summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--cryptlib.h2
-rw-r--r--integer.cpp136
-rw-r--r--integer.h244
-rw-r--r--words.h12
4 files changed, 329 insertions, 65 deletions
diff --git a/cryptlib.h b/cryptlib.h
index ce287217..e60efb36 100644
--- a/cryptlib.h
+++ b/cryptlib.h
@@ -592,7 +592,7 @@ public:
{SetKeyWithIV(key, length, iv, IVSize());}
//! \brief Secure IVs requirements as enumerated values.
- //! \details Provides secure IV requirements as a monotomically increasing enumerated values. Requirements can be
+ //! \details Provides secure IV requirements as a monotonically increasing enumerated values. Requirements can be
//! compared using less than (&lt;) and greater than (&gt;). For example, <tt>UNIQUE_IV &lt; RANDOM_IV</tt>
//! and <tt>UNPREDICTABLE_RANDOM_IV &gt; RANDOM_IV</tt>.
//! \sa IsResynchronizable(), CanUseRandomIVs(), CanUsePredictableIVs(), CanUseStructuredIVs()
diff --git a/integer.cpp b/integer.cpp
index dfd767e3..766f35d8 100644
--- a/integer.cpp
+++ b/integer.cpp
@@ -3738,6 +3738,84 @@ Integer& Integer::operator--()
return *this;
}
+// This is a bit operation. We set sign to POSITIVE, so there's no need to
+// worry about negative zero. Also see http://stackoverflow.com/q/11644362.
+Integer Integer::And(const Integer& t) const
+{
+ if (this == &t)
+ {
+ return AbsoluteValue();
+ }
+ else if (WordCount() >= t.WordCount())
+ {
+ Integer result(t);
+ AndWords(result.reg, reg, t.WordCount());
+
+ result.sign = POSITIVE;
+ return result;
+ }
+ else // WordCount() < t.WordCount()
+ {
+ Integer result(*this);
+ AndWords(result.reg, t.reg, WordCount());
+
+ result.sign = POSITIVE;
+ return result;
+ }
+}
+
+// This is a bit operation. We set sign to POSITIVE, so there's no need to
+// worry about negative zero. Also see http://stackoverflow.com/q/11644362.
+Integer Integer::Or(const Integer& t) const
+{
+ if (this == &t)
+ {
+ return AbsoluteValue();
+ }
+ else if (WordCount() >= t.WordCount())
+ {
+ Integer result(*this);
+ OrWords(result.reg, t.reg, t.WordCount());
+
+ result.sign = POSITIVE;
+ return result;
+ }
+ else // WordCount() < t.WordCount()
+ {
+ Integer result(t);
+ OrWords(result.reg, reg, WordCount());
+
+ result.sign = POSITIVE;
+ return result;
+ }
+}
+
+// This is a bit operation. We set sign to POSITIVE, so there's no need to
+// worry about negative zero. Also see http://stackoverflow.com/q/11644362.
+Integer Integer::Xor(const Integer& t) const
+{
+ if (this == &t)
+ {
+ return Integer::Zero();
+ }
+ else if (WordCount() >= t.WordCount())
+ {
+ Integer result(*this);
+ XorWords(result.reg, t.reg, t.WordCount());
+
+ result.sign = POSITIVE;
+ return result;
+ }
+ else // WordCount() < t.WordCount()
+ {
+ Integer result(t);
+ XorWords(result.reg, reg, WordCount());
+
+ result.sign = POSITIVE;
+ return result;
+ }
+}
+
void PositiveAdd(Integer &sum, const Integer &a, const Integer& b)
{
// Profiling tells us the original second Else If was dominant, so it was promoted to the first If statement.
@@ -3932,6 +4010,64 @@ Integer& Integer::operator>>=(size_t n)
return *this;
}
+Integer& Integer::operator&=(const Integer& t)
+{
+ if (this != &t)
+ {
+ const size_t size = STDMIN(WordCount(), t.WordCount());
+ reg.resize(size);
+ AndWords(reg, t.reg, size);
+ }
+ sign = POSITIVE;
+ return *this;
+}
+
+Integer& Integer::operator|=(const Integer& t)
+{
+ if (this != &t)
+ {
+ if (WordCount() >= t.WordCount())
+ {
+ OrWords(reg, t.reg, t.WordCount());
+ }
+ else // WordCount() < t.WordCount()
+ {
+ const size_t head = WordCount();
+ const size_t tail = t.WordCount() - WordCount();
+ reg.resize(head+tail);
+ OrWords(reg, t.reg, head);
+ CopyWords(reg+head,t.reg+head,tail);
+ }
+ }
+ sign = POSITIVE;
+ return *this;
+}
+
+Integer& Integer::operator^=(const Integer& t)
+{
+ if (this == &t)
+ {
+ *this = Zero();
+ }
+ else
+ {
+ if (WordCount() >= t.WordCount())
+ {
+ XorWords(reg, t.reg, t.WordCount());
+ }
+ else // WordCount() < t.WordCount()
+ {
+ const size_t head = WordCount();
+ const size_t tail = t.WordCount() - WordCount();
+ reg.resize(head+tail);
+ XorWords(reg, t.reg, head);
+ CopyWords(reg+head,t.reg+head,tail);
+ }
+ }
+ sign = POSITIVE;
+ return *this;
+}
+
void PositiveMultiply(Integer &product, const Integer &a, const Integer &b)
{
size_t aSize = RoundupSize(a.WordCount());
diff --git a/integer.h b/integer.h
index e59b0a56..5dd80101 100644
--- a/integer.h
+++ b/integer.h
@@ -6,8 +6,9 @@
//! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
//! \details Internally, the library uses a sign magnitude representation, and the class
//! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
-//! used to hold the representation. The second is a Sign, and its is used to track
-//! the sign of the Integer.
+//! used to hold the representation. The second is a Sign (an enumeration), and it is
+//! used to track the sign of the Integer.
+//! \since Crypto++ 1.0
#ifndef CRYPTOPP_INTEGER_H
#define CRYPTOPP_INTEGER_H
@@ -21,26 +22,23 @@
NAMESPACE_BEGIN(CryptoPP)
//! \struct InitializeInteger
-//! Performs static intialization of the Integer class
+//! \brief Performs static intialization of the Integer class
struct InitializeInteger
{
InitializeInteger();
};
-// http://github.com/weidai11/cryptopp/issues/256
-#if defined(CRYPTOPP_WORD128_AVAILABLE)
+// Always align, http://github.com/weidai11/cryptopp/issues/256
typedef SecBlock<word, AllocatorWithCleanup<word, true> > IntegerSecBlock;
-#else
-typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock;
-#endif
//! \brief Multiple precision integer with arithmetic operations
//! \details The Integer class can represent positive and negative integers
//! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
//! \details Internally, the library uses a sign magnitude representation, and the class
//! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
-//! used to hold the representation. The second is a Sign, and its is used to track
-//! the sign of the Integer.
+//! used to hold the representation. The second is a Sign (an enumeration), and it is
+//! used to track the sign of the Integer.
+//! \since Crypto++ 1.0
//! \nosubgrouping
class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object
{
@@ -65,7 +63,7 @@ public:
//! \enum Sign
//! \brief Used internally to represent the integer
//! \details Sign is used internally to represent the integer. It is also used in a few API functions.
- //! \sa Signedness
+ //! \sa SetPositive(), SetNegative(), Signedness
enum Sign {
//! \brief the value is positive or 0
POSITIVE=0,
@@ -198,7 +196,7 @@ public:
//! \name ENCODE/DECODE
//@{
- //! \brief The minimum number of bytes to encode this integer
+ //! \brief Minimum number of bytes to encode this integer
//! \param sign enumeration indicating Signedness
//! \note The MinEncodedSize() of 0 is 1.
size_t MinEncodedSize(Signedness sign=UNSIGNED) const;
@@ -227,7 +225,7 @@ public:
//! The result is placed into a BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
- //! encode absolute value as big-endian octet string
+ //! \brief Encode absolute value as big-endian octet string
//! \param bt BufferedTransformation object
//! \param length the number of mytes to decode
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
@@ -349,31 +347,68 @@ public:
//! \name MANIPULATORS
//@{
- //!
+ //! \brief Assignment
Integer& operator=(const Integer& t);
- //!
+ //! \brief Addition Assignment
Integer& operator+=(const Integer& t);
- //!
+ //! \brief Subtraction Assignment
Integer& operator-=(const Integer& t);
- //!
+ //! \brief Multiplication Assignment
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer& operator*=(const Integer& t) {return *this = Times(t);}
- //!
+ //! \brief Division Assignment
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);}
- //!
+ //! \brief Remainder Assignment
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer& operator%=(const Integer& t) {return *this = Modulo(t);}
- //!
+ //! \brief Division Assignment
Integer& operator/=(word t) {return *this = DividedBy(t);}
- //!
+ //! \brief Remainder Assignment
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));}
- //!
- Integer& operator<<=(size_t);
- //!
- Integer& operator>>=(size_t);
+ //! \brief Left-shift Assignment
+ Integer& operator<<=(size_t n);
+ //! \brief Right-shift Assignment
+ Integer& operator>>=(size_t n);
+
+ //! \brief Bitwise AND Assignment
+ //! \param t the other Integer
+ //! \returns the result of *this & t
+ //! \details operator&=() performs a bitwise AND on *this. Missing bits are truncated
+ //! at the most significant bit positions, so the result is as small as the
+ //! smaller of the operands.
+ //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ //! the integer should be converted to a 2's compliment representation before performing
+ //! the operation.
+ //! \since Crypto++ 5.7
+ Integer& operator&=(const Integer& t);
+ //! \brief Bitwise OR Assignment
+ //! \param t the second Integer
+ //! \returns the result of *this | t
+ //! \details operator|=() performs a bitwise OR on *this. Missing bits are shifted in
+ //! at the most significant bit positions, so the result is as large as the
+ //! larger of the operands.
+ //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ //! the integer should be converted to a 2's compliment representation before performing
+ //! the operation.
+ //! \since Crypto++ 5.7
+ Integer& operator|=(const Integer& t);
+ //! \brief Bitwise XOR Assignment
+ //! \param t the other Integer
+ //! \returns the result of *this ^ t
+ //! \details operator^=() performs a bitwise XOR on *this. Missing bits are shifted
+ //! in at the most significant bit positions, so the result is as large as the
+ //! larger of the operands.
+ //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ //! the integer should be converted to a 2's compliment representation before performing
+ //! the operation.
+ //! \since Crypto++ 5.7
+ Integer& operator^=(const Integer& t);
//! \brief Set this Integer to random integer
//! \param rng RandomNumberGenerator used to generate material
@@ -436,19 +471,19 @@ public:
//! \name UNARY OPERATORS
//@{
- //!
+ //! \brief Negation
bool operator!() const;
- //!
+ //! \brief Addition
Integer operator+() const {return *this;}
- //!
+ //! \brief Subtraction
Integer operator-() const;
- //!
+ //! \brief Pre-increment
Integer& operator++();
- //!
+ //! \brief Pre-decrement
Integer& operator--();
- //!
+ //! \brief Post-increment
Integer operator++(int) {Integer temp = *this; ++*this; return temp;}
- //!
+ //! \brief Post-decrement
Integer operator--(int) {Integer temp = *this; --*this; return temp;}
//@}
@@ -461,42 +496,82 @@ public:
//! \retval 1 if <tt>*this > a</tt>
int Compare(const Integer& a) const;
- //!
+ //! \brief Addition
Integer Plus(const Integer &b) const;
- //!
+ //! \brief Subtraction
Integer Minus(const Integer &b) const;
- //!
+ //! \brief Multiplication
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer Times(const Integer &b) const;
- //!
+ //! \brief Division
Integer DividedBy(const Integer &b) const;
- //!
+ //! \brief Remainder
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer Modulo(const Integer &b) const;
- //!
+ //! \brief Division
Integer DividedBy(word b) const;
- //!
+ //! \brief Remainder
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
word Modulo(word b) const;
- //!
+ //! \brief Bitwise AND
+ //! \param t the other Integer
+ //! \returns the result of <tt>*this & t</tt>
+ //! \details And() performs a bitwise AND on the operands. Missing bits are truncated
+ //! at the most significant bit positions, so the result is as small as the
+ //! smaller of the operands.
+ //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ //! the integer should be converted to a 2's compliment representation before performing
+ //! the operation.
+ //! \since Crypto++ 5.7
+ Integer And(const Integer&) const;
+
+ //! \brief Bitwise OR
+ //! \param t the other Integer
+ //! \returns the result of <tt>*this | t</tt>
+ //! \details Or() performs a bitwise OR on the operands. Missing bits are shifted in
+ //! at the most significant bit positions, so the result is as large as the
+ //! larger of the operands.
+ //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ //! the integer should be converted to a 2's compliment representation before performing
+ //! the operation.
+ //! \since Crypto++ 5.7
+ Integer Or(const Integer&) const;
+
+ //! \brief Bitwise XOR
+ //! \param t the other Integer
+ //! \returns the result of <tt>*this ^ t</tt>
+ //! \details Xor() performs a bitwise XOR on the operands. Missing bits are shifted in
+ //! at the most significant bit positions, so the result is as large as the
+ //! larger of the operands.
+ //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ //! the integer should be converted to a 2's compliment representation before performing
+ //! the operation.
+ //! \since Crypto++ 5.7
+ Integer Xor(const Integer&) const;
+
+ //! \brief Right-shift
Integer operator>>(size_t n) const {return Integer(*this)>>=n;}
- //!
+ //! \brief Left-shift
Integer operator<<(size_t n) const {return Integer(*this)<<=n;}
//@}
//! \name OTHER ARITHMETIC FUNCTIONS
//@{
- //!
+ //! \brief Retrieve the absolute value of this integer
Integer AbsoluteValue() const;
- //!
+ //! \brief Add this integer to itself
Integer Doubled() const {return Plus(*this);}
- //!
+ //! \brief Multiply this integer by itself
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer Squared() const {return Times(*this);}
- //! extract square root, if negative return 0, else return floor of square root
+ //! \brief Extract square root
+ //! \details if negative return 0, else return floor of square root
Integer SquareRoot() const;
- //! return whether this integer is a perfect square
+ //! \brief Determine whether this integer is a perfect square
bool IsSquare() const;
//! is 1 or -1
@@ -504,18 +579,17 @@ public:
//! return inverse if 1 or -1, otherwise return 0
Integer MultiplicativeInverse() const;
- //! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
+ //! \brief calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
- //! use a faster division algorithm when divisor is short
+ //! \brief use a faster division algorithm when divisor is short
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
- //! returns same result as Divide(r, q, a, Power2(n)), but faster
+ //! \brief returns same result as Divide(r, q, a, Power2(n)), but faster
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
//! greatest common divisor
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
- //! calculate multiplicative inverse of *this mod n
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ //! \brief calculate multiplicative inverse of *this mod n
Integer InverseMod(const Integer &n) const;
//!
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
@@ -570,36 +644,78 @@ private:
#endif
};
-//!
+//! \brief Comparison
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
-//!
+//! \brief Comparison
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
-//!
+//! \brief Comparison
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
-//!
+//! \brief Comparison
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
-//!
+//! \brief Comparison
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
-//!
+//! \brief Comparison
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
-//!
+//! \brief Addition
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
-//!
+//! \brief Subtraction
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
-//!
+//! \brief Multiplication
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
-//!
+//! \brief Division
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
-//!
+//! \brief Remainder
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
-//!
+//! \brief Division
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
-//!
+//! \brief Remainder
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
+//! \brief Bitwise AND
+//! \param a the first Integer
+//! \param b the second Integer
+//! \returns the result of a & b
+//! \details operator&() performs a bitwise AND on the operands. Missing bits are truncated
+//! at the most significant bit positions, so the result is as small as the
+//! smaller of the operands.
+//! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+//! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+//! the integer should be converted to a 2's compliment representation before performing
+//! the operation.
+//! \since Crypto++ 5.7
+inline CryptoPP::Integer operator&(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.And(b);}
+
+//! \brief Bitwise OR
+//! \param a the first Integer
+//! \param b the second Integer
+//! \returns the result of a | b
+//! \details operator|() performs a bitwise OR on the operands. Missing bits are shifted in
+//! at the most significant bit positions, so the result is as large as the
+//! larger of the operands.
+//! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+//! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+//! the integer should be converted to a 2's compliment representation before performing
+//! the operation.
+//! \since Crypto++ 5.7
+inline CryptoPP::Integer operator|(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Or(b);}
+
+//! \brief Bitwise XOR
+//! \param a the first Integer
+//! \param b the second Integer
+//! \returns the result of a ^ b
+//! \details operator^() performs a bitwise XOR on the operands. Missing bits are shifted
+//! in at the most significant bit positions, so the result is as large as the
+//! larger of the operands.
+//! \details Internally, Crypto++ uses a sign-magnitude representation. The library
+//! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+//! the integer should be converted to a 2's compliment representation before performing
+//! the operation.
+//! \since Crypto++ 5.7
+inline CryptoPP::Integer operator^(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Xor(b);}
+
NAMESPACE_END
#ifndef __BORLANDC__
diff --git a/words.h b/words.h
index c2be9793..79f61f49 100644
--- a/words.h
+++ b/words.h
@@ -53,6 +53,18 @@ inline void AndWords(word *r, const word *a, size_t n)
r[i] &= a[i];
}
+inline void OrWords(word *r, const word *a, const word *b, size_t n)
+{
+ for (size_t i=0; i<n; i++)
+ r[i] = a[i] | b[i];
+}
+
+inline void OrWords(word *r, const word *a, size_t n)
+{
+ for (size_t i=0; i<n; i++)
+ r[i] |= a[i];
+}
+
inline word ShiftWordsLeftByBits(word *r, size_t n, unsigned int shiftBits)
{
CRYPTOPP_ASSERT (shiftBits<WORD_BITS);