summaryrefslogtreecommitdiff
path: root/cryptlib.h
blob: 3e07e860e118e133f135a603652fafb63e037cf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
// cryptlib.h - originally written and placed in the public domain by Wei Dai

/// \file cryptlib.h
/// \brief Abstract base classes that provide a uniform interface to this library.

/*!	\mainpage Crypto++ Library 8.7 API Reference
<dl>
<dt>Abstract Base Classes<dd>
	cryptlib.h
<dt>Authenticated Encryption Modes<dd>
	CCM, EAX, \ref GCM "GCM (2K tables)", \ref GCM "GCM (64K tables)"
<dt>Block Ciphers<dd>
	\ref Rijndael "AES", ARIA, Weak::ARC4, Blowfish, BTEA, \ref CHAM128 "CHAM (64/128)", Camellia,
	\ref CAST128 "CAST (128/256)", DES, \ref DES_EDE2 "2-key Triple-DES", \ref DES_EDE3 "3-key Triple-DES",
	\ref DES_XEX3 "DESX", GOST, HIGHT, IDEA, LEA, \ref LR "Luby-Rackoff", \ref Kalyna128 "Kalyna (128/256/512)",
	MARS, RC2, RC5, RC6, \ref SAFER_K "SAFER-K", \ref SAFER_SK "SAFER-SK", SEED, Serpent,
	\ref SHACAL2 "SHACAL-2", SHARK, \ref SIMECK64 "SIMECK (32/64)" SKIPJACK, SM4, Square, TEA,
	\ref ThreeWay "3-Way", \ref Threefish256 "Threefish (256/512/1024)", Twofish, XTEA
<dt>Stream Ciphers<dd>
	\ref ChaCha "ChaCha (8/12/20)", \ref HC128 "HC-128/256", \ref Panama "Panama-LE", \ref Panama "Panama-BE",
	Rabbit, Salsa20, \ref SEAL "SEAL-LE", \ref SEAL "SEAL-BE", WAKE, XSalsa20
<dt>Hash Functions<dd>
	BLAKE2s, BLAKE2b, \ref Keccak "Keccak (F1600)", SHA1, SHA224, SHA256, SHA384, SHA512,
	\ref SHA3 "SHA-3", SM3, LSH (256/512), Tiger, RIPEMD160, RIPEMD256, SipHash, Whirlpool,
	Weak::MD2, Weak::MD4, Weak::MD5
<dt>Non-Cryptographic Checksums<dd>
	CRC32, CRC32C, Adler32
<dt>Message Authentication Codes<dd>
	BLAKE2b, BLAKE2s, CBC_MAC, CMAC, DMAC, \ref GCM "GCM (GMAC)", HMAC, Poly1305, TTMAC, VMAC
<dt>Random Number Generators<dd>
	NullRNG, LC_RNG, RandomPool, BlockingRng, NonblockingRng, AutoSeededRandomPool, AutoSeededX917RNG,
	NIST Hash_DRBG and HMAC_DRBG, \ref MersenneTwister "MersenneTwister (MT19937 and MT19937-AR)",
	DARN, RDRAND, RDSEED
<dt>Key Derivation and Password-based Cryptography<dd>
	HKDF, \ref PKCS12_PBKDF "PBKDF (PKCS #12)", \ref PKCS5_PBKDF1 "PBKDF-1 (PKCS #5)",
	\ref PKCS5_PBKDF2_HMAC "PBKDF-2/HMAC (PKCS #5)"
<dt>Public Key Cryptosystems<dd>
	DLIES, ECIES, LUCES, RSAES, RabinES, LUC_IES
<dt>Public Key Signature Schemes<dd>
	DSA, DSA2, \ref ed25519 "Ed25519", GDSA, ECDSA, NR, ECNR, LUCSS, RSASS, RSASS_ISO,
	RabinSS, RWSS, ESIGN
<dt>Key Agreement<dd>
	DH, DH2, \ref x25519 "X25519", \ref MQV_Domain "MQV", \ref HMQV_Domain "HMQV",
    \ref FHMQV_Domain "FHMQV", ECDH, x25519, ECMQV, ECHMQV, ECFHMQV, XTR_DH
<dt>Algebraic Structures<dd>
	Integer, PolynomialMod2, PolynomialOver, RingOfPolynomialsOver,
	ModularArithmetic, MontgomeryRepresentation, GFP2_ONB, GF2NP, GF256, GF2_32, EC2N, ECP
<dt>Secret Sharing and Information Dispersal<dd>
	SecretSharing, SecretRecovery, InformationDispersal, InformationRecovery
<dt>Compression<dd>
	Deflator, Inflator, Gzip, Gunzip, ZlibCompressor, ZlibDecompressor
<dt>Input Source Classes<dd>
	StringSource, ArraySource, VectorSource, FileSource, RandomNumberSource
<dt>Output Sink Classes<dd>
	StringSinkTemplate, StringSink, VectorSink, ArraySink, FileSink, RandomNumberSink
<dt>Filter Wrappers<dd>
	StreamTransformationFilter, AuthenticatedEncryptionFilter, AuthenticatedDecryptionFilter, HashFilter,
	HashVerificationFilter, SignerFilter, SignatureVerificationFilter
<dt>Binary to Text Encoders and Decoders<dd>
	HexEncoder, HexDecoder, Base64Encoder, Base64Decoder, Base64URLEncoder, Base64URLDecoder, Base32Encoder,
	Base32Decoder
<dt>Wrappers for OS features<dd>
	Timer, ThreadUserTimer

</dl>

<!--

<dt>FIPS 140 validated cryptography<dd>
	fips140.h

In the DLL version of Crypto++, only the following implementation class are available.
<dl>
<dt>Block Ciphers<dd>
	AES, \ref DES_EDE2 "2-key Triple-DES", \ref DES_EDE3 "3-key Triple-DES", SKIPJACK
<dt>Cipher Modes (replace template parameter BC with one of the block ciphers above)<dd>
	\ref ECB_Mode "ECB_Mode<BC>", \ref CTR_Mode "CTR_Mode<BC>", \ref CBC_Mode "CBC_Mode<BC>",
	\ref CFB_FIPS_Mode "CFB_FIPS_Mode<BC>", \ref OFB_Mode "OFB_Mode<BC>", \ref GCM "GCM<AES>"
<dt>Hash Functions<dd>
	SHA1, SHA224, SHA256, SHA384, SHA512
<dt>Public Key Signature Schemes (replace template parameter H with one of the hash functions above)<dd>
	RSASS\<PKCS1v15, H\>, RSASS\<PSS, H\>, RSASS_ISO\<H\>, RWSS\<P1363_EMSA2, H\>, DSA, ECDSA\<ECP, H\>,
	ECDSA\<EC2N, H\>
<dt>Message Authentication Codes (replace template parameter H with one of the hash functions above)<dd>
	HMAC\<H\>, CBC_MAC\<DES_EDE2\>, CBC_MAC\<DES_EDE3\>, GCM\<AES\>
<dt>Random Number Generators<dd>
	DefaultAutoSeededRNG (AutoSeededX917RNG\<AES\>)
<dt>Key Agreement<dd>
	DH, DH2
<dt>Public Key Cryptosystems<dd>
	RSAES\<OAEP\<SHA1\> \>
</dl>

-->

<p>This reference manual is a work in progress. Some classes lack detailed descriptions.
<p>Click <a href="CryptoPPRef.zip">here</a> to download a zip archive containing this manual.
<p>Thanks to Ryan Phillips for providing the Doxygen configuration file
and getting us started on the manual.
*/

#ifndef CRYPTOPP_CRYPTLIB_H
#define CRYPTOPP_CRYPTLIB_H

#include "config.h"
#include "stdcpp.h"
#include "trap.h"

// C5264 new for VS2022/v17.4, MSC v17.3.4
// https://github.com/weidai11/cryptopp/issues/1185
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4127 4189 4505 4702)
# if (CRYPTOPP_MSC_VERSION >= 1933)
#  pragma warning(disable: 5264)
# endif
#endif

NAMESPACE_BEGIN(CryptoPP)

// forward declarations
class Integer;
class RandomNumberGenerator;
class BufferedTransformation;

/// \brief Specifies a direction for a cipher to operate
/// \sa BlockTransformation::IsForwardTransformation(), BlockTransformation::IsPermutation(), BlockTransformation::GetCipherDirection()
enum CipherDir {
	/// \brief the cipher is performing encryption
	ENCRYPTION,
	/// \brief the cipher is performing decryption
	DECRYPTION};

/// \brief Represents infinite time
CRYPTOPP_CONST_OR_CONSTEXPR unsigned long INFINITE_TIME = ULONG_MAX;

// VC60 workaround: using enums as template parameters causes problems
/// \brief Converts an enumeration to a type suitable for use as a template parameter
template <typename ENUM_TYPE, int VALUE>
struct EnumToType
{
	static ENUM_TYPE ToEnum() {return static_cast<ENUM_TYPE>(VALUE);}
};

/// \brief Provides the byte ordering
/// \details Big-endian and little-endian modes are supported. Bi-endian and PDP-endian modes
///  are not supported.
enum ByteOrder {
	/// \brief byte order is little-endian
	LITTLE_ENDIAN_ORDER = 0,
	/// \brief byte order is big-endian
	BIG_ENDIAN_ORDER = 1};

/// \brief Provides a constant for LittleEndian
typedef EnumToType<ByteOrder, LITTLE_ENDIAN_ORDER> LittleEndian;
/// \brief Provides a constant for BigEndian
typedef EnumToType<ByteOrder, BIG_ENDIAN_ORDER> BigEndian;

/// \brief Base class for all exceptions thrown by the library
/// \details All library exceptions directly or indirectly inherit from the Exception class.
///  The Exception class itself inherits from std::exception. The library does not use
///  std::runtime_error derived classes.
class CRYPTOPP_DLL Exception : public std::exception
{
public:
	/// \enum ErrorType
	/// \brief Error types or categories
	enum ErrorType {
		/// \brief A method was called which was not implemented
		NOT_IMPLEMENTED,
		/// \brief An invalid argument was detected
		INVALID_ARGUMENT,
		/// \brief BufferedTransformation received a Flush(true) signal but can't flush buffers
		CANNOT_FLUSH,
		/// \brief Data integerity check, such as CRC or MAC, failed
		DATA_INTEGRITY_CHECK_FAILED,
		/// \brief Input data was received that did not conform to expected format
		INVALID_DATA_FORMAT,
		/// \brief Error reading from input device or writing to output device
		IO_ERROR,
		/// \brief Some other error occurred not belonging to other categories
		OTHER_ERROR
	};

	virtual ~Exception() throw() {}

	/// \brief Construct a new Exception
	explicit Exception(ErrorType errorType, const std::string &s) : m_errorType(errorType), m_what(s) {}

	/// \brief Retrieves a C-string describing the exception
	const char *what() const throw() {return (m_what.c_str());}
	/// \brief Retrieves a string describing the exception
	const std::string &GetWhat() const {return m_what;}
	/// \brief Sets the error string for the exception
	void SetWhat(const std::string &s) {m_what = s;}
	/// \brief Retrieves the error type for the exception
	ErrorType GetErrorType() const {return m_errorType;}
	/// \brief Sets the error type for the exceptions
	void SetErrorType(ErrorType errorType) {m_errorType = errorType;}

private:
	ErrorType m_errorType;
	std::string m_what;
};

/// \brief An invalid argument was detected
class CRYPTOPP_DLL InvalidArgument : public Exception
{
public:
	/// \brief Construct an InvalidArgument
	/// \param s the message for the exception
	/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
	explicit InvalidArgument(const std::string &s) : Exception(INVALID_ARGUMENT, s) {}
};

/// \brief Input data was received that did not conform to expected format
class CRYPTOPP_DLL InvalidDataFormat : public Exception
{
public:
	/// \brief Construct an InvalidDataFormat
	/// \param s the message for the exception
	/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
	explicit InvalidDataFormat(const std::string &s) : Exception(INVALID_DATA_FORMAT, s) {}
};

/// \brief A decryption filter encountered invalid ciphertext
class CRYPTOPP_DLL InvalidCiphertext : public InvalidDataFormat
{
public:
	/// \brief Construct an InvalidCiphertext
	/// \param s the message for the exception
	/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
	explicit InvalidCiphertext(const std::string &s) : InvalidDataFormat(s) {}
};

/// \brief A method was called which was not implemented
class CRYPTOPP_DLL NotImplemented : public Exception
{
public:
	/// \brief Construct an NotImplemented
	/// \param s the message for the exception
	/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
	explicit NotImplemented(const std::string &s) : Exception(NOT_IMPLEMENTED, s) {}
};

/// \brief Flush(true) was called but it can't completely flush its buffers
class CRYPTOPP_DLL CannotFlush : public Exception
{
public:
	/// \brief Construct an CannotFlush
	/// \param s the message for the exception
	/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
	explicit CannotFlush(const std::string &s) : Exception(CANNOT_FLUSH, s) {}
};

/// \brief The operating system reported an error
class CRYPTOPP_DLL OS_Error : public Exception
{
public:
	virtual ~OS_Error() throw() {}

	/// \brief Construct an OS_Error
	/// \param errorType the error type
	/// \param s the message for the exception
	/// \param operation the operation for the exception
	/// \param errorCode the error code
	/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
	OS_Error(ErrorType errorType, const std::string &s, const std::string& operation, int errorCode)
		: Exception(errorType, s), m_operation(operation), m_errorCode(errorCode) {}

	/// \brief Retrieve the operating system API that reported the error
	const std::string & GetOperation() const {return m_operation;}
	/// \brief Retrieve the error code returned by the operating system
	int GetErrorCode() const {return m_errorCode;}

protected:
	std::string m_operation;
	int m_errorCode;
};

/// \brief Returns a decoding results
struct CRYPTOPP_DLL DecodingResult
{
	/// \brief Constructs a DecodingResult
	/// \details isValidCoding is initialized to false and messageLength is
	///  initialized to 0.
	explicit DecodingResult() : isValidCoding(false), messageLength(0) {}
	/// \brief Constructs a DecodingResult
	/// \param len the message length
	/// \details isValidCoding is initialized to true.
	explicit DecodingResult(size_t len) : isValidCoding(true), messageLength(len) {}

	/// \brief Compare two DecodingResult
	/// \param rhs the other DecodingResult
	/// \return true if either isValidCoding or messageLength is \a not equal,
	///  false otherwise
	bool operator==(const DecodingResult &rhs) const {return isValidCoding == rhs.isValidCoding && messageLength == rhs.messageLength;}
	/// \brief Compare two DecodingResult
	/// \param rhs the other DecodingResult
	/// \return true if either isValidCoding or messageLength is \a not equal,
	///  false otherwise
	/// \details Returns <tt>!operator==(rhs)</tt>.
	bool operator!=(const DecodingResult &rhs) const {return !operator==(rhs);}

	/// \brief Flag to indicate the decoding is valid
	bool isValidCoding;
	/// \brief Recovered message length if isValidCoding is true, undefined otherwise
	size_t messageLength;
};

/// \brief Interface for retrieving values given their names
/// \details This class is used to safely pass a variable number of arbitrarily
///  typed arguments to functions and to read values from keys and crypto parameters.
/// \details To obtain an object that implements NameValuePairs for the purpose of
///  parameter passing, use the MakeParameters() function.
/// \details To get a value from NameValuePairs, you need to know the name and the
///  type of the value. Call GetValueNames() on a NameValuePairs object to obtain a
///  list of value names that it supports. then look at the Name namespace
///  documentation to see what the type of each value is, or alternatively, call
///  GetIntValue() with the value name, and if the type is not int, a
///  ValueTypeMismatch exception will be thrown and you can get the actual type from
///  the exception object.
/// \sa NullNameValuePairs, g_nullNameValuePairs,
///  <A HREF="http://www.cryptopp.com/wiki/NameValuePairs">NameValuePairs</A> on the
///  Crypto++ wiki
class NameValuePairs
{
public:
	virtual ~NameValuePairs() {}

	/// \brief Thrown when an unexpected type is encountered
	/// \details Exception thrown when trying to retrieve a value using a different
	///  type than expected
	class CRYPTOPP_DLL ValueTypeMismatch : public InvalidArgument
	{
	public:
		/// \brief Construct a ValueTypeMismatch
		/// \param name the name of the value
		/// \param stored the \a actual type of the value stored
		/// \param retrieving the \a presumed type of the value retrieved
		ValueTypeMismatch(const std::string &name, const std::type_info &stored, const std::type_info &retrieving)
			: InvalidArgument("NameValuePairs: type mismatch for '" + name + "', stored '" + stored.name() + "', trying to retrieve '" + retrieving.name() + "'")
			, m_stored(stored), m_retrieving(retrieving) {}

		/// \brief Provides the stored type
		/// \return the C++ mangled name of the type
		const std::type_info & GetStoredTypeInfo() const {return m_stored;}

		/// \brief Provides the retrieveing type
		/// \return the C++ mangled name of the type
		const std::type_info & GetRetrievingTypeInfo() const {return m_retrieving;}

	private:
		const std::type_info &m_stored;
		const std::type_info &m_retrieving;
	};

	/// \brief Get a copy of this object or subobject
	/// \tparam T class or type
	/// \param object reference to a variable that receives the value
	template <class T>
	bool GetThisObject(T &object) const
	{
		return GetValue((std::string("ThisObject:")+typeid(T).name()).c_str(), object);
	}

	/// \brief Get a pointer to this object
	/// \tparam T class or type
	/// \param ptr reference to a pointer to a variable that receives the value
	template <class T>
	bool GetThisPointer(T *&ptr) const
	{
		return GetValue((std::string("ThisPointer:")+typeid(T).name()).c_str(), ptr);
	}

	/// \brief Get a named value
	/// \tparam T class or type
	/// \param name the name of the object or value to retrieve
	/// \param value reference to a variable that receives the value
	/// \return true if the value was retrieved, false otherwise
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	template <class T>
	bool GetValue(const char *name, T &value) const
	{
		return GetVoidValue(name, typeid(T), &value);
	}

	/// \brief Get a named value
	/// \tparam T class or type
	/// \param name the name of the object or value to retrieve
	/// \param defaultValue the default value of the class or type if it does not exist
	/// \return the object or value
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	template <class T>
	T GetValueWithDefault(const char *name, T defaultValue) const
	{
		T value;
		bool result = GetValue(name, value);
		// No assert... this recovers from failure
		if (result) {return value;}
		return defaultValue;
	}

	/// \brief Get a list of value names that can be retrieved
	/// \return a list of names available to retrieve
	/// \details the items in the list are delimited with a colon.
	CRYPTOPP_DLL std::string GetValueNames() const
		{std::string result; GetValue("ValueNames", result); return result;}

	/// \brief Get a named value with type int
	/// \param name the name of the value to retrieve
	/// \param value the value retrieved upon success
	/// \return true if an int value was retrieved, false otherwise
	/// \details GetIntValue() is used to ensure we don't accidentally try to get an
	///  unsigned int or some other type when we mean int (which is the most common case)
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	CRYPTOPP_DLL bool GetIntValue(const char *name, int &value) const
		{return GetValue(name, value);}

	/// \brief Get a named value with type int, with default
	/// \param name the name of the value to retrieve
	/// \param defaultValue the default value if the name does not exist
	/// \return the value retrieved on success or the default value
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	CRYPTOPP_DLL int GetIntValueWithDefault(const char *name, int defaultValue) const
		{return GetValueWithDefault(name, defaultValue);}

	/// \brief Get a named value with type word64
	/// \param name the name of the value to retrieve
	/// \param value the value retrieved upon success
	/// \return true if an word64 value was retrieved, false otherwise
	/// \sa GetValue(), GetValueWithDefault(), GetWord64ValueWithDefault(), GetIntValue(),
	///  GetIntValueWithDefault(), GetRequiredParameter() and GetRequiredIntParameter()
	CRYPTOPP_DLL bool GetWord64Value(const char *name, word64 &value) const
		{return GetValue(name, value);}

	/// \brief Get a named value with type word64, with default
	/// \param name the name of the value to retrieve
	/// \param defaultValue the default value if the name does not exist
	/// \return the value retrieved on success or the default value
	/// \sa GetValue(), GetValueWithDefault(), GetWord64Value(), GetIntValue(),
	///  GetIntValueWithDefault(), GetRequiredParameter() and GetRequiredWord64Parameter()
	CRYPTOPP_DLL word64 GetWord64ValueWithDefault(const char *name, word64 defaultValue) const
		{return GetValueWithDefault(name, defaultValue);}

	/// \brief Ensures an expected name and type is present
	/// \param name the name of the value
	/// \param stored the type that was stored for the name
	/// \param retrieving the type that is being retrieved for the name
	/// \throw ValueTypeMismatch
	/// \details ThrowIfTypeMismatch() effectively performs a type safety check.
	///  stored and retrieving are C++ mangled names for the type.
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	CRYPTOPP_DLL static void CRYPTOPP_API ThrowIfTypeMismatch(const char *name, const std::type_info &stored, const std::type_info &retrieving)
		{if (stored != retrieving) throw ValueTypeMismatch(name, stored, retrieving);}

	/// \brief Retrieves a required name/value pair
	/// \tparam T class or type
	/// \param className the name of the class
	/// \param name the name of the value
	/// \param value reference to a variable to receive the value
	/// \throw InvalidArgument
	/// \details GetRequiredParameter() throws InvalidArgument if the name
	///  is not present or not of the expected type T.
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	template <class T>
	void GetRequiredParameter(const char *className, const char *name, T &value) const
	{
		if (!GetValue(name, value))
			throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
	}

	/// \brief Retrieves a required name/value pair
	/// \param className the name of the class
	/// \param name the name of the value
	/// \param value reference to a variable to receive the value
	/// \throw InvalidArgument
	/// \details GetRequiredParameter() throws InvalidArgument if the name
	///  is not present or not of the expected type T.
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	CRYPTOPP_DLL void GetRequiredIntParameter(const char *className, const char *name, int &value) const
	{
		if (!GetIntValue(name, value))
			throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
	}

	/// \brief Get a named value
	/// \param name the name of the object or value to retrieve
	/// \param valueType reference to a variable that receives the value
	/// \param pValue void pointer to a variable that receives the value
	/// \return true if the value was retrieved, false otherwise
	/// \details GetVoidValue() retrieves the value of name if it exists.
	/// \note GetVoidValue() is an internal function and should be implemented
	///  by derived classes. Users should use one of the other functions instead.
	/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
	///  GetRequiredParameter() and GetRequiredIntParameter()
	CRYPTOPP_DLL virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const =0;
};

// Doxygen cannot handle initialization
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Default channel for BufferedTransformation
/// \details DEFAULT_CHANNEL is equal to an empty string
/// \details The definition for DEFAULT_CHANNEL is in <tt>cryptlib.cpp</tt>.
///  It can be subject to <A HREF="https://isocpp.org/wiki/faq/ctors">Static
///  Initialization Order Fiasco</A>. If you experience a crash in
///  DEFAULT_CHANNEL where the string object is NULL, then you probably have
///  a global object using DEFAULT_CHANNEL before it has been constructed.
const std::string DEFAULT_CHANNEL;

/// \brief Channel for additional authenticated data
/// \details AAD_CHANNEL is equal to "AAD"
/// \details The definition for AAD_CHANNEL is in <tt>cryptlib.cpp</tt>.
///  It can be subject to <A HREF="https://isocpp.org/wiki/faq/ctors">Static
///  Initialization Order Fiasco</A>. If you experience a crash in
///  AAD_CHANNEL where the string object is NULL, then you probably have a
///  global object using AAD_CHANNEL before it has been constructed.
const std::string AAD_CHANNEL;

/// \brief An empty set of name-value pairs
/// \details The definition for g_nullNameValuePairs is in <tt>cryptlib.cpp</tt>.
///  It can be subject to <A HREF="https://isocpp.org/wiki/faq/ctors">Static
///  Initialization Order Fiasco</A>. If you experience a crash in
///  g_nullNameValuePairs where the string object is NULL, then you probably
///  have a global object using g_nullNameValuePairs before it has been
///  constructed.
const NameValuePairs& g_nullNameValuePairs;

#else
extern CRYPTOPP_DLL const std::string DEFAULT_CHANNEL;
extern CRYPTOPP_DLL const std::string AAD_CHANNEL;
extern CRYPTOPP_DLL const NameValuePairs& g_nullNameValuePairs;
#endif

// Document additional name spaces which show up elsewhere in the sources.
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Namespace containing value name definitions.
/// \details Name is part of the CryptoPP namespace.
/// \details The semantics of value names, types are:
/// <pre>
///     ThisObject:ClassName (ClassName, copy of this object or a subobject)
///     ThisPointer:ClassName (const ClassName *, pointer to this object or a subobject)
/// </pre>
DOCUMENTED_NAMESPACE_BEGIN(Name)
// more names defined in argnames.h
DOCUMENTED_NAMESPACE_END

/// \brief Namespace containing weak and wounded algorithms.
/// \details Weak is part of the CryptoPP namespace. Schemes and algorithms are moved into Weak
///  when their security level is reduced to an unacceptable level by contemporary standards.
/// \details To use an algorithm in the Weak namespace, you must <tt>\c \#define
///  CRYPTOPP_ENABLE_NAMESPACE_WEAK 1</tt> before including a header for a weak or wounded
///  algorithm. For example:
///  <pre>  \c \#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
///   \c \#include <md5.h>
///   ...
///   CryptoPP::Weak::MD5 md5;
///   </pre>
DOCUMENTED_NAMESPACE_BEGIN(Weak)
// weak and wounded algorithms
DOCUMENTED_NAMESPACE_END
#endif

/// \brief Namespace containing NaCl library functions
/// \details TweetNaCl is a compact and portable reimplementation of the NaCl library.
DOCUMENTED_NAMESPACE_BEGIN(NaCl)
// crypto_box, crypto_box_open, crypto_sign, and crypto_sign_open (and friends)
DOCUMENTED_NAMESPACE_END

/// \brief Namespace containing testing and benchmark classes.
/// \details Source files for classes in the Test namespaces include
///  <tt>test.cpp</tt>, <tt>validat#.cpp</tt> and <tt>bench#.cpp</tt>.
DOCUMENTED_NAMESPACE_BEGIN(Test)
// testing and benchmark classes
DOCUMENTED_NAMESPACE_END

// ********************************************************

/// \brief Interface for cloning objects
/// \note this is \a not implemented by most classes
/// \sa ClonableImpl, NotCopyable
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Clonable
{
public:
	virtual ~Clonable() {}

	/// \brief Copies  this object
	/// \return a copy of this object
	/// \throw NotImplemented
	/// \note this is \a not implemented by most classes
	/// \sa NotCopyable
	virtual Clonable* Clone() const {throw NotImplemented("Clone() is not implemented yet.");}	// TODO: make this =0
};

/// \brief Interface for all crypto algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Algorithm : public Clonable
{
public:
	virtual ~Algorithm() {}

	/// \brief Interface for all crypto algorithms
	/// \param checkSelfTestStatus determines whether the object can proceed if the self
	///  tests have not been run or failed.
	/// \details When FIPS 140-2 compliance is enabled and checkSelfTestStatus == true,
	///  this constructor throws SelfTestFailure if the self test hasn't been run or fails.
	/// \details FIPS 140-2 compliance is disabled by default. It is only used by certain
	///  versions of the library when the library is built as a DLL on Windows. Also see
	///  CRYPTOPP_ENABLE_COMPLIANCE_WITH_FIPS_140_2 in config.h.
	Algorithm(bool checkSelfTestStatus = true);

	/// \brief Provides the name of this algorithm
	/// \return the standard algorithm name
	/// \details The standard algorithm name can be a name like <tt>AES</tt> or <tt>AES/GCM</tt>.
	///  Some algorithms do not have standard names yet. For example, there is no standard
	///  algorithm name for Shoup's ECIES.
	/// \note AlgorithmName is not universally implemented yet.
	virtual std::string AlgorithmName() const {return "unknown";}

	/// \brief Retrieve the provider of this algorithm
	/// \return the algorithm provider
	/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
	///  "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
	///  usually indicate a specialized implementation using instructions from a higher
	///  instruction set architecture (ISA). Future labels may include external hardware
	///  like a hardware security module (HSM).
	/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
	///  Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
	///  instead of ASM.
	/// \details Algorithms which combine different instructions or ISAs provide the
	///  dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
	///  "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
	/// \note Provider is not universally implemented yet.
	/// \since Crypto++ 8.0
	virtual std::string AlgorithmProvider() const {return "C++";}
};

/// \brief Interface for algorithms that take byte strings as keys
/// \sa FixedKeyLength(), VariableKeyLength(), SameKeyLengthAs(), SimpleKeyingInterfaceImpl()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyingInterface
{
public:
	virtual ~SimpleKeyingInterface() {}

	/// \brief Returns smallest valid key length
	/// \return the minimum key length, in bytes
	virtual size_t MinKeyLength() const =0;

	/// \brief Returns largest valid key length
	/// \return the maximum key length, in bytes
	virtual size_t MaxKeyLength() const =0;

	/// \brief Returns default key length
	/// \return the default key length, in bytes
	virtual size_t DefaultKeyLength() const =0;

	/// \brief Returns a valid key length for the algorithm
	/// \param keylength the size of the key, in bytes
	/// \return the valid key length, in bytes
	/// \details keylength is provided in bytes, not bits. If keylength is less than MIN_KEYLENGTH,
	///  then the function returns MIN_KEYLENGTH. If keylength is greater than MAX_KEYLENGTH,
	///  then the function returns MAX_KEYLENGTH. if If keylength is a multiple of KEYLENGTH_MULTIPLE,
	///  then keylength is returned. Otherwise, the function returns a \a lower multiple of
	///  KEYLENGTH_MULTIPLE.
	virtual size_t GetValidKeyLength(size_t keylength) const =0;

	/// \brief Returns whether keylength is a valid key length
	/// \param keylength the requested keylength
	/// \return true if keylength is valid, false otherwise
	/// \details Internally the function calls GetValidKeyLength()
	virtual bool IsValidKeyLength(size_t keylength) const
		{return keylength == GetValidKeyLength(keylength);}

	/// \brief Sets or reset the key of this object
	/// \param key the key to use when keying the object
	/// \param length the size of the key, in bytes
	/// \param params additional initialization parameters to configure this object
	virtual void SetKey(const byte *key, size_t length, const NameValuePairs &params = g_nullNameValuePairs);

	/// \brief Sets or reset the key of this object
	/// \param key the key to use when keying the object
	/// \param length the size of the key, in bytes
	/// \param rounds the number of rounds to apply the transformation function,
	///  if applicable
	/// \details SetKeyWithRounds() calls SetKey() with a NameValuePairs
	///  object that only specifies rounds. rounds is an integer parameter,
	///  and <tt>-1</tt> means use the default number of rounds.
	void SetKeyWithRounds(const byte *key, size_t length, int rounds);

	/// \brief Sets or reset the key of this object
	/// \param key the key to use when keying the object
	/// \param length the size of the key, in bytes
	/// \param iv the initialization vector to use when keying the object
	/// \param ivLength the size of the iv, in bytes
	/// \details SetKeyWithIV() calls SetKey() with a NameValuePairs
	///  that only specifies IV. The IV is a byte buffer with size ivLength.
	///  ivLength is an integer parameter, and <tt>-1</tt> means use IVSize().
	void SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength);

	/// \brief Sets or reset the key of this object
	/// \param key the key to use when keying the object
	/// \param length the size of the key, in bytes
	/// \param iv the initialization vector to use when keying the object
	/// \details SetKeyWithIV() calls SetKey() with a NameValuePairs() object
	///  that only specifies iv. iv is a byte buffer, and it must have
	///  a size IVSize().
	void SetKeyWithIV(const byte *key, size_t length, const byte *iv)
		{SetKeyWithIV(key, length, iv, IVSize());}

	/// \brief Secure IVs requirements as enumerated values.
	/// \details Provides secure IV requirements as a monotonically increasing enumerated values.
	///  Requirements can be compared using less than (&lt;) and greater than (&gt;). For example,
	///  <tt>UNIQUE_IV &lt; RANDOM_IV</tt> and <tt>UNPREDICTABLE_RANDOM_IV &gt; RANDOM_IV</tt>.
	/// \details Objects that use SimpleKeyingInterface do not support an optional IV. That is,
	///	 an IV must be present or it must be absent. If you wish to support an optional IV then
	///  provide two classes - one with an IV and one without an IV.
	/// \sa IsResynchronizable(), CanUseRandomIVs(), CanUsePredictableIVs(), CanUseStructuredIVs()
	enum IV_Requirement {
		/// \brief The IV must be unique
		UNIQUE_IV = 0,
		/// \brief The IV must be random and possibly predictable
		RANDOM_IV,
		/// \brief The IV must be random and unpredictable
		UNPREDICTABLE_RANDOM_IV,
		/// \brief The IV is set by the object
		INTERNALLY_GENERATED_IV,
		/// \brief The object does not use an IV
		NOT_RESYNCHRONIZABLE
	};

	/// \brief Minimal requirement for secure IVs
	/// \return the secure IV requirement of the algorithm
	virtual IV_Requirement IVRequirement() const =0;

	/// \brief Determines if the object can be resynchronized
	/// \return true if the object can be resynchronized (i.e. supports initialization vectors), false otherwise
	/// \note If this function returns true, and no IV is passed to SetKey() and <tt>CanUseStructuredIVs()==true</tt>,
	///  an IV of all 0's will be assumed.
	bool IsResynchronizable() const {return IVRequirement() < NOT_RESYNCHRONIZABLE;}

	/// \brief Determines if the object can use random IVs
	/// \return true if the object can use random IVs (in addition to ones returned by GetNextIV), false otherwise
	bool CanUseRandomIVs() const {return IVRequirement() <= UNPREDICTABLE_RANDOM_IV;}

	/// \brief Determines if the object can use random but possibly predictable IVs
	/// \return true if the object can use random but possibly predictable IVs (in addition to ones returned by
	///  GetNextIV), false otherwise
	bool CanUsePredictableIVs() const {return IVRequirement() <= RANDOM_IV;}

	/// \brief Determines if the object can use structured IVs
	/// \return true if the object can use structured IVs, false otherwise
	/// \details CanUseStructuredIVs() indicates whether the object can use structured IVs; for example a counter
	///  (in addition to ones returned by GetNextIV).
	bool CanUseStructuredIVs() const {return IVRequirement() <= UNIQUE_IV;}

	/// \brief Returns length of the IV accepted by this object
	/// \return the size of an IV, in bytes
	/// \throw NotImplemented() if the object does not support resynchronization
	/// \details The default implementation throws NotImplemented
	virtual unsigned int IVSize() const
		{throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");}

	/// \brief Provides the default size of an IV
	/// \return default length of IVs accepted by this object, in bytes
	unsigned int DefaultIVLength() const {return IVSize();}

	/// \brief Provides the minimum size of an IV
	/// \return minimal length of IVs accepted by this object, in bytes
	/// \throw NotImplemented() if the object does not support resynchronization
	virtual unsigned int MinIVLength() const {return IVSize();}

	/// \brief Provides the maximum size of an IV
	/// \return maximal length of IVs accepted by this object, in bytes
	/// \throw NotImplemented() if the object does not support resynchronization
	virtual unsigned int MaxIVLength() const {return IVSize();}

	/// \brief Resynchronize with an IV
	/// \param iv the initialization vector
	/// \param ivLength the size of the initialization vector, in bytes
	/// \details Resynchronize() resynchronizes with an IV provided by the caller. <tt>ivLength=-1</tt> means use IVSize().
	/// \throw NotImplemented() if the object does not support resynchronization
	virtual void Resynchronize(const byte *iv, int ivLength=-1) {
		CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(ivLength);
		throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");
	}

	/// \brief Retrieves a secure IV for the next message
	/// \param rng a RandomNumberGenerator to produce keying material
	/// \param iv a block of bytes to receive the IV
	/// \details The IV must be at least IVSize() in length.
	/// \details This method should be called after you finish encrypting one message and are ready
	///  to start the next one. After calling it, you must call SetKey() or Resynchronize().
	///  before using this object again.
	/// \details Internally, the base class implementation calls RandomNumberGenerator's GenerateBlock()
	/// \note This method is not implemented on decryption objects.
	virtual void GetNextIV(RandomNumberGenerator &rng, byte *iv);

protected:
	/// \brief Returns the base class Algorithm
	/// \return the base class Algorithm
	virtual const Algorithm & GetAlgorithm() const =0;

	/// \brief Sets the key for this object without performing parameter validation
	/// \param key a byte buffer used to key the cipher
	/// \param length the length of the byte buffer
	/// \param params additional parameters passed as NameValuePairs
	/// \details key must be at least DEFAULT_KEYLENGTH in length.
	virtual void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params) =0;

	/// \brief Validates the key length
	/// \param length the size of the keying material, in bytes
	/// \throw InvalidKeyLength if the key length is invalid
	void ThrowIfInvalidKeyLength(size_t length);

	/// \brief Validates the object
	/// \throw InvalidArgument if the IV is present
	/// \details Internally, the default implementation calls IsResynchronizable() and throws
	///  InvalidArgument if the function returns  true.
	/// \note called when no IV is passed
	void ThrowIfResynchronizable();

	/// \brief Validates the IV
	/// \param iv the IV with a length of IVSize, in bytes
	/// \throw InvalidArgument on failure
	/// \details Internally, the default implementation checks the iv. If iv is not NULL or nullptr,
	///  then the function succeeds. If iv is NULL, then IVRequirement is checked against
	///  UNPREDICTABLE_RANDOM_IV. If IVRequirement is UNPREDICTABLE_RANDOM_IV, then
	///  then the function succeeds. Otherwise, an exception is thrown.
	void ThrowIfInvalidIV(const byte *iv);

	/// \brief Validates the IV length
	/// \param length the size of an IV, in bytes
	/// \throw InvalidArgument if the IV length is invalid
	size_t ThrowIfInvalidIVLength(int length);

	/// \brief Retrieves and validates the IV
	/// \param params NameValuePairs with the IV supplied as a ConstByteArrayParameter
	/// \param size the length of the IV, in bytes
	/// \return a pointer to the first byte of the IV
	/// \throw InvalidArgument if the number of rounds are invalid
	const byte * GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size);

	/// \brief Validates the key length
	/// \param length the size of the keying material, in bytes
	inline void AssertValidKeyLength(size_t length) const
		{CRYPTOPP_UNUSED(length); CRYPTOPP_ASSERT(IsValidKeyLength(length));}
};

/// \brief Interface for the data processing part of block ciphers
/// \details Classes derived from BlockTransformation are block ciphers
///  in ECB mode (for example the DES::Encryption class), which are stateless.
///  These classes should not be used directly, but only in combination with
///  a mode class (see CipherModeDocumentation in modes.h).
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockTransformation : public Algorithm
{
public:
	virtual ~BlockTransformation() {}

	/// \brief Encrypt or decrypt a block
	/// \param inBlock the input message before processing
	/// \param outBlock the output message after processing
	/// \param xorBlock an optional XOR mask
	/// \details ProcessAndXorBlock encrypts or decrypts inBlock, xor with xorBlock, and write to outBlock.
	/// \details The size of the block is determined by the block cipher and its documentation. Use
	///  BLOCKSIZE at compile time, or BlockSize() at runtime.
	/// \note The message can be transformed in-place, or the buffers must \a not overlap
	/// \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
	virtual void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const =0;

	/// \brief Encrypt or decrypt a block
	/// \param inBlock the input message before processing
	/// \param outBlock the output message after processing
	/// \details ProcessBlock encrypts or decrypts inBlock and write to outBlock.
	/// \details The size of the block is determined by the block cipher and its documentation.
	///  Use BLOCKSIZE at compile time, or BlockSize() at runtime.
	/// \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
	/// \note The message can be transformed in-place, or the buffers must \a not overlap
	void ProcessBlock(const byte *inBlock, byte *outBlock) const
		{ProcessAndXorBlock(inBlock, NULLPTR, outBlock);}

	/// \brief Encrypt or decrypt a block in place
	/// \param inoutBlock the input message before processing
	/// \details ProcessBlock encrypts or decrypts inoutBlock in-place.
	/// \details The size of the block is determined by the block cipher and its documentation.
	///  Use BLOCKSIZE at compile time, or BlockSize() at runtime.
	/// \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
	void ProcessBlock(byte *inoutBlock) const
		{ProcessAndXorBlock(inoutBlock, NULLPTR, inoutBlock);}

	/// Provides the block size of the cipher
	/// \return the block size of the cipher, in bytes
	virtual unsigned int BlockSize() const =0;

	/// \brief Provides input and output data alignment for optimal performance.
	/// \return the input data alignment that provides optimal performance
	/// \sa GetAlignment() and OptimalBlockSize()
	virtual unsigned int OptimalDataAlignment() const;

	/// \brief Determines if the transformation is a permutation
	/// \return true if this is a permutation (i.e. there is an inverse transformation)
	virtual bool IsPermutation() const {return true;}

	/// \brief Determines if the cipher is being operated in its forward direction
	/// \return true if DIR is ENCRYPTION, false otherwise
	/// \sa IsForwardTransformation(), IsPermutation(), GetCipherDirection()
	virtual bool IsForwardTransformation() const =0;

	/// \brief Determines the number of blocks that can be processed in parallel
	/// \return the number of blocks that can be processed in parallel, for bit-slicing implementations
	/// \details Bit-slicing is often used to improve throughput and minimize timing attacks.
	virtual unsigned int OptimalNumberOfParallelBlocks() const {return 1;}

	/// \brief Bit flags that control AdvancedProcessBlocks() behavior
	enum FlagsForAdvancedProcessBlocks {
		/// \brief inBlock is a counter
		BT_InBlockIsCounter=1,
		/// \brief should not modify block pointers
		BT_DontIncrementInOutPointers=2,
		/// \brief Xor inputs before transformation
		BT_XorInput=4,
		/// \brief perform the transformation in reverse
		BT_ReverseDirection=8,
		/// \brief Allow parallel transformations
		BT_AllowParallel=16};

	/// \brief Encrypt and xor multiple blocks using additional flags
	/// \param inBlocks the input message before processing
	/// \param xorBlocks an optional XOR mask
	/// \param outBlocks the output message after processing
	/// \param length the size of the blocks, in bytes
	/// \param flags additional flags to control processing
	/// \details Encrypt and xor multiple blocks according to FlagsForAdvancedProcessBlocks flags.
	/// \note If BT_InBlockIsCounter is set, then the last byte of inBlocks may be modified.
	virtual size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;

	/// \brief Provides the direction of the cipher
	/// \return ENCRYPTION if IsForwardTransformation() is true, DECRYPTION otherwise
	/// \sa IsForwardTransformation(), IsPermutation()
	inline CipherDir GetCipherDirection() const {return IsForwardTransformation() ? ENCRYPTION : DECRYPTION;}
};

/// \brief Interface for the data processing portion of stream ciphers
/// \sa StreamTransformationFilter()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE StreamTransformation : public Algorithm
{
public:
	virtual ~StreamTransformation() {}

	/// \brief Provides a reference to this object
	/// \return A reference to this object
	/// \details Useful for passing a temporary object to a function that takes a non-const reference
	StreamTransformation& Ref() {return *this;}

	/// \brief Provides the mandatory block size of the cipher
	/// \return The block size of the cipher if input must be processed in blocks, 1 otherwise
	/// \details Stream ciphers and some block ciphers modes of operation return 1. Modes that
	///  return 1 must be able to process a single byte at a time, like counter mode. If a
	///  mode of operation or block cipher cannot stream then it must not return 1.
	/// \details When filters operate the mode or cipher, ProcessData will be called with a
	///  string of bytes that is determined by MandatoryBlockSize and OptimalBlockSize. When a
	///  policy is set, like 16-byte strings for a 16-byte block cipher, the filter will buffer
	///  bytes until the specified number of bytes is available to the object.
	/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
	virtual unsigned int MandatoryBlockSize() const {return 1;}

	/// \brief Provides the input block size most efficient for this cipher
	/// \return The input block size that is most efficient for the cipher
	/// \details The base class implementation returns MandatoryBlockSize().
	/// \note Optimal input length is
	///  <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
	virtual unsigned int OptimalBlockSize() const {return MandatoryBlockSize();}

	/// \brief Provides the number of bytes used in the current block when processing at optimal block size.
	/// \return the number of bytes used in the current block when processing at the optimal block size
	virtual unsigned int GetOptimalBlockSizeUsed() const {return 0;}

	/// \brief Provides input and output data alignment for optimal performance
	/// \return the input data alignment that provides optimal performance
	/// \sa GetAlignment() and OptimalBlockSize()
	virtual unsigned int OptimalDataAlignment() const;

	/// \brief Encrypt or decrypt an array of bytes
	/// \param outString the output byte buffer
	/// \param inString the input byte buffer
	/// \param length the size of the input and output byte buffers, in bytes
	/// \details ProcessData is called with a string of bytes whose size depends on MandatoryBlockSize.
	///  Either <tt>inString == outString</tt>, or they must not overlap.
	/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
	virtual void ProcessData(byte *outString, const byte *inString, size_t length) =0;

	/// \brief Encrypt or decrypt the last block of data
	/// \param outString the output byte buffer
	/// \param outLength the size of the output byte buffer, in bytes
	/// \param inString the input byte buffer
	/// \param inLength the size of the input byte buffer, in bytes
	/// \return the number of bytes used in outString
	/// \details ProcessLastBlock is used when the last block of data is special and requires handling
	///  by the cipher. The current implementation provides an output buffer with a size
	///  <tt>inLength+2*MandatoryBlockSize()</tt>. The return value allows the cipher to expand cipher
	///  text during encryption or shrink plain text during decryption.
	/// \details This member function is used by CBC-CTS and OCB modes.
	/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
	virtual size_t ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);

	/// \brief Provides the size of the last block
	/// \return the minimum size of the last block
	/// \details MinLastBlockSize() returns the minimum size of the last block. 0 indicates the last
	///  block is not special.
	/// \details MandatoryBlockSize() enlists one of two behaviors. First, if MandatoryBlockSize()
	///  returns 1, then the cipher can be streamed and ProcessData() is called with the tail bytes.
	///  Second, if MandatoryBlockSize() returns non-0, then the string of bytes is padded to
	///  MandatoryBlockSize() according to the padding mode. Then, ProcessData() is called with the
	///  padded string of bytes.
	/// \details Some authenticated encryption modes are not expressed well with MandatoryBlockSize()
	///  and MinLastBlockSize(). For example, AES/OCB uses 16-byte blocks (MandatoryBlockSize = 16)
	///  and the last block requires special processing (MinLastBlockSize = 0). However, 0 is a valid
	///  last block size for OCB and the special processing is custom padding, and not standard PKCS
	///  padding. In response an unambiguous IsLastBlockSpecial() was added.
	/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
	virtual unsigned int MinLastBlockSize() const {return 0;}

	/// \brief Determines if the last block receives special processing
	/// \return true if the last block reveives special processing, false otherwise.
	/// \details Some authenticated encryption modes are not expressed well with
	///  MandatoryBlockSize() and MinLastBlockSize(). For example, AES/OCB uses
	///  16-byte blocks (MandatoryBlockSize = 16) and the last block requires special processing
	///  (MinLastBlockSize = 0). However, 0 is a valid last block size for OCB and the special
	///  processing is custom padding, and not standard PKCS padding. In response an
	///  unambiguous IsLastBlockSpecial() was added.
	/// \details When IsLastBlockSpecial() returns false nothing special happens. All the former
	///  rules and behaviors apply. This is the default behavior of IsLastBlockSpecial().
	/// \details When IsLastBlockSpecial() returns true four things happen. First, MinLastBlockSize = 0
	///  means 0 is a valid block size that should be processed. Second, standard block cipher padding is
	///  \a not \a applied. Third, the caller supplies an outString is larger than inString by
	///  <tt>2*MandatoryBlockSize()</tt>. That is, there's a reserve available when processing the last block.
	///  Fourth, the cipher is responsible for finalization like custom padding. The cipher will tell
	///  the library how many bytes were processed or used by returning the appropriate value from
	///  ProcessLastBlock().
	/// \details The return value of ProcessLastBlock() indicates how many bytes were written to
	///  <tt>outString</tt>. A filter pipelining data will send <tt>outString</tt> and up to <tt>outLength</tt>
	///  to an <tt>AttachedTransformation()</tt> for additional processing. Below is an example of the code
	///  used in <tt>StreamTransformationFilter::LastPut</tt>.
	/// <pre>  if (m_cipher.IsLastBlockSpecial())
	///   {
	///     size_t reserve = 2*m_cipher.MandatoryBlockSize();
	///     space = HelpCreatePutSpace(*AttachedTransformation(), DEFAULT_CHANNEL, length+reserve);
	///     length = m_cipher.ProcessLastBlock(space, length+reserve, inString, length);
	///     AttachedTransformation()->Put(space, length);
	///     return;
	///   }</pre>
	/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
	/// \since Crypto++ 6.0
	virtual bool IsLastBlockSpecial() const {return false;}

	/// \brief Encrypt or decrypt a string of bytes
	/// \param inoutString the string to process
	/// \param length the size of the inoutString, in bytes
	/// \details Internally, the base class implementation calls ProcessData().
	inline void ProcessString(byte *inoutString, size_t length)
		{ProcessData(inoutString, inoutString, length);}

	/// \brief Encrypt or decrypt a string of bytes
	/// \param outString the output string to process
	/// \param inString the input string to process
	/// \param length the size of the input and output strings, in bytes
	/// \details Internally, the base class implementation calls ProcessData().
	inline void ProcessString(byte *outString, const byte *inString, size_t length)
		{ProcessData(outString, inString, length);}

	/// \brief Encrypt or decrypt a byte
	/// \param input the input byte to process
	/// \details Internally, the base class implementation calls ProcessData() with a size of 1.
	inline byte ProcessByte(byte input)
		{ProcessData(&input, &input, 1); return input;}

	/// \brief Determines whether the cipher supports random access
	/// \return true if the cipher supports random access, false otherwise
	virtual bool IsRandomAccess() const =0;

	/// \brief Seek to an absolute position
	/// \param pos position to seek
	/// \throw NotImplemented
	/// \details The base class implementation throws NotImplemented. The function
	///  \ref CRYPTOPP_ASSERT "asserts" IsRandomAccess() in debug builds.
	virtual void Seek(lword pos)
	{
		CRYPTOPP_UNUSED(pos);
		CRYPTOPP_ASSERT(!IsRandomAccess());
		throw NotImplemented("StreamTransformation: this object doesn't support random access");
	}

	/// \brief Determines whether the cipher is self-inverting
	/// \return true if the cipher is self-inverting, false otherwise
	/// \details IsSelfInverting determines whether this transformation is
	///  self-inverting (e.g. xor with a keystream).
	virtual bool IsSelfInverting() const =0;

	/// \brief Determines if the cipher is being operated in its forward direction
	/// \return true if DIR is ENCRYPTION, false otherwise
	/// \sa IsForwardTransformation(), IsPermutation(), GetCipherDirection()
	virtual bool IsForwardTransformation() const =0;
};

/// \brief Interface for hash functions and data processing part of MACs
/// \details HashTransformation objects are stateful. They are created in an initial state,
///  change state as Update() is called, and return to the initial
///  state when Final() is called. This interface allows a large message to
///  be hashed in pieces by calling Update() on each piece followed by
///  calling Final().
/// \sa HashFilter(), HashVerificationFilter()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE HashTransformation : public Algorithm
{
public:
	virtual ~HashTransformation() {}

	/// \brief Provides a reference to this object
	/// \return A reference to this object
	/// \details Useful for passing a temporary object to a function that takes a non-const reference
	HashTransformation& Ref() {return *this;}

	/// \brief Updates a hash with additional input
	/// \param input the additional input as a buffer
	/// \param length the size of the buffer, in bytes
	virtual void Update(const byte *input, size_t length) =0;

	/// \brief Request space which can be written into by the caller
	/// \param size the requested size of the buffer
	/// \details The purpose of this method is to help avoid extra memory allocations.
	/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
	///  size is the requested size of the buffer. When the call returns, size is the size of
	///  the array returned to the caller.
	/// \details The base class implementation sets size to 0 and returns NULL or nullptr.
	/// \note Some objects, like ArraySink, cannot create a space because its fixed.
	virtual byte * CreateUpdateSpace(size_t &size) {size=0; return NULLPTR;}

	/// \brief Computes the hash of the current message
	/// \param digest a pointer to the buffer to receive the hash
	/// \details Final() restarts the hash for a new message.
	/// \pre <tt>COUNTOF(digest) <= DigestSize()</tt> or <tt>COUNTOF(digest) <= HASH::DIGESTSIZE</tt> ensures
	///  the output byte buffer is large enough for the digest.
	virtual void Final(byte *digest)
		{TruncatedFinal(digest, DigestSize());}

	/// \brief Restart the hash
	/// \details Discards the current state, and restart for a new message
	virtual void Restart()
		{TruncatedFinal(NULLPTR, 0);}

	/// Provides the digest size of the hash
	/// \return the digest size of the hash.
	virtual unsigned int DigestSize() const =0;

	/// Provides the tag size of the hash
	/// \return the tag size of the hash.
	/// \details Same as DigestSize().
	unsigned int TagSize() const {return DigestSize();}

	/// \brief Provides the block size of the compression function
	/// \return block size of the compression function, in bytes
	/// \details BlockSize() will return 0 if the hash is not block based
	///  or does not have an equivalent block size. For example, Keccak
	///  and SHA-3 do not have a block size, but they do have an equivalent
	///  block size called rate expressed as <tt>r</tt>.
	virtual unsigned int BlockSize() const {return 0;}

	/// \brief Provides the input block size most efficient for this hash.
	/// \return The input block size that is most efficient for the cipher
	/// \details The base class implementation returns MandatoryBlockSize().
	/// \details Optimal input length is
	///  <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
	virtual unsigned int OptimalBlockSize() const {return 1;}

	/// \brief Provides input and output data alignment for optimal performance
	/// \return the input data alignment that provides optimal performance
	/// \sa GetAlignment() and OptimalBlockSize()
	virtual unsigned int OptimalDataAlignment() const;

	/// \brief Updates the hash with additional input and computes the hash of the current message
	/// \param digest a pointer to the buffer to receive the hash
	/// \param input the additional input as a buffer
	/// \param length the size of the buffer, in bytes
	/// \details Use this if your input is in one piece and you don't want to call Update()
	///  and Final() separately
	/// \details CalculateDigest() restarts the hash for the next message.
	/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
	///  the output byte buffer is a valid size.
	virtual void CalculateDigest(byte *digest, const byte *input, size_t length)
		{Update(input, length); Final(digest);}

	/// \brief Verifies the hash of the current message
	/// \param digest a pointer to the buffer of an \a existing hash
	/// \return \p true if the existing hash matches the computed hash, \p false otherwise
	/// \throw InvalidArgument() if the existing hash's size exceeds DigestSize()
	/// \details Verify() performs a bitwise compare on the buffers using VerifyBufsEqual(), which is
	///  a constant time comparison function. digestLength cannot exceed DigestSize().
	/// \details Verify() restarts the hash for the next message.
	/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
	///  the input byte buffer is a valid size.
	virtual bool Verify(const byte *digest)
		{return TruncatedVerify(digest, DigestSize());}

	/// \brief Updates the hash with additional input and verifies the hash of the current message
	/// \param digest a pointer to the buffer of an \a existing hash
	/// \param input the additional input as a buffer
	/// \param length the size of the buffer, in bytes
	/// \return \p true if the existing hash matches the computed hash, \p false otherwise
	/// \throw InvalidArgument() if the existing hash's size exceeds DigestSize()
	/// \details Use this if your input is in one piece and you don't want to call Update()
	///  and Verify() separately
	/// \details VerifyDigest() performs a bitwise compare on the buffers using VerifyBufsEqual(),
	///  which is a constant time comparison function.
	/// \details VerifyDigest() restarts the hash for the next message.
	/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
	///  the output byte buffer is a valid size.
	virtual bool VerifyDigest(const byte *digest, const byte *input, size_t length)
		{Update(input, length); return Verify(digest);}

	/// \brief Computes the hash of the current message
	/// \param digest a pointer to the buffer to receive the hash
	/// \param digestSize the size of the truncated digest, in bytes
	/// \details TruncatedFinal() calls Final() and then copies digestSize bytes to digest.
	///  The hash is restarted the hash for the next message.
	/// \pre <tt>COUNTOF(digest) <= DigestSize()</tt> or <tt>COUNTOF(digest) <= HASH::DIGESTSIZE</tt> ensures
	///  the output byte buffer is a valid size.
	virtual void TruncatedFinal(byte *digest, size_t digestSize) =0;

	/// \brief Updates the hash with additional input and computes the hash of the current message
	/// \param digest a pointer to the buffer to receive the hash
	/// \param digestSize the length of the truncated hash, in bytes
	/// \param input the additional input as a buffer
	/// \param length the size of the buffer, in bytes
	/// \details Use this if your input is in one piece and you don't want to call Update()
	///  and CalculateDigest() separately.
	/// \details CalculateTruncatedDigest() restarts the hash for the next message.
	/// \pre <tt>digestSize <= DigestSize()</tt> or <tt>digestSize <= HASH::DIGESTSIZE</tt> ensures
	///  the output byte buffer is a valid size.
	virtual void CalculateTruncatedDigest(byte *digest, size_t digestSize, const byte *input, size_t length)
		{Update(input, length); TruncatedFinal(digest, digestSize);}

	/// \brief Verifies the hash of the current message
	/// \param digest a pointer to the buffer of an \a existing hash
	/// \param digestLength the size of the truncated hash, in bytes
	/// \return \p true if the existing hash matches the computed hash, \p false otherwise
	/// \throw InvalidArgument() if digestLength exceeds DigestSize()
	/// \details TruncatedVerify() is a truncated version of Verify(). It can operate on a
	///  buffer smaller than DigestSize(). However, digestLength cannot exceed DigestSize().
	/// \details Verify() performs a bitwise compare on the buffers using VerifyBufsEqual(), which is
	///  a constant time comparison function. digestLength cannot exceed DigestSize().
	/// \details TruncatedVerify() restarts the hash for the next message.
	/// \pre <tt>digestLength <= DigestSize()</tt> or <tt>digestLength <= HASH::DIGESTSIZE</tt> ensures
	///  the input byte buffer is a valid size.
	virtual bool TruncatedVerify(const byte *digest, size_t digestLength);

	/// \brief Updates the hash with additional input and verifies the hash of the current message
	/// \param digest a pointer to the buffer of an \a existing hash
	/// \param digestLength the size of the truncated hash, in bytes
	/// \param input the additional input as a buffer
	/// \param length the size of the buffer, in bytes
	/// \return \p true if the existing hash matches the computed hash, \p false otherwise
	/// \throw InvalidArgument() if digestLength exceeds DigestSize()
	/// \details Use this if your input is in one piece and you don't want to call Update()
	///  and TruncatedVerify() separately.
	/// \details VerifyTruncatedDigest() is a truncated version of VerifyDigest(). It can operate
	///  on a buffer smaller than DigestSize(). However, digestLength cannot exceed DigestSize().
	/// \details VerifyTruncatedDigest() restarts the hash for the next message.
	/// \pre <tt>digestLength <= DigestSize()</tt> or <tt>digestLength <= HASH::DIGESTSIZE</tt> ensures
	///  the input byte buffer is a valid size.
	virtual bool VerifyTruncatedDigest(const byte *digest, size_t digestLength, const byte *input, size_t length)
		{Update(input, length); return TruncatedVerify(digest, digestLength);}

protected:
	/// \brief Validates a truncated digest size
	/// \param size the requested digest size
	/// \throw InvalidArgument if the algorithm's digest size cannot be truncated to the requested size
	/// \details Throws an exception when the truncated digest size is greater than DigestSize()
	void ThrowIfInvalidTruncatedSize(size_t size) const;
};

/// \brief Interface for one direction (encryption or decryption) of a block cipher
/// \details These objects usually should not be used directly. See BlockTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockCipher : public SimpleKeyingInterface, public BlockTransformation
{
protected:
	const Algorithm & GetAlgorithm() const {return *this;}
};

/// \brief Interface for one direction (encryption or decryption) of a stream cipher or cipher mode
/// \details These objects usually should not be used directly. See StreamTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SymmetricCipher : public SimpleKeyingInterface, public StreamTransformation
{
protected:
	const Algorithm & GetAlgorithm() const {return *this;}
};

/// \brief Interface for message authentication codes
/// \details These objects usually should not be used directly. See HashTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE MessageAuthenticationCode : public SimpleKeyingInterface, public HashTransformation
{
protected:
	const Algorithm & GetAlgorithm() const {return *this;}
};

/// \brief Interface for authenticated encryption modes of operation
/// \details AuthenticatedSymmetricCipher() provides the interface for one direction
///  (encryption or decryption) of a stream cipher or block cipher mode with authentication. The
///  StreamTransformation() part of this interface is used to encrypt or decrypt the data. The
///  MessageAuthenticationCode() part of the interface is used to input additional authenticated
///  data (AAD), which is MAC'ed but not encrypted. The MessageAuthenticationCode() part is also
///  used to generate and verify the MAC.
/// \details Crypto++ provides four authenticated encryption modes of operation - CCM, EAX, GCM
///  and OCB mode. All modes implement AuthenticatedSymmetricCipher() and the motivation for
///  the API, like calling AAD a &quot;header&quot;, can be found in Bellare, Rogaway and
///  Wagner's <A HREF="http://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf">The EAX Mode of
///  Operation</A>. The EAX paper suggested a basic API to help standardize AEAD schemes in
///  software and promote adoption of the modes.
/// \sa <A HREF="http://www.cryptopp.com/wiki/Authenticated_Encryption">Authenticated
///  Encryption</A> on the Crypto++ wiki.
/// \since Crypto++ 5.6.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedSymmetricCipher : public MessageAuthenticationCode, public StreamTransformation
{
public:
	virtual ~AuthenticatedSymmetricCipher() {}

	/// \brief Exception thrown when the object is in the wrong state for the operation
	/// \details this indicates that a member function was called in the wrong state, for example trying to encrypt
	///  a message before having set the key or IV
	class BadState : public Exception
	{
	public:
		explicit BadState(const std::string &name, const char *message) : Exception(OTHER_ERROR, name + ": " + message) {}
		explicit BadState(const std::string &name, const char *function, const char *state) : Exception(OTHER_ERROR, name + ": " + function + " was called before " + state) {}
	};

	/// \brief Provides the maximum length of AAD that can be input
	/// \return the maximum length of AAD that can be input before the encrypted data
	virtual lword MaxHeaderLength() const =0;

	/// \brief Provides the maximum length of encrypted data
	/// \return the maximum length of encrypted data
	virtual lword MaxMessageLength() const =0;

	/// \brief Provides the maximum length of AAD
	/// \return the maximum length of AAD that can be input after the encrypted data
	virtual lword MaxFooterLength() const {return 0;}

	/// \brief Determines if data lengths must be specified prior to inputting data
	/// \return true if the data lengths are required before inputting data, false otherwise
	/// \details if this function returns true, SpecifyDataLengths() must be called before attempting to input data.
	///  This is the case for some schemes, such as CCM.
	/// \sa SpecifyDataLengths()
	virtual bool NeedsPrespecifiedDataLengths() const {return false;}

	/// \brief Prescribes the data lengths
	/// \param headerLength size of data before message is input, in bytes
	/// \param messageLength size of the message, in bytes
	/// \param footerLength size of data after message is input, in bytes
	/// \details SpecifyDataLengths() only needs to be called if NeedsPrespecifiedDataLengths() returns <tt>true</tt>.
	///  If <tt>true</tt>, then <tt>headerLength</tt> will be validated against <tt>MaxHeaderLength()</tt>,
	///  <tt>messageLength</tt> will be validated against <tt>MaxMessageLength()</tt>, and
	///  <tt>footerLength</tt> will be validated against <tt>MaxFooterLength()</tt>.
	/// \sa NeedsPrespecifiedDataLengths()
	void SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength=0);

	/// \brief Encrypts and calculates a MAC in one call
	/// \param ciphertext the encryption buffer
	/// \param mac the mac buffer
	/// \param macSize the size of the MAC buffer, in bytes
	/// \param iv the iv buffer
	/// \param ivLength the size of the IV buffer, in bytes
	/// \param header the AAD buffer
	/// \param headerLength the size of the AAD buffer, in bytes
	/// \param message the message buffer
	/// \param messageLength the size of the messagetext buffer, in bytes
	/// \details EncryptAndAuthenticate() encrypts and generates the MAC in one call. The function
	///  truncates the MAC if <tt>macSize < TagSize()</tt>.
	virtual void EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength);

	/// \brief Decrypts and verifies a MAC in one call
	/// \param message the decryption buffer
	/// \param mac the mac buffer
	/// \param macSize the size of the MAC buffer, in bytes
	/// \param iv the iv buffer
	/// \param ivLength the size of the IV buffer, in bytes
	/// \param header the AAD buffer
	/// \param headerLength the size of the AAD buffer, in bytes
	/// \param ciphertext the ciphertext buffer
	/// \param ciphertextLength the size of the ciphertext buffer, in bytes
	/// \return true if the MAC is valid and the decoding succeeded, false otherwise
	/// \details DecryptAndVerify() decrypts and verifies the MAC in one call.
	/// <tt>message</tt> is a decryption buffer and should be at least as large as the ciphertext buffer.
	/// \details The function returns true iff MAC is valid. DecryptAndVerify() assumes the MAC
	///  is truncated if <tt>macLength < TagSize()</tt>.
	virtual bool DecryptAndVerify(byte *message, const byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength);

	/// \brief Provides the name of this algorithm
	/// \return the standard algorithm name
	/// \details The standard algorithm name can be a name like \a AES or \a AES/GCM. Some algorithms
	///  do not have standard names yet. For example, there is no standard algorithm name for
	///  Shoup's ECIES.
	virtual std::string AlgorithmName() const;

	/// \brief Retrieve the provider of this algorithm
	/// \return the algorithm provider
	/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
	///  "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
	///  usually indicate a specialized implementation using instructions from a higher
	///  instruction set architecture (ISA). Future labels may include external hardware
	///  like a hardware security module (HSM).
	/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
	///  Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
	///  instead of ASM.
	/// \details Algorithms which combine different instructions or ISAs provide the
	///  dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
	///  "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
	/// \note Provider is not universally implemented yet.
	/// \since Crypto++ 8.0
	virtual std::string AlgorithmProvider() const {return "C++";}

protected:
	const Algorithm & GetAlgorithm() const
		{return *static_cast<const MessageAuthenticationCode *>(this);}
	virtual void UncheckedSpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
		{CRYPTOPP_UNUSED(headerLength); CRYPTOPP_UNUSED(messageLength); CRYPTOPP_UNUSED(footerLength);}
};

/// \brief Interface for random number generators
/// \details The library provides a number of random number generators, from software based
///  to hardware based generators.
/// \details All generated values are uniformly distributed over the range specified.
/// \since Crypto++ 3.1
/// \sa <A HREF="https://www.cryptopp.com/wiki/RandomNumberGenerator">RandomNumberGenerator</A>
///  on the Crypto++ wiki
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomNumberGenerator : public Algorithm
{
public:
	virtual ~RandomNumberGenerator() {}

	/// \brief Update RNG state with additional unpredictable values
	/// \param input the entropy to add to the generator
	/// \param length the size of the input buffer
	/// \throw NotImplemented
	/// \details A generator may or may not accept additional entropy. Call CanIncorporateEntropy()
	///  to test for the ability to use additional entropy.
	/// \details If a derived class does not override IncorporateEntropy(), then the base class
	///  throws NotImplemented.
	virtual void IncorporateEntropy(const byte *input, size_t length)
	{
		CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(length);
		throw NotImplemented("RandomNumberGenerator: IncorporateEntropy not implemented");
	}

	/// \brief Determines if a generator can accept additional entropy
	/// \return true if IncorporateEntropy() is implemented
	virtual bool CanIncorporateEntropy() const {return false;}

	/// \brief Generate new random byte and return it
	/// \return a random 8-bit byte
	/// \details Default implementation calls GenerateBlock() with one byte.
	/// \details All generated values are uniformly distributed over the range specified within the
	///  the constraints of a particular generator.
	virtual byte GenerateByte();

	/// \brief Generate new random bit and return it
	/// \return a random bit
	/// \details The default implementation calls GenerateByte() and return its lowest bit.
	/// \details All generated values are uniformly distributed over the range specified within the
	///  the constraints of a particular generator.
	virtual unsigned int GenerateBit();

	/// \brief Generate a random 32 bit word in the range min to max, inclusive
	/// \param min the lower bound of the range
	/// \param max the upper bound of the range
	/// \return a random 32-bit word
	/// \details The default implementation calls Crop() on the difference between max and
	///  min, and then returns the result added to min.
	/// \details All generated values are uniformly distributed over the range specified within the
	///  the constraints of a particular generator.
	virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL);

	/// \brief Generate random array of bytes
	/// \param output the byte buffer
	/// \param size the length of the buffer, in bytes
	/// \details All generated values are uniformly distributed over the range specified within the
	///  the constraints of a particular generator.
	/// \note A derived generator \a must override either GenerateBlock() or
	///  GenerateIntoBufferedTransformation(). They can override both, or have one call the other.
	virtual void GenerateBlock(byte *output, size_t size);

	/// \brief Generate random bytes into a BufferedTransformation
	/// \param target the BufferedTransformation object which receives the bytes
	/// \param channel the channel on which the bytes should be pumped
	/// \param length the number of bytes to generate
	/// \details The default implementation calls GenerateBlock() and pumps the result into
	///  the DEFAULT_CHANNEL of the target.
	/// \details All generated values are uniformly distributed over the range specified within the
	///  the constraints of a particular generator.
	/// \note A derived generator \a must override either GenerateBlock() or
	///  GenerateIntoBufferedTransformation(). They can override both, or have one call the other.
	virtual void GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length);

	/// \brief Generate and discard n bytes
	/// \param n the number of bytes to generate and discard
	virtual void DiscardBytes(size_t n);

	/// \brief Randomly shuffle the specified array
	/// \param begin an iterator to the first element in the array
	/// \param end an iterator beyond the last element in the array
	/// \details The resulting permutation is uniformly distributed.
	template <class IT> void Shuffle(IT begin, IT end)
	{
		// TODO: What happens if there are more than 2^32 elements?
		for (; begin != end; ++begin)
			std::iter_swap(begin, begin + GenerateWord32(0, static_cast<word32>(end-begin-1)));
	}
};

/// \brief Interface for key derivation functions
/// \since Crypto++ 7.0
/// \sa <A HREF="https://www.cryptopp.com/wiki/KeyDerivationFunction">KeyDerivationFunction</A>
///  on the Crypto++ wiki
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE KeyDerivationFunction : public Algorithm
{
public:
	virtual ~KeyDerivationFunction() {}

	/// \brief Provides the name of this algorithm
	/// \return the standard algorithm name
	virtual std::string AlgorithmName() const =0;

	/// \brief Determine minimum number of bytes
	/// \return Minimum number of bytes which can be derived
	virtual size_t MinDerivedKeyLength() const;

	/// \brief Determine maximum number of bytes
	/// \return Maximum number of bytes which can be derived
	virtual size_t MaxDerivedKeyLength() const;

	/// \brief Returns a valid key length for the derivation function
	/// \param keylength the size of the derived key, in bytes
	/// \return the valid key length, in bytes
	virtual size_t GetValidDerivedLength(size_t keylength) const =0;

	/// \brief Returns whether keylength is a valid key length
	/// \param keylength the requested keylength
	/// \return true if the derived keylength is valid, false otherwise
	/// \details Internally the function calls GetValidKeyLength()
	virtual bool IsValidDerivedLength(size_t keylength) const {
		return keylength == GetValidDerivedLength(keylength);
	}

	/// \brief Derive a key from a seed
	/// \param derived the derived output buffer
	/// \param derivedLen the size of the derived buffer, in bytes
	/// \param secret the seed input buffer
	/// \param secretLen the size of the secret buffer, in bytes
	/// \param params additional initialization parameters to configure this object
	/// \return the number of iterations performed
	/// \throw InvalidDerivedKeyLength if <tt>derivedLen</tt> is invalid for the scheme
	/// \details DeriveKey() provides a standard interface to derive a key from
	///  a secret seed and other parameters. Each class that derives from KeyDerivationFunction
	///  provides an overload that accepts most parameters used by the derivation function.
	/// \details the number of iterations performed by DeriveKey() may be 1. For example, a
	///  scheme like HKDF does not use the iteration count so it returns 1.
	virtual size_t DeriveKey(byte *derived, size_t derivedLen, const byte *secret, size_t secretLen, const NameValuePairs& params = g_nullNameValuePairs) const =0;

	/// \brief Set or change parameters
	/// \param params additional initialization parameters to configure this object
	/// \details SetParameters() is useful for setting common parameters when an object is
	///  reused. Some derivation function classes may choose to implement it.
	virtual void SetParameters(const NameValuePairs& params);

protected:
	/// \brief Returns the base class Algorithm
	/// \return the base class Algorithm
	virtual const Algorithm & GetAlgorithm() const =0;

	/// \brief Validates the derived key length
	/// \param length the size of the derived key material, in bytes
	/// \throw InvalidKeyLength if the key length is invalid
	void ThrowIfInvalidDerivedKeyLength(size_t length) const;
};

/// \brief Interface for password based key derivation functions
/// \since Crypto++ 7.0
struct PasswordBasedKeyDerivationFunction : public KeyDerivationFunction
{
};

/// \brief Random Number Generator that does not produce random numbers
/// \return reference that can be passed to functions that require a RandomNumberGenerator
/// \details NullRNG() returns a reference that can be passed to functions that require a
///  RandomNumberGenerator but don't actually use it. The NullRNG() throws NotImplemented
///  when a generation function is called.
/// \sa ClassNullRNG, PK_SignatureScheme::IsProbabilistic()
CRYPTOPP_DLL RandomNumberGenerator & CRYPTOPP_API NullRNG();

class WaitObjectContainer;
class CallStack;

/// \brief Interface for objects that can be waited on.
class CRYPTOPP_NO_VTABLE Waitable
{
public:
	virtual ~Waitable() {}

	/// \brief Maximum number of wait objects that this object can return
	/// \return the maximum number of wait objects
	virtual unsigned int GetMaxWaitObjectCount() const =0;

	/// \brief Retrieves waitable objects
	/// \param container the wait container to receive the references to the objects.
	/// \param callStack CallStack() object used to select waitable objects
	/// \details GetWaitObjects() is usually called in one of two ways. First, it can
	///  be called like <tt>something.GetWaitObjects(c, CallStack("my func after X", 0));</tt>.
	///  Second, if in an outer GetWaitObjects() method that itself takes a callStack
	///  parameter, it can be called like
	///  <tt>innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack));</tt>.
	virtual void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack) =0;

	/// \brief Wait on this object
	/// \return true if the wait succeeded, false otherwise
	/// \details Wait() is the same as creating an empty container, calling GetWaitObjects(), and then calling
	///  Wait() on the container.
	bool Wait(unsigned long milliseconds, CallStack const& callStack);
};

/// \brief Interface for buffered transformations
/// \details BufferedTransformation is a generalization of BlockTransformation,
///  StreamTransformation and HashTransformation.
/// \details A buffered transformation is an object that takes a stream of bytes as input (this may
///  be done in stages), does some computation on them, and then places the result into an internal
///  buffer for later retrieval. Any partial result already in the output buffer is not modified
///  by further input.
/// \details If a method takes a "blocking" parameter, and you pass false for it, then the method
///  will return before all input has been processed if the input cannot be processed without waiting
///  (for network buffers to become available, for example). In this case the method will return true
///  or a non-zero integer value. When this happens you must continue to call the method with the same
///  parameters until it returns false or zero, before calling any other method on it or attached
///  BufferedTransformation. The integer return value in this case is approximately
///  the number of bytes left to be processed, and can be used to implement a progress bar.
/// \details For functions that take a "propagation" parameter, <tt>propagation != 0</tt> means pass on
///  the signal to attached BufferedTransformation objects, with propagation decremented at each
///  step until it reaches <tt>0</tt>. <tt>-1</tt> means unlimited propagation.
/// \details \a All of the retrieval functions, like Get() and GetWord32(), return the actual
///  number of bytes retrieved, which is the lesser of the request number and MaxRetrievable().
/// \details \a Most of the input functions, like Put() and PutWord32(), return the number of
///  bytes remaining to be processed. A 0 value means all bytes were processed, and a non-0 value
///  means bytes remain to be processed.
/// \nosubgrouping
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BufferedTransformation : public Algorithm, public Waitable
{
public:
	virtual ~BufferedTransformation() {}

	/// \brief Construct a BufferedTransformation
	BufferedTransformation() : Algorithm(false) {}

	/// \brief Provides a reference to this object
	/// \return A reference to this object
	/// \details Useful for passing a temporary object to a function that takes a non-const reference
	BufferedTransformation& Ref() {return *this;}

	///	\name INPUT
	//@{

		/// \brief Input a byte for processing
		/// \param inByte the 8-bit byte (octet) to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
		///  0 indicates all bytes were processed.
		/// \details <tt>Put(byte)</tt> calls <tt>Put(byte*, size_t)</tt>.
		size_t Put(byte inByte, bool blocking=true)
			{return Put(&inByte, 1, blocking);}

		/// \brief Input a byte buffer for processing
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
		///  0 indicates all bytes were processed.
		/// \details Internally, Put() calls Put2().
		size_t Put(const byte *inString, size_t length, bool blocking=true)
			{return Put2(inString, length, 0, blocking);}

		/// Input a 16-bit word for processing.
		/// \param value the 16-bit value to be processed
		/// \param order the ByteOrder of the value to be processed.
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
		///  0 indicates all bytes were processed.
		size_t PutWord16(word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);

		/// Input a 32-bit word for processing.
		/// \param value the 32-bit value to be processed.
		/// \param order the ByteOrder of the value to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
		///  0 indicates all bytes were processed.
		size_t PutWord32(word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);

		/// Input a 64-bit word for processing.
		/// \param value the 64-bit value to be processed.
		/// \param order the ByteOrder of the value to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
		///  0 indicates all bytes were processed.
		size_t PutWord64(word64 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);

		/// \brief Request space which can be written into by the caller
		/// \param size the requested size of the buffer
		/// \return byte pointer to the space to input data
		/// \details The purpose of this method is to help avoid extra memory allocations.
		/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
		///  size is the requested size of the buffer. When the call returns, size is the size of
		///  the array returned to the caller.
		/// \details The base class implementation sets size to 0 and returns NULL.
		/// \note Some objects, like ArraySink, cannot create a space because its fixed. In the case of
		/// an ArraySink, the pointer to the array is returned and the size is remaining size.
		virtual byte * CreatePutSpace(size_t &size)
			{size=0; return NULLPTR;}

		/// \brief Determines whether input can be modified by the callee
		/// \return true if input can be modified, false otherwise
		/// \details The base class implementation returns false.
		virtual bool CanModifyInput() const
			{return false;}

		/// \brief Input multiple bytes that may be modified by callee.
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
		///  bytes were processed.
		size_t PutModifiable(byte *inString, size_t length, bool blocking=true)
			{return PutModifiable2(inString, length, 0, blocking);}

		/// \brief Signals the end of messages to the object
		/// \param propagation the number of attached transformations the MessageEnd() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		bool MessageEnd(int propagation=-1, bool blocking=true)
			{return !!Put2(NULLPTR, 0, propagation < 0 ? -1 : propagation+1, blocking);}

		/// \brief Input multiple bytes for processing and signal the end of a message
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param propagation the number of attached transformations the MessageEnd() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
		///  bytes were processed.
		/// \details Internally, PutMessageEnd() calls Put2() with a modified propagation to
		///  ensure all attached transformations finish processing the message.
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		size_t PutMessageEnd(const byte *inString, size_t length, int propagation=-1, bool blocking=true)
			{return Put2(inString, length, propagation < 0 ? -1 : propagation+1, blocking);}

		/// \brief Input multiple bytes for processing
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
		///  bytes were processed.
		/// \details Derived classes must implement Put2().
		virtual size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) =0;

		/// \brief Input multiple bytes that may be modified by callee.
		/// \param inString the byte buffer to process.
		/// \param length the size of the string, in bytes.
		/// \param messageEnd means how many filters to signal MessageEnd() to, including this one.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
		///  bytes were processed.
		/// \details Internally, PutModifiable2() calls Put2().
		virtual size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
			{return Put2(inString, length, messageEnd, blocking);}

		/// \brief Exception thrown by objects that have \a not implemented nonblocking input processing
		/// \details BlockingInputOnly inherits from NotImplemented
		struct BlockingInputOnly : public NotImplemented
			{BlockingInputOnly(const std::string &s) : NotImplemented(s + ": Nonblocking input is not implemented by this object.") {}};
	//@}

	///	\name WAITING
	//@{
		/// \brief Retrieves the maximum number of waitable objects
		unsigned int GetMaxWaitObjectCount() const;

		/// \brief Retrieves waitable objects
		/// \param container the wait container to receive the references to the objects
		/// \param callStack CallStack() object used to select waitable objects
		/// \details GetWaitObjects is usually called in one of two ways. First, it can
		///  be called like <tt>something.GetWaitObjects(c, CallStack("my func after X", 0));</tt>.
		///  Second, if in an outer GetWaitObjects() method that itself takes a callStack
		///  parameter, it can be called like
		///  <tt>innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack));</tt>.
		void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack);
	//@} // WAITING

	///	\name SIGNALS
	//@{

		/// \brief Initialize or reinitialize this object, without signal propagation
		/// \param parameters a set of NameValuePairs to initialize this object
		/// \throw NotImplemented
		/// \details IsolatedInitialize() is used to initialize or reinitialize an object using a variable
		///  number of arbitrarily typed arguments. The function avoids the need for multiple constructors providing
		///  all possible combintations of configurable parameters.
		/// \details IsolatedInitialize() does not call Initialize() on attached transformations. If initialization
		///  should be propagated, then use the Initialize() function.
		/// \details If a derived class does not override IsolatedInitialize(), then the base class throws
		///  NotImplemented.
		virtual void IsolatedInitialize(const NameValuePairs &parameters) {
			CRYPTOPP_UNUSED(parameters);
			throw NotImplemented("BufferedTransformation: this object can't be reinitialized");
		}

		/// \brief Flushes data buffered by this object, without signal propagation
		/// \param hardFlush indicates whether all data should be flushed
		/// \param blocking specifies whether the object should block when processing input
		/// \return true if the flush was successful, false otherwise
		/// \note hardFlush must be used with care
		virtual bool IsolatedFlush(bool hardFlush, bool blocking) =0;

		/// \brief Marks the end of a series of messages, without signal propagation
		/// \param blocking specifies whether the object should block when completing the processing on
		///  the current series of messages
		/// \return true if the message was successful, false otherwise
		virtual bool IsolatedMessageSeriesEnd(bool blocking)
			{CRYPTOPP_UNUSED(blocking); return false;}

		/// \brief Initialize or reinitialize this object, with signal propagation
		/// \param parameters a set of NameValuePairs to initialize or reinitialize this object
		/// \param propagation the number of attached transformations the Initialize() signal should be passed
		/// \details Initialize() is used to initialize or reinitialize an object using a variable number of
		///  arbitrarily typed arguments. The function avoids the need for multiple constructors providing
		///  all possible combintations of configurable parameters.
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		virtual void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1);

		/// \brief Flush buffered input and/or output, with signal propagation
		/// \param hardFlush is used to indicate whether all data should be flushed
		/// \param propagation the number of attached transformations the Flush()
		///  signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return true if the flush was successful, false otherwise
		/// \details propagation count includes this object. Setting propagation to
		///  <tt>1</tt> means this object only. Setting propagation to <tt>-1</tt>
		///  means unlimited propagation.
		/// \note Hard flushes must be used with care. It means try to process and
		///  output everything, even if there may not be enough data to complete the
		///  action. For example, hard flushing a HexDecoder would cause an error if
		///  you do it after inputing an odd number of hex encoded characters.
		/// \note For some types of filters, like  ZlibDecompressor, hard flushes can
		///  only be done at "synchronization points". These synchronization points
		///  are positions in the data stream that are created by hard flushes on the
		///  corresponding reverse filters, in this example ZlibCompressor. This is
		///  useful when zlib compressed data is moved across a network in packets
		///  and compression state is preserved across packets, as in the SSH2 protocol.
		virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true);

		/// \brief Marks the end of a series of messages, with signal propagation
		/// \param propagation the number of attached transformations the MessageSeriesEnd() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return true if the message was successful, false otherwise
		/// \details Each object that receives the signal will perform its processing, decrement
		///  propagation, and then pass the signal on to attached transformations if the value is not 0.
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		/// \note There should be a MessageEnd() immediately before MessageSeriesEnd().
		virtual bool MessageSeriesEnd(int propagation=-1, bool blocking=true);

		/// \brief Set propagation of automatically generated and transferred signals
		/// \param propagation then new value
		/// \details Setting propagation to <tt>0</tt> means do not automatically generate signals. Setting
		///  propagation to <tt>-1</tt> means unlimited propagation.
		virtual void SetAutoSignalPropagation(int propagation)
			{CRYPTOPP_UNUSED(propagation);}

		/// \brief Retrieve automatic signal propagation value
		/// \return the number of attached transformations the signal is propagated to. 0 indicates
		///  the signal is only witnessed by this object
		virtual int GetAutoSignalPropagation() const {return 0;}
public:

	///	\name RETRIEVAL OF ONE MESSAGE
	//@{

		/// \brief Provides the number of bytes ready for retrieval
		/// \return the number of bytes ready for retrieval
		/// \details The number of bytes available are dependent on the source. If an exact value is
		///  available, then the exact value is returned. The exact value can include 0 if the source
		///  is exhausted.
		/// \details Some stream-based sources do not allow seeking() on the underlying stream, such
		///  as some FileSource(). If the stream does not allow seeking() then MaxRetrievable()
		///  returns LWORD_MAX to indicate there are still bytes to be retrieved.
		virtual lword MaxRetrievable() const;

		/// \brief Determines whether bytes are ready for retrieval
		/// \return true if bytes are available for retrieval, false otherwise
		virtual bool AnyRetrievable() const;

		/// \brief Retrieve a 8-bit byte
		/// \param outByte the 8-bit value to be retrieved
		/// \return the number of bytes consumed during the call.
		/// \details Use the return value of Get to detect short reads.
		virtual size_t Get(byte &outByte);

		/// \brief Retrieve a block of bytes
		/// \param outString a block of bytes
		/// \param getMax the number of bytes to Get
		/// \return the number of bytes consumed during the call.
		/// \details Use the return value of Get to detect short reads.
		virtual size_t Get(byte *outString, size_t getMax);

		/// \brief Peek a 8-bit byte
		/// \param outByte the 8-bit value to be retrieved
		/// \return the number of bytes read during the call.
		/// \details Peek does not remove bytes from the object. Use the return value of
		///  Get() to detect short reads.
		virtual size_t Peek(byte &outByte) const;

		/// \brief Peek a block of bytes
		/// \param outString a block of bytes
		/// \param peekMax the number of bytes to Peek
		/// \return the number of bytes read during the call.
		/// \details Peek does not remove bytes from the object. Use the return value of
		///  Peek() to detect short reads.
		virtual size_t Peek(byte *outString, size_t peekMax) const;

		/// \brief Retrieve a 16-bit word
		/// \param value the 16-bit value to be retrieved
		/// \param order the ByteOrder of the value to be processed.
		/// \return the number of bytes consumed during the call.
		/// \details Use the return value of GetWord16() to detect short reads.
		size_t GetWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER);

		/// \brief Retrieve a 32-bit word
		/// \param value the 32-bit value to be retrieved
		/// \param order the ByteOrder of the value to be processed.
		/// \return the number of bytes consumed during the call.
		/// \details Use the return value of GetWord32() to detect short reads.
		size_t GetWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER);

		/// \brief Retrieve a 64-bit word
		/// \param value the 64-bit value to be retrieved
		/// \param order the ByteOrder of the value to be processed.
		/// \return the number of bytes consumed during the call.
		/// \details Use the return value of GetWord64() to detect short reads.
		/// \since Crypto++ 8.3
		size_t GetWord64(word64 &value, ByteOrder order=BIG_ENDIAN_ORDER);

		/// \brief Peek a 16-bit word
		/// \param value the 16-bit value to be retrieved
		/// \param order the ByteOrder of the value to be processed.
		/// \return the number of bytes consumed during the call.
		/// \details Peek does not consume bytes in the stream. Use the return value
		///  of PeekWord16() to detect short reads.
		size_t PeekWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;

		/// \brief Peek a 32-bit word
		/// \param value the 32-bit value to be retrieved
		/// \param order the ByteOrder of the value to be processed.
		/// \return the number of bytes consumed during the call.
		/// \details Peek does not consume bytes in the stream. Use the return value
		///  of PeekWord32() to detect short reads.
		size_t PeekWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;

		/// \brief Peek a 64-bit word
		/// \param value the 64-bit value to be retrieved
		/// \param order the ByteOrder of the value to be processed.
		/// \return the number of bytes consumed during the call.
		/// \details Peek does not consume bytes in the stream. Use the return value
		///  of PeekWord64() to detect short reads.
		/// \since Crypto++ 8.3
		size_t PeekWord64(word64 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;

		/// move transferMax bytes of the buffered output to target as input

		/// \brief Transfer bytes from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param transferMax the number of bytes to transfer
		/// \param channel the channel on which the transfer should occur
		/// \return the number of bytes transferred during the call.
		/// \details TransferTo removes bytes from this object and moves them to the destination.
		/// \details The function always returns transferMax. If an accurate count is needed, then use TransferTo2().
		lword TransferTo(BufferedTransformation &target, lword transferMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL)
			{TransferTo2(target, transferMax, channel); return transferMax;}

		/// \brief Discard skipMax bytes from the output buffer
		/// \param skipMax the number of bytes to discard
		/// \details Skip() discards bytes from the output buffer, which is the AttachedTransformation(), if present.
		///  The function always returns the parameter <tt>skipMax</tt>.
		/// \details If you want to skip bytes from a Source, then perform the following.
		/// <pre>  StringSource ss(str, false, new Redirector(TheBitBucket()));
		///   ss.Pump(10);    // Skip 10 bytes from Source
		///   ss.Detach(new FilterChain(...));
		///   ss.PumpAll();
		/// </pre>
		virtual lword Skip(lword skipMax=LWORD_MAX);

		/// \brief Copy bytes from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param copyMax the number of bytes to copy
		/// \param channel the channel on which the transfer should occur
		/// \return the number of bytes copied during the call.
		/// \details CopyTo copies bytes from this object to the destination. The bytes are not removed from this object.
		/// \details The function always returns copyMax. If an accurate count is needed, then use CopyRangeTo2().
		lword CopyTo(BufferedTransformation &target, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
			{return CopyRangeTo(target, 0, copyMax, channel);}

		/// \brief Copy bytes from this object using an index to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param position the 0-based index of the byte stream to begin the copying
		/// \param copyMax the number of bytes to copy
		/// \param channel the channel on which the transfer should occur
		/// \return the number of bytes copied during the call.
		/// \details CopyTo copies bytes from this object to the destination. The bytes remain in this
		///  object. Copying begins at the index position in the current stream, and not from an absolute
		///  position in the stream.
		/// \details The function returns the new position in the stream after transferring the bytes starting at the index.
		lword CopyRangeTo(BufferedTransformation &target, lword position, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
			{lword i = position; CopyRangeTo2(target, i, i+copyMax, channel); return i-position;}
	//@}

	///	\name RETRIEVAL OF MULTIPLE MESSAGES
	//@{

		/// \brief Provides the number of bytes ready for retrieval
		/// \return the number of bytes ready for retrieval
		virtual lword TotalBytesRetrievable() const;

		/// \brief Provides the number of meesages processed by this object
		/// \return the number of meesages processed by this object
		/// \details NumberOfMessages returns number of times MessageEnd() has been
		///  received minus messages retrieved or skipped
		virtual unsigned int NumberOfMessages() const;

		/// \brief Determines if any messages are available for retrieval
		/// \return true if <tt>NumberOfMessages() &gt; 0</tt>, false otherwise
		/// \details AnyMessages returns true if <tt>NumberOfMessages() &gt; 0</tt>
		virtual bool AnyMessages() const;

		/// \brief Start retrieving the next message
		/// \return true if a message is ready for retrieval
		/// \details GetNextMessage() returns true if a message is ready for retrieval; false
		///  if no more messages exist or this message is not completely retrieved.
		virtual bool GetNextMessage();

		/// \brief Skip a number of meessages
		/// \param count number of messages to skip
		/// \return 0 if the requested number of messages was skipped, non-0 otherwise
		/// \details SkipMessages() skips count number of messages. If there is an AttachedTransformation()
		///  then SkipMessages() is called on the attached transformation. If there is no attached
		///  transformation, then count number of messages are sent to TheBitBucket() using TransferMessagesTo().
		virtual unsigned int SkipMessages(unsigned int count=UINT_MAX);

		/// \brief Transfer messages from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param count the number of messages to transfer
		/// \param channel the channel on which the transfer should occur
		/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
		/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
		///  If all bytes are not transferred for a message, then processing stops and the number of remaining
		///  bytes is returned. TransferMessagesTo() does not proceed to the next message.
		/// \details A return value of 0 indicates all messages were successfully transferred.
		unsigned int TransferMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL)
			{TransferMessagesTo2(target, count, channel); return count;}

		/// \brief Copy messages from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param count the number of messages to copy
		/// \param channel the channel on which the copy should occur
		/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
		/// \details CopyMessagesTo copies messages from this object to the destination.
		///  If all bytes are not transferred for a message, then processing stops and the number of remaining
		///  bytes is returned. CopyMessagesTo() does not proceed to the next message.
		/// \details A return value of 0 indicates all messages were successfully copied.
		unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const;

		/// \brief Skip all messages in the series
		virtual void SkipAll();

		/// \brief Transfer all bytes from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param channel the channel on which the transfer should occur
		/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
		///  Internally TransferAllTo() calls TransferAllTo2().
		void TransferAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL)
			{TransferAllTo2(target, channel);}

		/// \brief Copy messages from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param channel the channel on which the transfer should occur
		/// \details CopyAllTo copies messages from this object and copies them to the destination.
		void CopyAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL) const;

		/// \brief Retrieve the next message in a series
		/// \return true if a message was retrieved, false otherwise
		/// \details Internally, the base class implementation returns false.
		virtual bool GetNextMessageSeries() {return false;}
		/// \brief Provides the number of messages in a series
		/// \return the number of messages in this series
		virtual unsigned int NumberOfMessagesInThisSeries() const {return NumberOfMessages();}
		/// \brief Provides the number of messages in a series
		/// \return the number of messages in this series
		virtual unsigned int NumberOfMessageSeries() const {return 0;}
	//@}

	///	\name NON-BLOCKING TRANSFER OF OUTPUT
	//@{

		// upon return, byteCount contains number of bytes that have finished being transferred,
		// and returns the number of bytes left in the current transfer block

		/// \brief Transfer bytes from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param byteCount the number of bytes to transfer
		/// \param channel the channel on which the transfer should occur
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain in the transfer block (i.e., bytes not transferred)
		/// \details TransferTo2() removes bytes from this object and moves them to the destination.
		///  Transfer begins at the index position in the current stream, and not from an absolute
		///  position in the stream.
		/// \details byteCount is an \a IN and \a OUT parameter. When the call is made,
		///  byteCount is the requested size of the transfer. When the call returns, byteCount is
		///  the number of bytes that were transferred.
		virtual size_t TransferTo2(BufferedTransformation &target, lword &byteCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) =0;

		// upon return, begin contains the start position of data yet to be finished copying,
		// and returns the number of bytes left in the current transfer block

		/// \brief Copy bytes from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param begin the 0-based index of the first byte to copy in the stream
		/// \param end the 0-based index of the last byte to copy in the stream
		/// \param channel the channel on which the transfer should occur
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain in the copy block (i.e., bytes not copied)
		/// \details CopyRangeTo2 copies bytes from this object to the destination. The bytes are not
		///  removed from this object. Copying begins at the index position in the current stream, and
		///  not from an absolute position in the stream.
		/// \details begin is an \a IN and \a OUT parameter. When the call is made, begin is the
		///  starting position of the copy. When the call returns, begin is the position of the first
		///  byte that was \a not copied (which may be different than end). begin can be used for
		///  subsequent calls to CopyRangeTo2().
		virtual size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const =0;

		// upon return, messageCount contains number of messages that have finished being transferred,
		// and returns the number of bytes left in the current transfer block

		/// \brief Transfer messages from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param messageCount the number of messages to transfer
		/// \param channel the channel on which the transfer should occur
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
		/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
		/// \details messageCount is an \a IN and \a OUT parameter. When the call is made, messageCount is the
		///  the number of messages requested to be transferred. When the call returns, messageCount is the
		///  number of messages actually transferred.
		size_t TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);

		// returns the number of bytes left in the current transfer block

		/// \brief Transfer all bytes from this object to another BufferedTransformation
		/// \param target the destination BufferedTransformation
		/// \param channel the channel on which the transfer should occur
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
		/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
		size_t TransferAllTo2(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
	//@}

	///	\name CHANNELS
	//@{
		/// \brief Exception thrown when a filter does not support named channels
		struct NoChannelSupport : public NotImplemented
			{NoChannelSupport(const std::string &name) : NotImplemented(name + ": this object doesn't support multiple channels") {}};
		/// \brief Exception thrown when a filter does not recognize a named channel
		struct InvalidChannelName : public InvalidArgument
			{InvalidChannelName(const std::string &name, const std::string &channel) : InvalidArgument(name + ": unexpected channel name \"" + channel + "\"") {}};

		/// \brief Input a byte for processing on a channel
		/// \param channel the channel to process the data.
		/// \param inByte the 8-bit byte (octet) to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		size_t ChannelPut(const std::string &channel, byte inByte, bool blocking=true)
			{return ChannelPut(channel, &inByte, 1, blocking);}

		/// \brief Input a byte buffer for processing on a channel
		/// \param channel the channel to process the data
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param blocking specifies whether the object should block when processing input
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		size_t ChannelPut(const std::string &channel, const byte *inString, size_t length, bool blocking=true)
			{return ChannelPut2(channel, inString, length, 0, blocking);}

		/// \brief Input multiple bytes that may be modified by callee on a channel
		/// \param channel the channel to process the data.
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param blocking specifies whether the object should block when processing input
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		size_t ChannelPutModifiable(const std::string &channel, byte *inString, size_t length, bool blocking=true)
			{return ChannelPutModifiable2(channel, inString, length, 0, blocking);}

		/// \brief Input a 16-bit word for processing on a channel.
		/// \param channel the channel to process the data.
		/// \param value the 16-bit value to be processed.
		/// \param order the ByteOrder of the value to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		size_t ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);

		/// \brief Input a 32-bit word for processing on a channel.
		/// \param channel the channel to process the data.
		/// \param value the 32-bit value to be processed.
		/// \param order the ByteOrder of the value to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		size_t ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);

		/// \brief Input a 64-bit word for processing on a channel.
		/// \param channel the channel to process the data.
		/// \param value the 64-bit value to be processed.
		/// \param order the ByteOrder of the value to be processed.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		size_t ChannelPutWord64(const std::string &channel, word64 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);

		/// \brief Signal the end of a message
		/// \param channel the channel to process the data.
		/// \param propagation the number of attached transformations the ChannelMessageEnd() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
		///  number of bytes that were not processed.
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		bool ChannelMessageEnd(const std::string &channel, int propagation=-1, bool blocking=true)
			{return !!ChannelPut2(channel, NULLPTR, 0, propagation < 0 ? -1 : propagation+1, blocking);}

		/// \brief Input multiple bytes for processing and signal the end of a message
		/// \param channel the channel to process the data.
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param propagation the number of attached transformations the ChannelPutMessageEnd() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed)
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		size_t ChannelPutMessageEnd(const std::string &channel, const byte *inString, size_t length, int propagation=-1, bool blocking=true)
			{return ChannelPut2(channel, inString, length, propagation < 0 ? -1 : propagation+1, blocking);}

		/// \brief Request space which can be written into by the caller
		/// \param channel the channel to process the data
		/// \param size the requested size of the buffer
		/// \return a pointer to a memory block with length size
		/// \details The purpose of this method is to help avoid extra memory allocations.
		/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
		///  size is the requested size of the buffer. When the call returns, size is the size of
		///  the array returned to the caller.
		/// \details The base class implementation sets size to 0 and returns NULL.
		/// \note Some objects, like ArraySink(), cannot create a space because its fixed. In the case of
		///  an ArraySink(), the pointer to the array is returned and the size is remaining size.
		virtual byte * ChannelCreatePutSpace(const std::string &channel, size_t &size);

		/// \brief Input multiple bytes for processing on a channel.
		/// \param channel the channel to process the data.
		/// \param inString the byte buffer to process.
		/// \param length the size of the string, in bytes.
		/// \param messageEnd means how many filters to signal MessageEnd() to, including this one.
		/// \param blocking specifies whether the object should block when processing input.
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed)
		virtual size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking);

		/// \brief Input multiple bytes that may be modified by callee on a channel
		/// \param channel the channel to process the data
		/// \param inString the byte buffer to process
		/// \param length the size of the string, in bytes
		/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
		/// \param blocking specifies whether the object should block when processing input
		/// \return the number of bytes that remain to be processed (i.e., bytes not processed)
		virtual size_t ChannelPutModifiable2(const std::string &channel, byte *inString, size_t length, int messageEnd, bool blocking);

		/// \brief Flush buffered input and/or output on a channel
		/// \param channel the channel to flush the data
		/// \param hardFlush is used to indicate whether all data should be flushed
		/// \param propagation the number of attached transformations the ChannelFlush() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return true of the Flush was successful
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true);

		/// \brief Marks the end of a series of messages on a channel
		/// \param channel the channel to signal the end of a series of messages
		/// \param propagation the number of attached transformations the ChannelMessageSeriesEnd() signal should be passed
		/// \param blocking specifies whether the object should block when processing input
		/// \return true if the message was successful, false otherwise
		/// \details Each object that receives the signal will perform its processing, decrement
		///  propagation, and then pass the signal on to attached transformations if the value is not 0.
		/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
		///  object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
		/// \note There should be a MessageEnd() immediately before MessageSeriesEnd().
		virtual bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true);

		/// \brief Sets the default retrieval channel
		/// \param channel the channel to signal the end of a series of messages
		/// \note this function may not be implemented in all objects that should support it.
		virtual void SetRetrievalChannel(const std::string &channel);
	//@}

	///	\name ATTACHMENT
	/// \details Some BufferedTransformation objects (e.g. Filter objects) allow other BufferedTransformation objects to be
	///  attached. When this is done, the first object instead of buffering its output, sends that output to the attached
	///  object as input. The entire attachment chain is deleted when the anchor object is destructed.

	//@{
		/// \brief Determines whether the object allows attachment
		/// \return true if the object allows an attachment, false otherwise
		/// \details Sources and Filters will returns true, while Sinks and other objects will return false.
		virtual bool Attachable() {return false;}

		/// \brief Returns the object immediately attached to this object
		/// \return the attached transformation
		/// \details AttachedTransformation() returns NULL if there is no attachment. The non-const
		///  version of AttachedTransformation() always returns NULL.
		virtual BufferedTransformation *AttachedTransformation() {CRYPTOPP_ASSERT(!Attachable()); return NULLPTR;}

		/// \brief Returns the object immediately attached to this object
		/// \return the attached transformation
		/// \details AttachedTransformation() returns NULL if there is no attachment. The non-const
		///  version of AttachedTransformation() always returns NULL.
		virtual const BufferedTransformation *AttachedTransformation() const
			{return const_cast<BufferedTransformation *>(this)->AttachedTransformation();}

		/// \brief Delete the current attachment chain and attach a new one
		/// \param newAttachment the new BufferedTransformation to attach
		/// \throw NotImplemented
		/// \details Detach() deletes the current attachment chain and replace it with an optional newAttachment
		/// \details If a derived class does not override Detach(), then the base class throws
		///  NotImplemented.
		virtual void Detach(BufferedTransformation *newAttachment = NULLPTR) {
			CRYPTOPP_UNUSED(newAttachment); CRYPTOPP_ASSERT(!Attachable());
			throw NotImplemented("BufferedTransformation: this object is not attachable");
		}

		/// \brief Add newAttachment to the end of attachment chain
		/// \param newAttachment the attachment to add to the end of the chain
		virtual void Attach(BufferedTransformation *newAttachment);
	//@}

protected:
	/// \brief Decrements the propagation count while clamping at 0
	/// \return the decremented propagation or 0
	static int DecrementPropagation(int propagation)
		{return propagation != 0 ? propagation - 1 : 0;}

private:
	// for ChannelPutWord16, ChannelPutWord32 and ChannelPutWord64,
	// to ensure the buffer isn't deallocated before non-blocking
	// operation completes
	byte m_buf[8];
};

/// \brief An input discarding BufferedTransformation
/// \return a reference to a BufferedTransformation object that discards all input
CRYPTOPP_DLL BufferedTransformation & TheBitBucket();

/// \brief Interface for crypto material
/// \details CryptoMaterial() is an interface for crypto material, such as
///  public keys, private keys and crypto parameters. Derived classes generally
///  do not offer public methods such as GenerateRandom() and
///  GenerateRandomWithKeySize().
/// \sa GeneratableCryptoMaterial()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoMaterial : public NameValuePairs
{
public:
	/// Exception thrown when invalid crypto material is detected
	class CRYPTOPP_DLL InvalidMaterial : public InvalidDataFormat
	{
	public:
		explicit InvalidMaterial(const std::string &s) : InvalidDataFormat(s) {}
	};

	virtual ~CryptoMaterial() {}

	/// \brief Assign values to this object
	/// \details This function can be used to create a public key from a private key.
	virtual void AssignFrom(const NameValuePairs &source) =0;

	/// \brief Check this object for errors
	/// \param rng a RandomNumberGenerator for objects which use randomized testing
	/// \param level the level of thoroughness
	/// \return true if the tests succeed, false otherwise
	/// \details There are four levels of thoroughness:
	///   <ul>
	///   <li>0 - using this object won't cause a crash or exception
	///   <li>1 - this object will probably function, and encrypt, sign, other operations correctly
	///   <li>2 - ensure this object will function correctly, and perform reasonable security checks
	///   <li>3 - perform reasonable security checks, and do checks that may take a long time
	///   </ul>
	/// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
	///  Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
	/// \sa ThrowIfInvalid()
	virtual bool Validate(RandomNumberGenerator &rng, unsigned int level) const =0;

	/// \brief Check this object for errors
	/// \param rng a RandomNumberGenerator for objects which use randomized testing
	/// \param level the level of thoroughness
	/// \throw InvalidMaterial
	/// \details Internally, ThrowIfInvalid() calls Validate() and throws InvalidMaterial() if validation fails.
	/// \sa Validate()
	virtual void ThrowIfInvalid(RandomNumberGenerator &rng, unsigned int level) const
		{if (!Validate(rng, level)) throw InvalidMaterial("CryptoMaterial: this object contains invalid values");}

	/// \brief Saves a key to a BufferedTransformation
	/// \param bt the destination BufferedTransformation
	/// \throw NotImplemented
	/// \details Save() writes the material to a BufferedTransformation.
	/// \details If the material is a key, then the key is written with ASN.1 DER encoding. The key
	///  includes an object identifier with an algorithm id, like a subjectPublicKeyInfo.
	/// \details A "raw" key without the "key info" can be saved using a key's DEREncode() method.
	/// \details If a derived class does not override Save(), then the base class throws
	///  NotImplemented().
	virtual void Save(BufferedTransformation &bt) const
		{CRYPTOPP_UNUSED(bt); throw NotImplemented("CryptoMaterial: this object does not support saving");}

	/// \brief Loads a key from a BufferedTransformation
	/// \param bt the source BufferedTransformation
	/// \throw KeyingErr
	/// \details Load() attempts to read material from a BufferedTransformation. If the
	///  material is a key that was generated outside the library, then the following
	///  usually applies:
	///   <ul>
	///   <li>the key should be ASN.1 BER encoded
	///   <li>the key should be a "key info"
	///   </ul>
	/// \details "key info" means the key should have an object identifier with an algorithm id,
	///  like a subjectPublicKeyInfo.
	/// \details To read a "raw" key without the "key info", then call the key's BERDecode() method.
	/// \note Load() generally does not check that the key is valid. Call Validate(), if needed.
	virtual void Load(BufferedTransformation &bt)
		{CRYPTOPP_UNUSED(bt); throw NotImplemented("CryptoMaterial: this object does not support loading");}

	/// \brief Determines whether the object supports precomputation
	/// \return true if the object supports precomputation, false otherwise
	/// \sa Precompute()
	virtual bool SupportsPrecomputation() const {return false;}

	/// \brief Perform precomputation
	/// \param precomputationStorage the suggested number of objects for the precompute table
	/// \throw NotImplemented
	/// \details The exact semantics of Precompute() varies, but it typically means calculate
	///  a table of n objects that can be used later to speed up computation.
	/// \details If a derived class does not override Precompute(), then the base class throws
	///  NotImplemented.
	/// \sa SupportsPrecomputation(), LoadPrecomputation(), SavePrecomputation()
	virtual void Precompute(unsigned int precomputationStorage) {
		CRYPTOPP_UNUSED(precomputationStorage); CRYPTOPP_ASSERT(!SupportsPrecomputation());
		throw NotImplemented("CryptoMaterial: this object does not support precomputation");
	}

	/// \brief Retrieve previously saved precomputation
	/// \param storedPrecomputation BufferedTransformation with the saved precomputation
	/// \throw NotImplemented
	/// \sa SupportsPrecomputation(), Precompute()
	virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
		{CRYPTOPP_UNUSED(storedPrecomputation); CRYPTOPP_ASSERT(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}

	/// \brief Save precomputation for later use
	/// \param storedPrecomputation BufferedTransformation to write the precomputation
	/// \throw NotImplemented
	/// \sa SupportsPrecomputation(), Precompute()
	virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
		{CRYPTOPP_UNUSED(storedPrecomputation); CRYPTOPP_ASSERT(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}

	/// \brief Perform a quick sanity check
	/// \details DoQuickSanityCheck() is for internal library use, and it should not be called by library users.
	void DoQuickSanityCheck() const	{ThrowIfInvalid(NullRNG(), 0);}

#if defined(__SUNPRO_CC)
	// Sun Studio 11/CC 5.8 workaround: it generates incorrect code
	// when casting to an empty virtual base class. JW, 2018: It is
	// still a problem in Sun Studio 12.6/CC 5.15 on i386. Just enable
	// it everywhere in case it affects SPARC (which we don't test).
	char m_sunCCworkaround;
#endif
};

/// \brief Interface for crypto material
/// \details GeneratableCryptoMaterial() is an interface for crypto material,
///  such as private keys and crypto parameters. Derived classes offer public
///  methods such as GenerateRandom() and GenerateRandomWithKeySize().
/// \sa CryptoMaterial()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE GeneratableCryptoMaterial : virtual public CryptoMaterial
{
public:
	virtual ~GeneratableCryptoMaterial() {}

	/// \brief Generate a random key or crypto parameters
	/// \param rng a RandomNumberGenerator to produce keying material
	/// \param params additional initialization parameters
	/// \throw KeyingErr if a key can't be generated or algorithm parameters are invalid
	/// \details If a derived class does not override GenerateRandom(), then the base class throws
	///  NotImplemented.
	virtual void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs) {
		CRYPTOPP_UNUSED(rng); CRYPTOPP_UNUSED(params);
		throw NotImplemented("GeneratableCryptoMaterial: this object does not support key/parameter generation");
	}

	/// \brief Generate a random key or crypto parameters
	/// \param rng a RandomNumberGenerator to produce keying material
	/// \param keySize the size of the key, in bits
	/// \throw KeyingErr if a key can't be generated or algorithm parameters are invalid
	/// \details GenerateRandomWithKeySize calls GenerateRandom() with a NameValuePairs
	///  object with only "KeySize"
	void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize);
};

/// \brief Interface for public keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKey : virtual public CryptoMaterial
{
};

/// \brief Interface for private keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKey : public GeneratableCryptoMaterial
{
};

/// \brief Interface for crypto parameters
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoParameters : public GeneratableCryptoMaterial
{
};

/// \brief Interface for certificates
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Certificate : virtual public CryptoMaterial
{
};

/// \brief Interface for asymmetric algorithms
/// \details BERDecode() and DEREncode() were removed under Issue 569
///  and Commit 9b174e84de7a. Programs should use <tt>AccessMaterial().Load(bt)</tt>
///  or <tt>GetMaterial().Save(bt)</tt> instead.
/// \sa <A HREF="https://github.com/weidai11/cryptopp/issues/569">Issue 569</A>
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AsymmetricAlgorithm : public Algorithm
{
public:
	virtual ~AsymmetricAlgorithm() {}

	/// \brief Retrieves a reference to CryptoMaterial
	/// \return a reference to the crypto material
	virtual CryptoMaterial & AccessMaterial() =0;

	/// \brief Retrieves a reference to CryptoMaterial
	/// \return a const reference to the crypto material
	virtual const CryptoMaterial & GetMaterial() const =0;

#if 0
	/// \brief Loads this object from a BufferedTransformation
	/// \param bt a BufferedTransformation object
	/// \details Use of BERDecode() changed to Load() at Issue 569.
	/// \deprecated for backwards compatibility, calls <tt>AccessMaterial().Load(bt)</tt>
	void BERDecode(BufferedTransformation &bt)
		{AccessMaterial().Load(bt);}

	/// \brief Saves this object to a BufferedTransformation
	/// \param bt a BufferedTransformation object
	/// \details Use of DEREncode() changed to Save() at Issue 569.
	/// \deprecated for backwards compatibility, calls GetMaterial().Save(bt)
	void DEREncode(BufferedTransformation &bt) const
		{GetMaterial().Save(bt);}
#endif
};

/// \brief Interface for asymmetric algorithms using public keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKeyAlgorithm : public AsymmetricAlgorithm
{
public:
	virtual ~PublicKeyAlgorithm() {}

	// VC60 workaround: no co-variant return type

	/// \brief Retrieves a reference to a Public Key
	/// \return a reference to the public key
	CryptoMaterial & AccessMaterial()
		{return AccessPublicKey();}
	/// \brief Retrieves a reference to a Public Key
	/// \return a const reference the public key
	const CryptoMaterial & GetMaterial() const
		{return GetPublicKey();}

	/// \brief Retrieves a reference to a Public Key
	/// \return a reference to the public key
	virtual PublicKey & AccessPublicKey() =0;
	/// \brief Retrieves a reference to a Public Key
	/// \return a const reference the public key
	virtual const PublicKey & GetPublicKey() const
		{return const_cast<PublicKeyAlgorithm *>(this)->AccessPublicKey();}
};

/// \brief Interface for asymmetric algorithms using private keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKeyAlgorithm : public AsymmetricAlgorithm
{
public:
	virtual ~PrivateKeyAlgorithm() {}

	/// \brief Retrieves a reference to a Private Key
	/// \return a reference the private key
	CryptoMaterial & AccessMaterial() {return AccessPrivateKey();}
	/// \brief Retrieves a reference to a Private Key
	/// \return a const reference the private key
	const CryptoMaterial & GetMaterial() const {return GetPrivateKey();}

	/// \brief Retrieves a reference to a Private Key
	/// \return a reference the private key
	virtual PrivateKey & AccessPrivateKey() =0;
	/// \brief Retrieves a reference to a Private Key
	/// \return a const reference the private key
	virtual const PrivateKey & GetPrivateKey() const {return const_cast<PrivateKeyAlgorithm *>(this)->AccessPrivateKey();}
};

/// \brief Interface for key agreement algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE KeyAgreementAlgorithm : public AsymmetricAlgorithm
{
public:
	virtual ~KeyAgreementAlgorithm() {}

	/// \brief Retrieves a reference to Crypto Parameters
	/// \return a reference the crypto parameters
	CryptoMaterial & AccessMaterial() {return AccessCryptoParameters();}
	/// \brief Retrieves a reference to Crypto Parameters
	/// \return a const reference the crypto parameters
	const CryptoMaterial & GetMaterial() const {return GetCryptoParameters();}

	/// \brief Retrieves a reference to Crypto Parameters
	/// \return a reference the crypto parameters
	virtual CryptoParameters & AccessCryptoParameters() =0;
	/// \brief Retrieves a reference to Crypto Parameters
	/// \return a const reference the crypto parameters
	virtual const CryptoParameters & GetCryptoParameters() const {return const_cast<KeyAgreementAlgorithm *>(this)->AccessCryptoParameters();}
};

/// \brief Interface for public-key encryptors and decryptors
/// \details This class provides an interface common to encryptors and decryptors
///  for querying their plaintext and ciphertext lengths.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_CryptoSystem
{
public:
	virtual ~PK_CryptoSystem() {}

	/// \brief Provides the maximum length of plaintext for a given ciphertext length
	/// \return the maximum size of the plaintext, in bytes
	/// \details This function returns 0 if ciphertextLength is not valid (too long or too short).
	virtual size_t MaxPlaintextLength(size_t ciphertextLength) const =0;

	/// \brief Calculate the length of ciphertext given length of plaintext
	/// \return the maximum size of the ciphertext, in bytes
	/// \details This function returns 0 if plaintextLength is not valid (too long).
	virtual size_t CiphertextLength(size_t plaintextLength) const =0;

	/// \brief Determines whether this object supports the use of a named parameter
	/// \param name the name of the parameter
	/// \return true if the parameter name is supported, false otherwise
	/// \details Some possible parameter names: EncodingParameters(), KeyDerivationParameters()
	///  and others Parameters listed in argnames.h
	virtual bool ParameterSupported(const char *name) const =0;

	/// \brief Provides the fixed ciphertext length, if one exists
	/// \return the fixed ciphertext length if one exists, otherwise 0
	/// \details "Fixed" here means length of ciphertext does not depend on length of plaintext.
	///  In this case, it usually does depend on the key length.
	virtual size_t FixedCiphertextLength() const {return 0;}

	/// \brief Provides the maximum plaintext length given a fixed ciphertext length
	/// \return maximum plaintext length given the fixed ciphertext length, if one exists,
	///  otherwise return 0.
	/// \details FixedMaxPlaintextLength(0 returns the maximum plaintext length given the fixed ciphertext
	///  length, if one exists, otherwise return 0.
	virtual size_t FixedMaxPlaintextLength() const {return 0;}
};

/// \brief Interface for public-key encryptors
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Encryptor : public PK_CryptoSystem, public PublicKeyAlgorithm
{
public:
	/// \brief Exception thrown when trying to encrypt plaintext of invalid length
	class CRYPTOPP_DLL InvalidPlaintextLength : public Exception
	{
	public:
		InvalidPlaintextLength() : Exception(OTHER_ERROR, "PK_Encryptor: invalid plaintext length") {}
	};

	/// \brief Encrypt a byte string
	/// \param rng a RandomNumberGenerator derived class
	/// \param plaintext the plaintext byte buffer
	/// \param plaintextLength the size of the plaintext byte buffer
	/// \param ciphertext a byte buffer to hold the encrypted string
	/// \param parameters a set of NameValuePairs to initialize this object
	/// \pre <tt>CiphertextLength(plaintextLength) != 0</tt> ensures the plaintext isn't too large
	/// \pre <tt>COUNTOF(ciphertext) == CiphertextLength(plaintextLength)</tt> ensures the output
	///  byte buffer is large enough.
	/// \sa PK_Decryptor
	virtual void Encrypt(RandomNumberGenerator &rng,
		const byte *plaintext, size_t plaintextLength,
		byte *ciphertext, const NameValuePairs &parameters = g_nullNameValuePairs) const =0;

	/// \brief Create a new encryption filter
	/// \param rng a RandomNumberGenerator derived class
	/// \param attachment an attached transformation
	/// \param parameters a set of NameValuePairs to initialize this object
	/// \details \p attachment can be \p NULL. The caller is responsible for deleting the returned pointer.
	///  Encoding parameters should be passed in the "EP" channel.
	virtual BufferedTransformation * CreateEncryptionFilter(RandomNumberGenerator &rng,
		BufferedTransformation *attachment=NULLPTR, const NameValuePairs &parameters = g_nullNameValuePairs) const;
};

/// \brief Interface for public-key decryptors
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Decryptor : public PK_CryptoSystem, public PrivateKeyAlgorithm
{
public:
	virtual ~PK_Decryptor() {}

	/// \brief Decrypt a byte string
	/// \param rng a RandomNumberGenerator derived class
	/// \param ciphertext the encrypted byte buffer
	/// \param ciphertextLength the size of the encrypted byte buffer
	/// \param plaintext a byte buffer to hold the decrypted string
	/// \param parameters a set of NameValuePairs to initialize this object
	/// \return the result of the decryption operation
	/// \details If DecodingResult::isValidCoding is true, then DecodingResult::messageLength
	///  is valid and holds the actual length of the plaintext recovered. The result is undefined
	///  if decryption failed. If DecodingResult::isValidCoding is false, then DecodingResult::messageLength
	///  is undefined.
	/// \pre <tt>COUNTOF(plaintext) == MaxPlaintextLength(ciphertextLength)</tt> ensures the output
	///  byte buffer is large enough
	/// \sa PK_Encryptor
	virtual DecodingResult Decrypt(RandomNumberGenerator &rng,
		const byte *ciphertext, size_t ciphertextLength,
		byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const =0;

	/// \brief Create a new decryption filter
	/// \param rng a RandomNumberGenerator derived class
	/// \param attachment an attached transformation
	/// \param parameters a set of NameValuePairs to initialize this object
	/// \return the newly created decryption filter
	/// \note the caller is responsible for deleting the returned pointer
	virtual BufferedTransformation * CreateDecryptionFilter(RandomNumberGenerator &rng,
		BufferedTransformation *attachment=NULLPTR, const NameValuePairs &parameters = g_nullNameValuePairs) const;

	/// \brief Decrypt a fixed size ciphertext
	/// \param rng a RandomNumberGenerator derived class
	/// \param ciphertext the encrypted byte buffer
	/// \param plaintext a byte buffer to hold the decrypted string
	/// \param parameters a set of NameValuePairs to initialize this object
	/// \return the result of the decryption operation
	/// \details If DecodingResult::isValidCoding is true, then DecodingResult::messageLength
	///  is valid and holds the actual length of the plaintext recovered. The result is undefined
	///  if decryption failed. If DecodingResult::isValidCoding is false, then DecodingResult::messageLength
	///  is undefined.
	/// \pre <tt>COUNTOF(plaintext) == MaxPlaintextLength(ciphertextLength)</tt> ensures the output
	///  byte buffer is large enough
	/// \sa PK_Encryptor
	DecodingResult FixedLengthDecrypt(RandomNumberGenerator &rng, const byte *ciphertext, byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const
		{return Decrypt(rng, ciphertext, FixedCiphertextLength(), plaintext, parameters);}
};

/// \brief Interface for public-key signers and verifiers
/// \details This class provides an interface common to signers and verifiers for querying scheme properties
/// \sa DL_SignatureSchemeBase, TF_SignatureSchemeBase, DL_SignerBase, TF_SignerBase
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_SignatureScheme
{
public:
	/// \brief Exception throw when the private or public key has a length that can't be used
	/// \details InvalidKeyLength() may be thrown by any function in this class if the private
	///  or public key has a length that can't be used
	class CRYPTOPP_DLL InvalidKeyLength : public Exception
	{
	public:
		InvalidKeyLength(const std::string &message) : Exception(OTHER_ERROR, message) {}
	};

	/// \brief Exception throw when the private or public key is too short to sign or verify
	/// \details KeyTooShort() may be thrown by any function in this class if the private or public
	///  key is too short to sign or verify anything
	class CRYPTOPP_DLL KeyTooShort : public InvalidKeyLength
	{
	public:
		KeyTooShort() : InvalidKeyLength("PK_Signer: key too short for this signature scheme") {}
	};

	virtual ~PK_SignatureScheme() {}

	/// \brief Provides the signature length if it only depends on the key
	/// \return the signature length if it only depends on the key, in bytes
	/// \details SignatureLength() returns the signature length if it only depends on the key, otherwise 0.
	virtual size_t SignatureLength() const =0;

	/// \brief Provides the maximum signature length produced given the length of the recoverable message part
	/// \param recoverablePartLength the length of the recoverable message part, in bytes
	/// \return the maximum signature length produced for a given length of recoverable message part, in bytes
	/// \details MaxSignatureLength() returns the maximum signature length produced given the length of the
	///  recoverable message part.
	virtual size_t MaxSignatureLength(size_t recoverablePartLength = 0) const
		{CRYPTOPP_UNUSED(recoverablePartLength); return SignatureLength();}

	/// \brief Provides the length of longest message that can be recovered
	/// \return the length of longest message that can be recovered, in bytes
	/// \details MaxRecoverableLength() returns the length of longest message that can be recovered, or 0 if
	///  this signature scheme does not support message recovery.
	virtual size_t MaxRecoverableLength() const =0;

	/// \brief Provides the length of longest message that can be recovered from a signature of given length
	/// \param signatureLength the length of the signature, in bytes
	/// \return the length of longest message that can be recovered from a signature of given length, in bytes
	/// \details MaxRecoverableLengthFromSignatureLength() returns the length of longest message that can be
	///  recovered from a signature of given length, or 0 if this signature scheme does not support message
	///  recovery.
	virtual size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const =0;

	/// \brief Determines whether a signature scheme requires a random number generator
	/// \return true if the signature scheme requires a RandomNumberGenerator() to sign
	/// \details if IsProbabilistic() returns false, then NullRNG() can be passed to functions that take
	///  RandomNumberGenerator().
	virtual bool IsProbabilistic() const =0;

	/// \brief Determines whether the non-recoverable message part can be signed
	/// \return true if the non-recoverable message part can be signed
	virtual bool AllowNonrecoverablePart() const =0;

	/// \brief Determines whether the signature must be input before the message
	/// \return true if the signature must be input before the message during verifcation
	/// \details if SignatureUpfront() returns true, then you must input the signature before the message
	///  during verification. Otherwise you can input the signature at anytime.
	virtual bool SignatureUpfront() const {return false;}

	/// \brief Determines whether the recoverable part must be input before the non-recoverable part
	/// \return true if the recoverable part must be input before the non-recoverable part during signing
	/// \details RecoverablePartFirst() determines whether you must input the recoverable part before the
	///  non-recoverable part during signing
	virtual bool RecoverablePartFirst() const =0;
};

/// \brief Interface for accumulating messages to be signed or verified
/// \details Only Update() should be called from the PK_MessageAccumulator() class. No other functions
///  inherited from HashTransformation, like DigestSize() and TruncatedFinal(), should be called.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_MessageAccumulator : public HashTransformation
{
public:
	/// \warning DigestSize() should not be called on PK_MessageAccumulator
	unsigned int DigestSize() const
		{throw NotImplemented("PK_MessageAccumulator: DigestSize() should not be called");}

	/// \warning TruncatedFinal() should not be called on PK_MessageAccumulator
	void TruncatedFinal(byte *digest, size_t digestSize)
	{
		CRYPTOPP_UNUSED(digest); CRYPTOPP_UNUSED(digestSize);
		throw NotImplemented("PK_MessageAccumulator: TruncatedFinal() should not be called");
	}
};

/// \brief Interface for public-key signers
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Signer : public PK_SignatureScheme, public PrivateKeyAlgorithm
{
public:
	virtual ~PK_Signer() {}

	/// \brief Create a new HashTransformation to accumulate the message to be signed
	/// \param rng a RandomNumberGenerator derived class
	/// \return a pointer to a PK_MessageAccumulator
	/// \details NewSignatureAccumulator() can be used with all signing methods. Sign() will automatically delete the
	///  accumulator pointer. The caller is responsible for deletion if a method is called that takes a reference.
	virtual PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const =0;

	/// \brief Input a recoverable message to an accumulator
	/// \param messageAccumulator a reference to a PK_MessageAccumulator
	/// \param recoverableMessage a pointer to the recoverable message part to be signed
	/// \param recoverableMessageLength the size of the recoverable message part
	virtual void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const =0;

	/// \brief Sign and delete the messageAccumulator
	/// \param rng a RandomNumberGenerator derived class
	/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
	/// \param signature a block of bytes for the signature
	/// \return actual signature length
	/// \details Sign() deletes the messageAccumulator, even if an exception is thrown.
	/// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
	virtual size_t Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const;

	/// \brief Sign and restart messageAccumulator
	/// \param rng a RandomNumberGenerator derived class
	/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
	/// \param signature a block of bytes for the signature
	/// \param restart flag indicating whether the messageAccumulator should be restarted
	/// \return actual signature length
	/// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
	virtual size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const =0;

	/// \brief Sign a message
	/// \param rng a RandomNumberGenerator derived class
	/// \param message a pointer to the message
	/// \param messageLen the size of the message to be signed
	/// \param signature a block of bytes for the signature
	/// \return actual signature length
	/// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
	virtual size_t SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const;

	/// \brief Sign a recoverable message
	/// \param rng a RandomNumberGenerator derived class
	/// \param recoverableMessage a pointer to the recoverable message part to be signed
	/// \param recoverableMessageLength the size of the recoverable message part
	/// \param nonrecoverableMessage a pointer to the non-recoverable message part to be signed
	/// \param nonrecoverableMessageLength the size of the non-recoverable message part
	/// \param signature a block of bytes for the signature
	/// \return actual signature length
	/// \pre <tt>COUNTOF(signature) == MaxSignatureLength(recoverableMessageLength)</tt>
	virtual size_t SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
		const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const;
};

/// \brief Interface for public-key signature verifiers
/// \details The Recover* functions throw NotImplemented if the signature scheme does not support
///  message recovery.
/// \details The Verify* functions throw InvalidDataFormat if the scheme does support message
///  recovery and the signature contains a non-empty recoverable message part. The
///  Recover* functions should be used in that case.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Verifier : public PK_SignatureScheme, public PublicKeyAlgorithm
{
public:
	virtual ~PK_Verifier() {}

	/// \brief Create a new HashTransformation to accumulate the message to be verified
	/// \return a pointer to a PK_MessageAccumulator
	/// \details NewVerificationAccumulator() can be used with all verification methods. Verify() will automatically delete
	///  the accumulator pointer. The caller is responsible for deletion if a method is called that takes a reference.
	virtual PK_MessageAccumulator * NewVerificationAccumulator() const =0;

	/// \brief Input signature into a message accumulator
	/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
	/// \param signature the signature on the message
	/// \param signatureLength the size of the signature
	virtual void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const =0;

	/// \brief Check whether messageAccumulator contains a valid signature and message
	/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
	/// \return true if the signature is valid, false otherwise
	/// \details Verify() deletes the messageAccumulator, even if an exception is thrown.
	virtual bool Verify(PK_MessageAccumulator *messageAccumulator) const;

	/// \brief Check whether messageAccumulator contains a valid signature and message, and restart messageAccumulator
	/// \param messageAccumulator a reference to a PK_MessageAccumulator derived class
	/// \return true if the signature is valid, false otherwise
	/// \details VerifyAndRestart() restarts the messageAccumulator
	virtual bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const =0;

	/// \brief Check whether input signature is a valid signature for input message
	/// \param message a pointer to the message to be verified
	/// \param messageLen the size of the message
	/// \param signature a pointer to the signature over the message
	/// \param signatureLen the size of the signature
	/// \return true if the signature is valid, false otherwise
	virtual bool VerifyMessage(const byte *message, size_t messageLen,
		const byte *signature, size_t signatureLen) const;

	/// \brief Recover a message from its signature
	/// \param recoveredMessage a pointer to the recoverable message part to be verified
	/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
	/// \return the result of the verification operation
	/// \details Recover() deletes the messageAccumulator, even if an exception is thrown.
	/// \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
	virtual DecodingResult Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const;

	/// \brief Recover a message from its signature
	/// \param recoveredMessage a pointer to the recoverable message part to be verified
	/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
	/// \return the result of the verification operation
	/// \details RecoverAndRestart() restarts the messageAccumulator
	/// \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
	virtual DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const =0;

	/// \brief Recover a message from its signature
	/// \param recoveredMessage a pointer for the recovered message
	/// \param nonrecoverableMessage a pointer to the non-recoverable message part to be signed
	/// \param nonrecoverableMessageLength the size of the non-recoverable message part
	/// \param signature the signature on the message
	/// \param signatureLength the size of the signature
	/// \return the result of the verification operation
	/// \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
	virtual DecodingResult RecoverMessage(byte *recoveredMessage,
		const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
		const byte *signature, size_t signatureLength) const;
};

/// \brief Interface for domains of simple key agreement protocols
/// \details A key agreement domain is a set of parameters that must be shared
///  by two parties in a key agreement protocol, along with the algorithms
///  for generating key pairs and deriving agreed values.
/// \since Crypto++ 3.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
	virtual ~SimpleKeyAgreementDomain() {}

	/// \brief Provides the size of the agreed value
	/// \return size of agreed value produced in this domain
	virtual unsigned int AgreedValueLength() const =0;

	/// \brief Provides the size of the private key
	/// \return size of private keys in this domain
	virtual unsigned int PrivateKeyLength() const =0;

	/// \brief Provides the size of the public key
	/// \return size of public keys in this domain
	virtual unsigned int PublicKeyLength() const =0;

	/// \brief Generate private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
	virtual void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;

	/// \brief Generate a public key from a private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer with the previously generated private key
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \pre <tt>COUNTOF(publicKey) == PublicKeyLength()</tt>
	virtual void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;

	/// \brief Generate a private/public key pair
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \details GenerateKeyPair() is equivalent to calling GeneratePrivateKey() and then GeneratePublicKey().
	/// \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
	/// \pre <tt>COUNTOF(publicKey) == PublicKeyLength()</tt>
	virtual void GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;

	/// \brief Derive agreed value
	/// \param agreedValue a byte buffer for the shared secret
	/// \param privateKey a byte buffer with your private key in this domain
	/// \param otherPublicKey a byte buffer with the other party's public key in this domain
	/// \param validateOtherPublicKey a flag indicating if the other party's public key should be validated
	/// \return true upon success, false in case of failure
	/// \details Agree() derives an agreed value from your private keys and couterparty's public keys.
	/// \details The other party's public key is validated by default. If you have previously validated the
	///  static public key, use <tt>validateStaticOtherPublicKey=false</tt> to save time.
	/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
	/// \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
	/// \pre <tt>COUNTOF(otherPublicKey) == PublicKeyLength()</tt>
	virtual bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const =0;
};

/// \brief Interface for domains of authenticated key agreement protocols
/// \details In an authenticated key agreement protocol, each party has two
///  key pairs. The long-lived key pair is called the static key pair,
///  and the short-lived key pair is called the ephemeral key pair.
/// \since Crypto++ 3.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
	virtual ~AuthenticatedKeyAgreementDomain() {}

	/// \brief Provides the size of the agreed value
	/// \return size of agreed value produced in this domain
	virtual unsigned int AgreedValueLength() const =0;

	/// \brief Provides the size of the static private key
	/// \return size of static private keys in this domain
	virtual unsigned int StaticPrivateKeyLength() const =0;

	/// \brief Provides the size of the static public key
	/// \return size of static public keys in this domain
	virtual unsigned int StaticPublicKeyLength() const =0;

	/// \brief Generate static private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
	virtual void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;

	/// \brief Generate a static public key from a private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer with the previously generated private key
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
	virtual void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;

	/// \brief Generate a static private/public key pair
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \details GenerateStaticKeyPair() is equivalent to calling GenerateStaticPrivateKey() and then GenerateStaticPublicKey().
	/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
	/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
	virtual void GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;

	/// \brief Provides the size of ephemeral private key
	/// \return the size of ephemeral private key in this domain
	virtual unsigned int EphemeralPrivateKeyLength() const =0;

	/// \brief Provides the size of ephemeral public key
	/// \return the size of ephemeral public key in this domain
	virtual unsigned int EphemeralPublicKeyLength() const =0;

	/// \brief Generate ephemeral private key
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \pre <tt>COUNTOF(privateKey) == PrivateEphemeralKeyLength()</tt>
	virtual void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;

	/// \brief Generate ephemeral public key
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \pre <tt>COUNTOF(publicKey) == PublicEphemeralKeyLength()</tt>
	virtual void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;

	/// \brief Generate private/public key pair
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \details GenerateEphemeralKeyPair() is equivalent to calling GenerateEphemeralPrivateKey() and then GenerateEphemeralPublicKey()
	virtual void GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;

	/// \brief Derive agreed value
	/// \param agreedValue a byte buffer for the shared secret
	/// \param staticPrivateKey a byte buffer with your static private key in this domain
	/// \param ephemeralPrivateKey a byte buffer with your ephemeral private key in this domain
	/// \param staticOtherPublicKey a byte buffer with the other party's static public key in this domain
	/// \param ephemeralOtherPublicKey a byte buffer with the other party's ephemeral public key in this domain
	/// \param validateStaticOtherPublicKey a flag indicating if the other party's public key should be validated
	/// \return true upon success, false in case of failure
	/// \details Agree() derives an agreed value from your private keys and couterparty's public keys.
	/// \details The other party's ephemeral public key is validated by default. If you have previously validated
	///  the static public key, use <tt>validateStaticOtherPublicKey=false</tt> to save time.
	/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
	/// \pre <tt>COUNTOF(staticPrivateKey) == StaticPrivateKeyLength()</tt>
	/// \pre <tt>COUNTOF(ephemeralPrivateKey) == EphemeralPrivateKeyLength()</tt>
	/// \pre <tt>COUNTOF(staticOtherPublicKey) == StaticPublicKeyLength()</tt>
	/// \pre <tt>COUNTOF(ephemeralOtherPublicKey) == EphemeralPublicKeyLength()</tt>
	virtual bool Agree(byte *agreedValue,
		const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
		const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
		bool validateStaticOtherPublicKey=true) const =0;
};

// interface for password authenticated key agreement protocols, not implemented yet
#if 0
/// \brief Interface for protocol sessions
/*! The methods should be called in the following order:

	InitializeSession(rng, parameters);	// or call initialize method in derived class
	while (true)
	{
		if (OutgoingMessageAvailable())
		{
			length = GetOutgoingMessageLength();
			GetOutgoingMessage(message);
			; // send outgoing message
		}

		if (LastMessageProcessed())
			break;

		; // receive incoming message
		ProcessIncomingMessage(message);
	}
	; // call methods in derived class to obtain result of protocol session
*/
class ProtocolSession
{
public:
	/// Exception thrown when an invalid protocol message is processed
	class ProtocolError : public Exception
	{
	public:
		ProtocolError(ErrorType errorType, const std::string &s) : Exception(errorType, s) {}
	};

	/// Exception thrown when a function is called unexpectedly
	/*! for example calling ProcessIncomingMessage() when ProcessedLastMessage() == true */
	class UnexpectedMethodCall : public Exception
	{
	public:
		UnexpectedMethodCall(const std::string &s) : Exception(OTHER_ERROR, s) {}
	};

	virtual ~ProtocolSession() {}

	ProtocolSession() : m_rng(NULLPTR), m_throwOnProtocolError(true), m_validState(false) {}

	virtual void InitializeSession(RandomNumberGenerator &rng, const NameValuePairs &parameters) =0;

	bool GetThrowOnProtocolError() const {return m_throwOnProtocolError;}
	void SetThrowOnProtocolError(bool throwOnProtocolError) {m_throwOnProtocolError = throwOnProtocolError;}

	bool HasValidState() const {return m_validState;}

	virtual bool OutgoingMessageAvailable() const =0;
	virtual unsigned int GetOutgoingMessageLength() const =0;
	virtual void GetOutgoingMessage(byte *message) =0;

	virtual bool LastMessageProcessed() const =0;
	virtual void ProcessIncomingMessage(const byte *message, unsigned int messageLength) =0;

protected:
	void HandleProtocolError(Exception::ErrorType errorType, const std::string &s) const;
	void CheckAndHandleInvalidState() const;
	void SetValidState(bool valid) {m_validState = valid;}

	RandomNumberGenerator *m_rng;

private:
	bool m_throwOnProtocolError, m_validState;
};

class KeyAgreementSession : public ProtocolSession
{
public:
	virtual ~KeyAgreementSession() {}

	virtual unsigned int GetAgreedValueLength() const =0;
	virtual void GetAgreedValue(byte *agreedValue) const =0;
};

class PasswordAuthenticatedKeyAgreementSession : public KeyAgreementSession
{
public:
	virtual ~PasswordAuthenticatedKeyAgreementSession() {}

	void InitializePasswordAuthenticatedKeyAgreementSession(RandomNumberGenerator &rng,
		const byte *myId, unsigned int myIdLength,
		const byte *counterPartyId, unsigned int counterPartyIdLength,
		const byte *passwordOrVerifier, unsigned int passwordOrVerifierLength);
};

/// \brief Password based key agreement domain
/// \since Crypto++ 3.0
class PasswordAuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
	virtual ~PasswordAuthenticatedKeyAgreementDomain() {}

	/// return whether the domain parameters stored in this object are valid
	virtual bool ValidateDomainParameters(RandomNumberGenerator &rng) const
		{return GetCryptoParameters().Validate(rng, 2);}

	virtual unsigned int GetPasswordVerifierLength(const byte *password, unsigned int passwordLength) const =0;
	virtual void GeneratePasswordVerifier(RandomNumberGenerator &rng, const byte *userId, unsigned int userIdLength, const byte *password, unsigned int passwordLength, byte *verifier) const =0;

	enum RoleFlags {CLIENT=1, SERVER=2, INITIATOR=4, RESPONDER=8};

	virtual bool IsValidRole(unsigned int role) =0;
	virtual PasswordAuthenticatedKeyAgreementSession * CreateProtocolSession(unsigned int role) const =0;
};
#endif

/// \brief Exception thrown when an ASN.1 BER decoing error is encountered
class CRYPTOPP_DLL BERDecodeErr : public InvalidArgument
{
public:
	BERDecodeErr() : InvalidArgument("BER decode error") {}
	BERDecodeErr(const std::string &s) : InvalidArgument(s) {}
};

/// \brief Interface for encoding and decoding ASN1 objects
/// \details Each class that derives from ASN1Object should provide a serialization format
///  that controls subobject layout. Most of the time the serialization format is
///  taken from a standard, like P1363 or an RFC.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE ASN1Object
{
public:
	virtual ~ASN1Object() {}

	/// \brief Decode this object from a BufferedTransformation
	/// \param bt BufferedTransformation object
	/// \details Uses Basic Encoding Rules (BER)
	virtual void BERDecode(BufferedTransformation &bt) =0;

	/// \brief Encode this object into a BufferedTransformation
	/// \param bt BufferedTransformation object
	/// \details Uses Distinguished Encoding Rules (DER)
	virtual void DEREncode(BufferedTransformation &bt) const =0;

	/// \brief Encode this object into a BufferedTransformation
	/// \param bt BufferedTransformation object
	/// \details Uses Basic Encoding Rules (BER).
	/// \details This may be useful if DEREncode() would be too inefficient.
	virtual void BEREncode(BufferedTransformation &bt) const {DEREncode(bt);}
};

/// \brief Specifies the build-time version of the library
/// \return integer representing the build-time version
/// \details LibraryVersion can help detect inadvertent mixing and matching of library
///  versions. When using Crypto++ distributed by a third party, LibraryVersion()
///  records the version of the shared object that was built by the third party.
///  The LibraryVersion() record resides in <tt>cryptlib.o</tt> on Unix compatibles
///  and <tt>cryptlib.obj</tt> on Windows. It does not change when an app links
///  to the library.
/// \details LibraryVersion() is declared with C linkage (<tt>extern "C"</tt>) within the
///  CryptoPP namespace to help programs locate the symbol. If the symbol is present, then
///  the library version is 5.7 or above. If it is missing, then the library version is
///  5.6.5 or below.
/// \details The function could be used as shown below.
/// <pre>  if (LibraryVersion() != HeaderVersion())
///   {
///      cout << "Potential version mismatch" << endl;
///
///      const int lmaj = (LibraryVersion() / 100U) % 10;
///      const int lmin = (LibraryVersion() / 10U) % 10;
///      const int hmaj = (HeaderVersion() / 100U) % 10;
///      const int hmin = (HeaderVersion() / 10U) % 10;
///
///      if(lmaj != hmaj)
///         cout << "Major version mismatch" << endl;
///      else if(lmin != hmin)
///         cout << "Minor version mismatch" << endl;
///   }
/// </pre>
/// \sa HeaderVersion(), <A HREF="http://github.com/weidai11/cryptopp/issues/371">GitHub Issue 371</A>.
/// \since Crypto++ 6.0
extern "C" {
	int LibraryVersion(CRYPTOPP_NOINLINE_DOTDOTDOT);
} // C linkage

/// \brief Specifies the runtime version of the library
/// \return integer representing the runtime version
/// \details HeaderVersion() can help detect inadvertent mixing and matching of library
///  versions. When using Crypto++ distributed by a third party, HeaderVersion()
///  records the version of the headers used by the app when the app is compiled.
/// \details HeaderVersion() is declared with C linkage (<tt>extern "C"</tt>) within the
///  CryptoPP namespace to help programs locate the symbol. If the symbol is present, then
///  the library version is 5.7 or above. If it is missing, then the library version is
///  5.6.5 or below.
/// \details The function could be used as shown below.
/// <pre>  if (LibraryVersion() != HeaderVersion())
///   {
///      cout << "Potential version mismatch" << endl;
///
///      const int lmaj = (LibraryVersion() / 100U) % 10;
///      const int lmin = (LibraryVersion() / 10U) % 10;
///      const int hmaj = (HeaderVersion() / 100U) % 10;
///      const int hmin = (HeaderVersion() / 10U) % 10;
///
///      if(lmaj != hmaj)
///         cout << "Major version mismatch" << endl;
///      else if(lmin != hmin)
///         cout << "Minor version mismatch" << endl;
///   }
/// </pre>
/// \sa LibraryVersion(), <A HREF="http://github.com/weidai11/cryptopp/issues/371">GitHub Issue 371</A>.
/// \since Crypto++ 6.0
extern "C" {
inline int HeaderVersion()
{
	return CRYPTOPP_VERSION;
}
} // C linkage

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif