1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
|
// eccrypto.h - originally written and placed in the public domain by Wei Dai
// deterministic signatures added by by Douglas Roark
/// \file eccrypto.h
/// \brief Classes and functions for Elliptic Curves over prime and binary fields
#ifndef CRYPTOPP_ECCRYPTO_H
#define CRYPTOPP_ECCRYPTO_H
#include "config.h"
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "hmac.h"
#include "sha.h"
#include "gfpcrypt.h"
#include "dh.h"
#include "mqv.h"
#include "hmqv.h"
#include "fhmqv.h"
#include "ecp.h"
#include "ec2n.h"
#include <iosfwd>
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif
NAMESPACE_BEGIN(CryptoPP)
/// \brief Elliptic Curve Parameters
/// \tparam EC elliptic curve field
/// \details This class corresponds to the ASN.1 sequence of the same name
/// in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
template <class EC>
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
{
typedef DL_GroupParameters_EC<EC> ThisClass;
public:
typedef EC EllipticCurve;
typedef typename EllipticCurve::Point Point;
typedef Point Element;
typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
virtual ~DL_GroupParameters_EC() {}
/// \brief Construct an EC GroupParameters
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
/// \brief Construct an EC GroupParameters
/// \param oid the OID of a curve
DL_GroupParameters_EC(const OID &oid)
: m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
/// \brief Construct an EC GroupParameters
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \param k the cofactor
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
: m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
/// \brief Construct an EC GroupParameters
/// \param bt BufferedTransformation with group parameters
DL_GroupParameters_EC(BufferedTransformation &bt)
: m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
/// \brief Initialize an EC GroupParameters using {EC,G,n,k}
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \param k the cofactor
/// \details This Initialize() function overload initializes group parameters from existing parameters.
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
{
this->m_groupPrecomputation.SetCurve(ec);
this->SetSubgroupGenerator(G);
m_n = n;
m_k = k;
}
/// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
/// \param oid the OID of a curve
/// \details This Initialize() function overload initializes group parameters from existing parameters.
void Initialize(const OID &oid);
// NameValuePairs
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// GeneratibleCryptoMaterial interface
/// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
const Integer & GetSubgroupOrder() const {return m_n;}
Integer GetCofactor() const;
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
bool FastSubgroupCheckAvailable() const {return false;}
void EncodeElement(bool reversible, const Element &element, byte *encoded) const
{
if (reversible)
GetCurve().EncodePoint(encoded, element, m_compress);
else
element.x.Encode(encoded, GetEncodedElementSize(false));
}
virtual unsigned int GetEncodedElementSize(bool reversible) const
{
if (reversible)
return GetCurve().EncodedPointSize(m_compress);
else
return GetCurve().GetField().MaxElementByteLength();
}
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
{
Point result;
if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
throw DL_BadElement();
if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
throw DL_BadElement();
return result;
}
Integer ConvertElementToInteger(const Element &element) const;
Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
bool IsIdentity(const Element &element) const {return element.identity;}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
// ASN1Key
OID GetAlgorithmID() const;
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const;
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
// non-inherited
// enumerate OIDs for recommended parameters, use OID() to get first one
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
void SetPointCompression(bool compress) {m_compress = compress;}
bool GetPointCompression() const {return m_compress;}
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
bool GetEncodeAsOID() const {return m_encodeAsOID;}
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
bool operator==(const ThisClass &rhs) const
{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
protected:
unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
unsigned int ExponentLength() const {return m_n.ByteCount();}
OID m_oid; // set if parameters loaded from a recommended curve
Integer m_n; // order of base point
mutable Integer m_k; // cofactor
mutable bool m_compress, m_encodeAsOID; // presentation details
};
inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj);
/// \brief Elliptic Curve Discrete Log (DL) public key
/// \tparam EC elliptic curve field
template <class EC>
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
virtual ~DL_PublicKey_EC() {}
/// \brief Initialize an EC Public Key using {GP,Q}
/// \param params group parameters
/// \param Q the public point
/// \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
/// \brief Initialize an EC Public Key using {EC,G,n,Q}
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \param Q the public point
/// \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePublicKey(BufferedTransformation &bt) const;
};
/// \brief Elliptic Curve Discrete Log (DL) private key
/// \tparam EC elliptic curve field
template <class EC>
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
virtual ~DL_PrivateKey_EC();
/// \brief Initialize an EC Private Key using {GP,x}
/// \param params group parameters
/// \param x the private exponent
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
/// \brief Initialize an EC Private Key using {EC,G,n,x}
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \param x the private exponent
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
/// \brief Create an EC private key
/// \param rng a RandomNumberGenerator derived class
/// \param params the EC group parameters
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
{this->GenerateRandom(rng, params);}
/// \brief Create an EC private key
/// \param rng a RandomNumberGenerator derived class
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePrivateKey(BufferedTransformation &bt) const;
};
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
template<class EC>
DL_PrivateKey_EC<EC>::~DL_PrivateKey_EC() {}
/// \brief Elliptic Curve Diffie-Hellman
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
/// \since Crypto++ 3.0
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECDH
{
typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
};
/// \brief Elliptic Curve Menezes-Qu-Vanstone
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECMQV
{
typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
};
/// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
/// Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
/// \sa CofactorMultiplicationOption
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECHMQV
{
typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
};
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;
/// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
/// \sa CofactorMultiplicationOption
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECFHMQV
{
typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
};
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;
/// \brief Elliptic Curve Discrete Log (DL) keys
/// \tparam EC elliptic curve field
template <class EC>
struct DL_Keys_EC
{
typedef DL_PublicKey_EC<EC> PublicKey;
typedef DL_PrivateKey_EC<EC> PrivateKey;
};
// Forward declaration; documented below
template <class EC, class H>
struct ECDSA;
/// \brief Elliptic Curve DSA keys
/// \tparam EC elliptic curve field
/// \since Crypto++ 3.2
template <class EC>
struct DL_Keys_ECDSA
{
typedef DL_PublicKey_EC<EC> PublicKey;
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
};
/// \brief Elliptic Curve DSA (ECDSA) signature algorithm
/// \tparam EC elliptic curve field
/// \since Crypto++ 3.2
template <class EC>
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
};
/// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
/// \tparam EC elliptic curve field
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
/// \since Crypto++ 6.0
template <class EC, class H>
class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
};
/// \brief Elliptic Curve NR (ECNR) signature algorithm
/// \tparam EC elliptic curve field
template <class EC>
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
};
/// \brief Elliptic Curve DSA (ECDSA) signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
/// \since Crypto++ 3.2
template <class EC, class H>
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
{
};
/// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
/// \since Crypto++ 6.0
template <class EC, class H>
struct ECDSA_RFC6979 : public DL_SS<
DL_Keys_ECDSA<EC>,
DL_Algorithm_ECDSA_RFC6979<EC, H>,
DL_SignatureMessageEncodingMethod_DSA,
H,
ECDSA_RFC6979<EC,H> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
};
/// \brief Elliptic Curve NR (ECNR) signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
template <class EC, class H = SHA1>
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
{
};
// ******************************************
template <class EC>
class DL_PublicKey_ECGDSA;
template <class EC>
class DL_PrivateKey_ECGDSA;
/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
virtual ~DL_PrivateKey_ECGDSA() {}
/// \brief Initialize an EC Private Key using {GP,x}
/// \param params group parameters
/// \param x the private exponent
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
{
this->AccessGroupParameters() = params;
this->SetPrivateExponent(x);
CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
}
/// \brief Initialize an EC Private Key using {EC,G,n,x}
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \param x the private exponent
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
{
this->AccessGroupParameters().Initialize(ec, G, n);
this->SetPrivateExponent(x);
CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
}
/// \brief Create an EC private key
/// \param rng a RandomNumberGenerator derived class
/// \param params the EC group parameters
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
{this->GenerateRandom(rng, params);}
/// \brief Create an EC private key
/// \param rng a RandomNumberGenerator derived class
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const
{
const DL_GroupParameters<Element>& params = this->GetAbstractGroupParameters();
pub.AccessAbstractGroupParameters().AssignFrom(params);
const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
pub.SetPublicElement(params.ExponentiateBase(xInv));
CRYPTOPP_ASSERT(xInv.NotZero());
}
virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<DL_PrivateKey_ECGDSA<EC>,
DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable();
}
virtual void AssignFrom(const NameValuePairs &source)
{
AssignFromHelper<DL_PrivateKey_ECGDSA<EC>,
DL_PrivateKey_ECGDSA<EC> >(this, source);
}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePrivateKey(BufferedTransformation &bt) const;
};
/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
typedef DL_PublicKey_ECGDSA<EC> ThisClass;
public:
typedef typename EC::Point Element;
virtual ~DL_PublicKey_ECGDSA() {}
/// \brief Initialize an EC Public Key using {GP,Q}
/// \param params group parameters
/// \param Q the public point
/// \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
/// \brief Initialize an EC Public Key using {EC,G,n,Q}
/// \param ec the elliptic curve
/// \param G the base point
/// \param n the order of the base point
/// \param Q the public point
/// \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
virtual void AssignFrom(const NameValuePairs &source)
{
DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR;
if (source.GetThisPointer(pPrivateKey))
pPrivateKey->MakePublicKey(*this);
else
{
this->AccessAbstractGroupParameters().AssignFrom(source);
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
}
}
// DL_PublicKey<T>
virtual void SetPublicElement(const Element &y)
{this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePublicKey(BufferedTransformation &bt) const;
};
/// \brief Elliptic Curve German DSA keys for ISO/IEC 15946
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
struct DL_Keys_ECGDSA
{
typedef DL_PublicKey_ECGDSA<EC> PublicKey;
typedef DL_PrivateKey_ECGDSA<EC> PrivateKey;
};
/// \brief Elliptic Curve German DSA signature algorithm
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
};
/// \brief Elliptic Curve German Digital Signature Algorithm signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A
/// HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme
/// ECGDSA (October 24, 2006)</A>
/// \since Crypto++ 6.0
template <class EC, class H>
struct ECGDSA : public DL_SS<
DL_Keys_ECGDSA<EC>,
DL_Algorithm_ECGDSA<EC>,
DL_SignatureMessageEncodingMethod_DSA,
H>
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
};
// ******************************************
/// \brief Elliptic Curve Integrated Encryption Scheme
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
/// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
/// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
/// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
/// You should prefer an Integrated Encryption Scheme over homegrown schemes.
/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
/// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
/// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES template class with
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
/// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
/// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
/// \details Below is an example of constructing a Crypto++ 4.2 compatible ECIES encryptor and decryptor.
/// <pre>
/// AutoSeededRandomPool prng;
/// DL_PrivateKey_EC<ECP> key;
/// key.Initialize(prng, ASN1::secp160r1());
///
/// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
/// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
/// </pre>
/// \sa DLIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
/// Curve Integrated Encryption Schemes</A>
/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
struct ECIES
: public DL_ES<
DL_Keys_EC<EC>,
DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
ECIES<EC> >
{
// TODO: fix this after name is standardized
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
};
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "eccrypto.cpp"
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif
|