summaryrefslogtreecommitdiff
path: root/arm_simd.h
blob: 595c67bbb12d2c7653cac86d78f1ca95174d5ae4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// arm_simd.h - written and placed in public domain by Jeffrey Walton

/// \file arm_simd.h
/// \brief Support functions for ARM and vector operations

#ifndef CRYPTOPP_ARM_SIMD_H
#define CRYPTOPP_ARM_SIMD_H

#include "config.h"

#if (CRYPTOPP_ARM_NEON_HEADER)
# include <stdint.h>
# include <arm_neon.h>
#endif

#if (CRYPTOPP_ARM_ACLE_HEADER)
# include <stdint.h>
# include <arm_acle.h>
#endif

#if (CRYPTOPP_ARM_CRC32_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
///	\name CRC32 checksum
//@{

/// \brief CRC32 checksum
/// \param crc the starting crc value
/// \param val the value to checksum
/// \return CRC32 value
/// \since Crypto++ 8.6
inline uint32_t CRC32B (uint32_t crc, uint8_t val)
{
#if defined(_MSC_VER)
	return __crc32b(crc, val);
#else
    __asm__ ("crc32b   %w0, %w0, %w1   \n\t"
            :"+r" (crc) : "r" (val) );
    return crc;
#endif
}

/// \brief CRC32 checksum
/// \param crc the starting crc value
/// \param val the value to checksum
/// \return CRC32 value
/// \since Crypto++ 8.6
inline uint32_t CRC32W (uint32_t crc, uint32_t val)
{
#if defined(_MSC_VER)
	return __crc32w(crc, val);
#else
    __asm__ ("crc32w   %w0, %w0, %w1   \n\t"
            :"+r" (crc) : "r" (val) );
    return crc;
#endif
}

/// \brief CRC32 checksum
/// \param crc the starting crc value
/// \param vals the values to checksum
/// \return CRC32 value
/// \since Crypto++ 8.6
inline uint32_t CRC32Wx4 (uint32_t crc, const uint32_t vals[4])
{
#if defined(_MSC_VER)
	return __crc32w(__crc32w(__crc32w(__crc32w(
             crc, vals[0]), vals[1]), vals[2]), vals[3]);
#else
    __asm__ ("crc32w   %w0, %w0, %w1   \n\t"
             "crc32w   %w0, %w0, %w2   \n\t"
             "crc32w   %w0, %w0, %w3   \n\t"
             "crc32w   %w0, %w0, %w4   \n\t"
            :"+r" (crc) : "r" (vals[0]), "r" (vals[1]),
                          "r" (vals[2]), "r" (vals[3]));
    return crc;
#endif
}

//@}
///	\name CRC32-C checksum

/// \brief CRC32-C checksum
/// \param crc the starting crc value
/// \param val the value to checksum
/// \return CRC32-C value
/// \since Crypto++ 8.6
inline uint32_t CRC32CB (uint32_t crc, uint8_t val)
{
#if defined(_MSC_VER)
	return __crc32cb(crc, val);
#else
    __asm__ ("crc32cb   %w0, %w0, %w1   \n\t"
            :"+r" (crc) : "r" (val) );
    return crc;
#endif
}

/// \brief CRC32-C checksum
/// \param crc the starting crc value
/// \param val the value to checksum
/// \return CRC32-C value
/// \since Crypto++ 8.6
inline uint32_t CRC32CW (uint32_t crc, uint32_t val)
{
#if defined(_MSC_VER)
	return __crc32cw(crc, val);
#else
    __asm__ ("crc32cw   %w0, %w0, %w1   \n\t"
            :"+r" (crc) : "r" (val) );
    return crc;
#endif
}

/// \brief CRC32-C checksum
/// \param crc the starting crc value
/// \param vals the values to checksum
/// \return CRC32-C value
/// \since Crypto++ 8.6
inline uint32_t CRC32CWx4 (uint32_t crc, const uint32_t vals[4])
{
#if defined(_MSC_VER)
	return __crc32cw(__crc32cw(__crc32cw(__crc32cw(
             crc, vals[0]), vals[1]), vals[2]), vals[3]);
#else
    __asm__ ("crc32cw   %w0, %w0, %w1   \n\t"
             "crc32cw   %w0, %w0, %w2   \n\t"
             "crc32cw   %w0, %w0, %w3   \n\t"
             "crc32cw   %w0, %w0, %w4   \n\t"
            :"+r" (crc) : "r" (vals[0]), "r" (vals[1]),
                          "r" (vals[2]), "r" (vals[3]));
    return crc;
#endif
}
//@}
#endif  // CRYPTOPP_ARM_CRC32_AVAILABLE

#if (CRYPTOPP_ARM_PMULL_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
///	\name Polynomial multiplication
//@{

/// \brief Polynomial multiplication
/// \param a the first value
/// \param b the second value
/// \return vector product
/// \details PMULL_00() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x00)</tt>.
///  The <tt>0x00</tt> indicates the low 64-bits of <tt>a</tt> and <tt>b</tt>
///  are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and
///  numbered 0.
/// \since Crypto++ 8.0
inline uint64x2_t PMULL_00(const uint64x2_t a, const uint64x2_t b)
{
#if defined(_MSC_VER)
    const __n64 x = { vgetq_lane_u64(a, 0) };
    const __n64 y = { vgetq_lane_u64(b, 0) };
    return vmull_p64(x, y);
#elif defined(__GNUC__)
    uint64x2_t r;
    __asm__ ("pmull    %0.1q, %1.1d, %2.1d   \n\t"
            :"=w" (r) : "w" (a), "w" (b) );
    return r;
#else
    return (uint64x2_t)(vmull_p64(
        vgetq_lane_u64(vreinterpretq_u64_u8(a),0),
        vgetq_lane_u64(vreinterpretq_u64_u8(b),0)));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first value
/// \param b the second value
/// \return vector product
/// \details PMULL_01 performs() polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x01)</tt>.
///  The <tt>0x01</tt> indicates the low 64-bits of <tt>a</tt> and high
///  64-bits of <tt>b</tt> are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and
///  numbered 0.
/// \since Crypto++ 8.0
inline uint64x2_t PMULL_01(const uint64x2_t a, const uint64x2_t b)
{
#if defined(_MSC_VER)
    const __n64 x = { vgetq_lane_u64(a, 0) };
    const __n64 y = { vgetq_lane_u64(b, 1) };
    return vmull_p64(x, y);
#elif defined(__GNUC__)
    uint64x2_t r;
    __asm__ ("pmull    %0.1q, %1.1d, %2.1d   \n\t"
            :"=w" (r) : "w" (a), "w" (vget_high_u64(b)) );
    return r;
#else
    return (uint64x2_t)(vmull_p64(
        vgetq_lane_u64(vreinterpretq_u64_u8(a),0),
        vgetq_lane_u64(vreinterpretq_u64_u8(b),1)));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first value
/// \param b the second value
/// \return vector product
/// \details PMULL_10() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x10)</tt>.
///  The <tt>0x10</tt> indicates the high 64-bits of <tt>a</tt> and low
///  64-bits of <tt>b</tt> are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and
///  numbered 0.
/// \since Crypto++ 8.0
inline uint64x2_t PMULL_10(const uint64x2_t a, const uint64x2_t b)
{
#if defined(_MSC_VER)
    const __n64 x = { vgetq_lane_u64(a, 1) };
    const __n64 y = { vgetq_lane_u64(b, 0) };
    return vmull_p64(x, y);
#elif defined(__GNUC__)
    uint64x2_t r;
    __asm__ ("pmull    %0.1q, %1.1d, %2.1d   \n\t"
            :"=w" (r) : "w" (vget_high_u64(a)), "w" (b) );
    return r;
#else
    return (uint64x2_t)(vmull_p64(
        vgetq_lane_u64(vreinterpretq_u64_u8(a),1),
        vgetq_lane_u64(vreinterpretq_u64_u8(b),0)));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first value
/// \param b the second value
/// \return vector product
/// \details PMULL_11() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x11)</tt>.
///  The <tt>0x11</tt> indicates the high 64-bits of <tt>a</tt> and <tt>b</tt>
///  are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the rightmost bit is LSB and
///  numbered 0.
/// \since Crypto++ 8.0
inline uint64x2_t PMULL_11(const uint64x2_t a, const uint64x2_t b)
{
#if defined(_MSC_VER)
    const __n64 x = { vgetq_lane_u64(a, 1) };
    const __n64 y = { vgetq_lane_u64(b, 1) };
    return vmull_p64(x, y);
#elif defined(__GNUC__)
    uint64x2_t r;
    __asm__ ("pmull2   %0.1q, %1.2d, %2.2d   \n\t"
            :"=w" (r) : "w" (a), "w" (b) );
    return r;
#else
    return (uint64x2_t)(vmull_p64(
        vgetq_lane_u64(vreinterpretq_u64_u8(a),1),
        vgetq_lane_u64(vreinterpretq_u64_u8(b),1)));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first value
/// \param b the second value
/// \return vector product
/// \details PMULL() performs vmull_p64(). PMULL is provided as
///  GCC inline assembly due to Clang and lack of support for the intrinsic.
/// \since Crypto++ 8.0
inline uint64x2_t PMULL(const uint64x2_t a, const uint64x2_t b)
{
#if defined(_MSC_VER)
    const __n64 x = { vgetq_lane_u64(a, 0) };
    const __n64 y = { vgetq_lane_u64(b, 0) };
    return vmull_p64(x, y);
#elif defined(__GNUC__)
    uint64x2_t r;
    __asm__ ("pmull    %0.1q, %1.1d, %2.1d   \n\t"
            :"=w" (r) : "w" (a), "w" (b) );
    return r;
#else
    return (uint64x2_t)(vmull_p64(
        vgetq_lane_u64(vreinterpretq_u64_u8(a),0),
        vgetq_lane_u64(vreinterpretq_u64_u8(b),0)));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first value
/// \param b the second value
/// \return vector product
/// \details PMULL_HIGH() performs vmull_high_p64(). PMULL_HIGH is provided as
///  GCC inline assembly due to Clang and lack of support for the intrinsic.
/// \since Crypto++ 8.0
inline uint64x2_t PMULL_HIGH(const uint64x2_t a, const uint64x2_t b)
{
#if defined(_MSC_VER)
    const __n64 x = { vgetq_lane_u64(a, 1) };
    const __n64 y = { vgetq_lane_u64(b, 1) };
    return vmull_p64(x, y);
#elif defined(__GNUC__)
    uint64x2_t r;
    __asm__ ("pmull2   %0.1q, %1.2d, %2.2d   \n\t"
            :"=w" (r) : "w" (a), "w" (b) );
    return r;
#else
    return (uint64x2_t)(vmull_p64(
        vgetq_lane_u64(vreinterpretq_u64_u8(a),1),
        vgetq_lane_u64(vreinterpretq_u64_u8(b),1))));
#endif
}

/// \brief Vector extraction
/// \tparam C the byte count
/// \param a the first value
/// \param b the second value
/// \return vector
/// \details VEXT_U8() extracts the first <tt>C</tt> bytes of vector
///  <tt>a</tt> and the remaining bytes in <tt>b</tt>. VEXT_U8 is provided
///  as GCC inline assembly due to Clang and lack of support for the intrinsic.
/// \since Crypto++ 8.0
template <unsigned int C>
inline uint64x2_t VEXT_U8(uint64x2_t a, uint64x2_t b)
{
    // https://github.com/weidai11/cryptopp/issues/366
#if defined(_MSC_VER)
    return vreinterpretq_u64_u8(vextq_u8(
        vreinterpretq_u8_u64(a), vreinterpretq_u8_u64(b), C));
#else
    uint64x2_t r;
    __asm__ ("ext   %0.16b, %1.16b, %2.16b, %3   \n\t"
            :"=w" (r) : "w" (a), "w" (b), "I" (C) );
    return r;
#endif
}

//@}
#endif // CRYPTOPP_ARM_PMULL_AVAILABLE

#if CRYPTOPP_ARM_SHA3_AVAILABLE  || defined(CRYPTOPP_DOXYGEN_PROCESSING)
///	\name ARMv8.2 operations
//@{

/// \brief Three-way XOR
/// \param a the first value
/// \param b the second value
/// \param c the third value
/// \return three-way exclusive OR of the values
/// \details VEOR3() performs veor3q_u64(). VEOR3 is provided as GCC inline assembly due
///  to Clang and lack of support for the intrinsic.
/// \details VEOR3 requires ARMv8.2.
/// \since Crypto++ 8.6
inline uint64x2_t VEOR3(uint64x2_t a, uint64x2_t b, uint64x2_t c)
{
#if defined(_MSC_VER)
    return veor3q_u64(a, b, c);
#else
    uint64x2_t r;
    __asm__ ("eor3   %0.16b, %1.16b, %2.16b, %3.16b   \n\t"
            :"=w" (r) : "w" (a), "w" (b), "w" (c));
    return r;
#endif
}

/// \brief XOR and rotate
/// \param a the first value
/// \param b the second value
/// \param c the third value
/// \return two-way exclusive OR of the values, then rotated by c
/// \details VXARQ() performs vxarq_u64(). VXARQ is provided as GCC inline assembly due
///  to Clang and lack of support for the intrinsic.
/// \details VXARQ requires ARMv8.2.
/// \since Crypto++ 8.6
inline uint64x2_t VXAR(uint64x2_t a, uint64x2_t b, const int c)
{
#if defined(_MSC_VER)
    return vxarq_u64(a, b, c);
#else
    uint64x2_t r;
    __asm__ ("xar   %0.2d, %1.2d, %2.2d, %3   \n\t"
            :"=w" (r) : "w" (a), "w" (b), "I" (c));
    return r;
#endif
}

/// \brief XOR and rotate
/// \tparam C the rotate amount
/// \param a the first value
/// \param b the second value
/// \return two-way exclusive OR of the values, then rotated by C
/// \details VXARQ() performs vxarq_u64(). VXARQ is provided as GCC inline assembly due
///  to Clang and lack of support for the intrinsic.
/// \details VXARQ requires ARMv8.2.
/// \since Crypto++ 8.6
template <unsigned int C>
inline uint64x2_t VXAR(uint64x2_t a, uint64x2_t b)
{
#if defined(_MSC_VER)
    return vxarq_u64(a, b, C);
#else
    uint64x2_t r;
    __asm__ ("xar   %0.2d, %1.2d, %2.2d, %3   \n\t"
            :"=w" (r) : "w" (a), "w" (b), "I" (C));
    return r;
#endif
}

/// \brief XOR and rotate
/// \param a the first value
/// \param b the second value
/// \return two-way exclusive OR of the values, then rotated 1-bit
/// \details VRAX1() performs vrax1q_u64(). VRAX1 is provided as GCC inline assembly due
///  to Clang and lack of support for the intrinsic.
/// \details VRAX1 requires ARMv8.2.
/// \since Crypto++ 8.6
inline uint64x2_t VRAX1(uint64x2_t a, uint64x2_t b)
{
#if defined(_MSC_VER)
    return vrax1q_u64(a, b);
#else
    uint64x2_t r;
    __asm__ ("rax1   %0.2d, %1.2d, %2.2d   \n\t"
            :"=w" (r) : "w" (a), "w" (b));
    return r;
#endif
}
//@}
#endif  // CRYPTOPP_ARM_SHA3_AVAILABLE

#endif // CRYPTOPP_ARM_SIMD_H