               )\
            AS2(    psrldq    xmm1, 4                               )\
            AS2(    movzx    edi, al                                )\
            AS2(    add        WORD_REG(di), WORD_REG(di)           )\
            AS2(    pxor    xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8] )\
            AS2(    movzx    edi, ah                                )\
            AS2(    add        WORD_REG(di), WORD_REG(di)           )\
            AS2(    pxor    xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8] )\
            AS2(    shr        eax, 16                              )\
            AS2(    movzx    edi, al                                )\
            AS2(    add        WORD_REG(di), WORD_REG(di)           )\
            AS2(    pxor    xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8] )\
            AS2(    movzx    edi, ah                                )\
            AS2(    add        WORD_REG(di), WORD_REG(di)           )\
            AS2(    pxor    xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8] )\

        SSE2_MUL_32BITS(0)
        SSE2_MUL_32BITS(1)
        SSE2_MUL_32BITS(2)
        SSE2_MUL_32BITS(3)

        AS2(    add     WORD_REG(cx), 16      )
        AS2(    sub     WORD_REG(dx), 1       )
        // ATT_NOPREFIX
        ASJ(    jnz,    1, b                  )
        INTEL_NOPREFIX
        AS2(    movdqa  [WORD_REG(si)], xmm0  )

        #ifdef __GNUC__
                ATT_PREFIX
                    :
                    : "c" (data), "d" (len/16), "S" (hashBuffer)
                    : "memory", "cc", "%edi", "%eax"
#if (CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64)
                    , "%xmm0", "%xmm1"
#endif
                );
        #elif defined(CRYPTOPP_GENERATE_X64_MASM)
            pop rdi
            pop rsi
            ret
            GCM_AuthenticateBlocks_64K_SSE2 ENDP
        #endif

        return len%16;
        }
#endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
    }

    return len%16;
}

void GCM_Base::AuthenticateLastHeaderBlock()
{
    if (m_bufferedDataLength > 0)
    {
        std::memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength);
        m_bufferedDataLength = 0;
        GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
    }
}

void GCM_Base::AuthenticateLastConfidentialBlock()
{
    GCM_Base::AuthenticateLastHeaderBlock();
    PutBlock<word64, BigEndian, true>(NULLPTR, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8);
    GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
}

void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize)
{
    m_ctr.Seek(0);
    ReverseHashBufferIfNeeded();
    m_ctr.ProcessData(mac, HashBuffer(), macSize);
}

NAMESPACE_END

#endif    // Not CRYPTOPP_GENERATE_X64_MASM
#endif