summaryrefslogtreecommitdiff
path: root/strciphr.h
diff options
context:
space:
mode:
authorJeffrey Walton <noloader@gmail.com>2016-04-21 23:06:26 -0400
committerJeffrey Walton <noloader@gmail.com>2016-04-21 23:06:26 -0400
commit746b618c3e1144a49b320569d885bb5bd0bd75fe (patch)
tree9ba716723bb717093f22c50d3647086d4f72bae5 /strciphr.h
parent433f2d65669d85e9745e32e584c569699c44297c (diff)
downloadcryptopp-git-746b618c3e1144a49b320569d885bb5bd0bd75fe.tar.gz
Updated documentation
Diffstat (limited to 'strciphr.h')
-rw-r--r--strciphr.h370
1 files changed, 338 insertions, 32 deletions
diff --git a/strciphr.h b/strciphr.h
index d0f3d20c..57eb6e1a 100644
--- a/strciphr.h
+++ b/strciphr.h
@@ -1,29 +1,29 @@
-/*! \file
- This file contains helper classes for implementing stream ciphers.
-
- All this infrastructure may look very complex compared to what's in Crypto++ 4.x,
- but stream ciphers implementations now support a lot of new functionality,
- including better performance (minimizing copying), resetting of keys and IVs, and methods to
- query which features are supported by a cipher.
-
- Here's an explanation of these classes. The word "policy" is used here to mean a class with a
- set of methods that must be implemented by individual stream cipher implementations.
- This is usually much simpler than the full stream cipher API, which is implemented by
- either AdditiveCipherTemplate or CFB_CipherTemplate using the policy. So for example, an
- implementation of SEAL only needs to implement the AdditiveCipherAbstractPolicy interface
- (since it's an additive cipher, i.e., it xors a keystream into the plaintext).
- See this line in seal.h:
-
- typedef SymmetricCipherFinal\<ConcretePolicyHolder\<SEAL_Policy\<B\>, AdditiveCipherTemplate\<\> \> \> Encryption;
-
- AdditiveCipherTemplate and CFB_CipherTemplate are designed so that they don't need
- to take a policy class as a template parameter (although this is allowed), so that
- their code is not duplicated for each new cipher. Instead they each
- get a reference to an abstract policy interface by calling AccessPolicy() on itself, so
- AccessPolicy() must be overriden to return the actual policy reference. This is done
- by the ConceretePolicyHolder class. Finally, SymmetricCipherFinal implements the constructors and
- other functions that must be implemented by the most derived class.
-*/
+// strciphr.h - written and placed in the public domain by Wei Dai
+
+//! \file strciphr.h
+//! \brief Classes for implementing stream ciphers
+//! \details This file contains helper classes for implementing stream ciphers.
+//! All this infrastructure may look very complex compared to what's in Crypto++ 4.x,
+//! but stream ciphers implementations now support a lot of new functionality,
+//! including better performance (minimizing copying), resetting of keys and IVs, and methods to
+//! query which features are supported by a cipher.
+//! \details Here's an explanation of these classes. The word "policy" is used here to mean a class with a
+//! set of methods that must be implemented by individual stream cipher implementations.
+//! This is usually much simpler than the full stream cipher API, which is implemented by
+//! either AdditiveCipherTemplate or CFB_CipherTemplate using the policy. So for example, an
+//! implementation of SEAL only needs to implement the AdditiveCipherAbstractPolicy interface
+//! (since it's an additive cipher, i.e., it xors a keystream into the plaintext).
+//! See this line in seal.h:
+//! <pre>
+//! typedef SymmetricCipherFinal\<ConcretePolicyHolder\<SEAL_Policy\<B\>, AdditiveCipherTemplate\<\> \> \> Encryption;
+//! </pre>
+//! \details AdditiveCipherTemplate and CFB_CipherTemplate are designed so that they don't need
+//! to take a policy class as a template parameter (although this is allowed), so that
+//! their code is not duplicated for each new cipher. Instead they each
+//! get a reference to an abstract policy interface by calling AccessPolicy() on itself, so
+//! AccessPolicy() must be overriden to return the actual policy reference. This is done
+//! by the ConceretePolicyHolder class. Finally, SymmetricCipherFinal implements the constructors and
+//! other functions that must be implemented by the most derived class.
#ifndef CRYPTOPP_STRCIPHR_H
#define CRYPTOPP_STRCIPHR_H
@@ -42,6 +42,10 @@
NAMESPACE_BEGIN(CryptoPP)
+//! \class AbstractPolicyHolder
+//! \brief Access a stream cipher policy object
+//! \tparam POLICY_INTERFACE class implementing AbstractPolicyHolder
+//! \tparam BASE class or type to use as a base class
template <class POLICY_INTERFACE, class BASE = Empty>
class CRYPTOPP_NO_VTABLE AbstractPolicyHolder : public BASE
{
@@ -54,43 +58,132 @@ protected:
virtual POLICY_INTERFACE & AccessPolicy() =0;
};
+//! \class ConcretePolicyHolder
+//! \brief Stream cipher policy object
+//! \tparam POLICY class implementing AbstractPolicyHolder
+//! \tparam BASE class or type to use as a base class
template <class POLICY, class BASE, class POLICY_INTERFACE = CPP_TYPENAME BASE::PolicyInterface>
class ConcretePolicyHolder : public BASE, protected POLICY
{
+public:
+#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
+ virtual ~ConcretePolicyHolder() {}
+#endif
protected:
const POLICY_INTERFACE & GetPolicy() const {return *this;}
POLICY_INTERFACE & AccessPolicy() {return *this;}
};
-enum KeystreamOperationFlags {OUTPUT_ALIGNED=1, INPUT_ALIGNED=2, INPUT_NULL = 4};
+//! \brief Keystream operation flags
+//! \sa AdditiveCipherAbstractPolicy::GetBytesPerIteration(), AdditiveCipherAbstractPolicy::GetOptimalBlockSize()
+//! and AdditiveCipherAbstractPolicy::GetAlignment()
+enum KeystreamOperationFlags {
+ //! \brief Output buffer is aligned
+ OUTPUT_ALIGNED=1,
+ //! \brief Input buffer is aligned
+ INPUT_ALIGNED=2,
+ //! \brief Input buffer is NULL
+ INPUT_NULL = 4
+};
+
+//! \brief Keystream operation flags
+//! \sa AdditiveCipherAbstractPolicy::GetBytesPerIteration(), AdditiveCipherAbstractPolicy::GetOptimalBlockSize()
+//! and AdditiveCipherAbstractPolicy::GetAlignment()
enum KeystreamOperation {
+ //! \brief Wirte the keystream to the output buffer, input is NULL
WRITE_KEYSTREAM = INPUT_NULL,
+ //! \brief Wirte the keystream to the aligned output buffer, input is NULL
WRITE_KEYSTREAM_ALIGNED = INPUT_NULL | OUTPUT_ALIGNED,
- XOR_KEYSTREAM = 0,
- XOR_KEYSTREAM_INPUT_ALIGNED = INPUT_ALIGNED,
- XOR_KEYSTREAM_OUTPUT_ALIGNED= OUTPUT_ALIGNED,
+ //! \brief XOR the input buffer and keystream, write to the output buffer
+ XOR_KEYSTREAM = 0,
+ //! \brief XOR the aligned input buffer and keystream, write to the output buffer
+ XOR_KEYSTREAM_INPUT_ALIGNED = INPUT_ALIGNED,
+ //! \brief XOR the input buffer and keystream, write to the aligned output buffer
+ XOR_KEYSTREAM_OUTPUT_ALIGNED= OUTPUT_ALIGNED,
+ //! \brief XOR the aligned input buffer and keystream, write to the aligned output buffer
XOR_KEYSTREAM_BOTH_ALIGNED = OUTPUT_ALIGNED | INPUT_ALIGNED};
+//! \class AdditiveCipherAbstractPolicy
+//! \brief Policy object for additive stream ciphers
struct CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AdditiveCipherAbstractPolicy
{
virtual ~AdditiveCipherAbstractPolicy() {}
+
+ //! \brief Provides data alignment requirements
+ //! \returns data alignment requirements, in bytes
+ //! \details Internally, the default implementation returns 1. If the stream cipher is implemented
+ //! using an SSE2 ASM or intrinsics, then the value returned is usually 16.
virtual unsigned int GetAlignment() const {return 1;}
+
+ //! \brief Provides number of bytes operated upon during an iteration
+ //! \returns bytes operated upon during an iteration, in bytes
+ //! \sa GetOptimalBlockSize()
virtual unsigned int GetBytesPerIteration() const =0;
+
+ //! \brief Provides number of ideal bytes to process
+ //! \returns the ideal number of bytes to process
+ //! \details Internally, the default implementation returns GetBytesPerIteration()
+ //! \sa GetBytesPerIteration()
virtual unsigned int GetOptimalBlockSize() const {return GetBytesPerIteration();}
+
+ //! \brief Provides buffer size based on iterations
+ //! \returns the buffer size based on iterations, in bytes
virtual unsigned int GetIterationsToBuffer() const =0;
+
+ //! \brief Generate the keystream
+ //! \param keystream the key stream
+ //! \param iterationCount the number of iterations to generate the key stream
+ //! \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
virtual void WriteKeystream(byte *keystream, size_t iterationCount)
{OperateKeystream(KeystreamOperation(INPUT_NULL | (KeystreamOperationFlags)IsAlignedOn(keystream, GetAlignment())), keystream, NULL, iterationCount);}
+
+ //! \brief Flag indicating
+ //! \returns true if the stream can be generated independent of the transformation input, false otherwise
+ //! \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
virtual bool CanOperateKeystream() const {return false;}
+
+ //! \brief Operates the keystream
+ //! \param operation the operation with additional flags
+ //! \param output the output buffer
+ //! \param input the input buffer
+ //! \param iterationCount the number of iterations to perform on the input
+ //! \details OperateKeystream() will attempt to operate upon GetOptimalBlockSize() buffer,
+ //! which will be derived from GetBytesPerIteration().
+ //! \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream(), KeystreamOperation()
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{CRYPTOPP_UNUSED(operation); CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(iterationCount); assert(false);}
+
+ //! \brief Key the cipher
+ //! \param params set of NameValuePairs use to initialize this object
+ //! \param key a byte array used to key the cipher
+ //! \param length the size of the key array
virtual void CipherSetKey(const NameValuePairs &params, const byte *key, size_t length) =0;
+
+ //! \brief Resynchronize the cipher
+ //! \param keystreamBuffer the keystream buffer
+ //! \param iv a byte array used to resynchronize the cipher
+ //! \param length the size of the IV array
virtual void CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{CRYPTOPP_UNUSED(keystreamBuffer); CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(length); throw NotImplemented("SimpleKeyingInterface: this object doesn't support resynchronization");}
+
+ //! \brief Flag indicating random access
+ //! \returns true if the cipher is seekable, false otherwise
+ //! \sa SeekToIteration()
virtual bool CipherIsRandomAccess() const =0;
+
+ //! \brief Seeks to a random position in the stream
+ //! \returns iterationCount
+ //! \sa CipherIsRandomAccess()
virtual void SeekToIteration(lword iterationCount)
{CRYPTOPP_UNUSED(iterationCount); assert(!CipherIsRandomAccess()); throw NotImplemented("StreamTransformation: this object doesn't support random access");}
};
+//! \class AdditiveCipherConcretePolicy
+//! \brief Base class for additive stream ciphers
+//! \tparam WT word type
+//! \tparam W count of words
+//! \tparam X bytes per iteration count
+//! \tparam BASE AdditiveCipherAbstractPolicy derived base class
template <typename WT, unsigned int W, unsigned int X = 1, class BASE = AdditiveCipherAbstractPolicy>
struct CRYPTOPP_NO_VTABLE AdditiveCipherConcretePolicy : public BASE
{
@@ -98,21 +191,49 @@ struct CRYPTOPP_NO_VTABLE AdditiveCipherConcretePolicy : public BASE
CRYPTOPP_CONSTANT(BYTES_PER_ITERATION = sizeof(WordType) * W)
#if !(CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64)
+ //! \brief Provides data alignment requirements
+ //! \returns data alignment requirements, in bytes
+ //! \details Internally, the default implementation returns 1. If the stream cipher is implemented
+ //! using an SSE2 ASM or intrinsics, then the value returned is usually 16.
unsigned int GetAlignment() const {return GetAlignmentOf<WordType>();}
#endif
+
+ //! \brief Provides number of bytes operated upon during an iteration
+ //! \returns bytes operated upon during an iteration, in bytes
+ //! \sa GetOptimalBlockSize()
unsigned int GetBytesPerIteration() const {return BYTES_PER_ITERATION;}
+
+ //! \brief Provides buffer size based on iterations
+ //! \returns the buffer size based on iterations, in bytes
unsigned int GetIterationsToBuffer() const {return X;}
+
+ //! \brief Flag indicating
+ //! \returns true if the stream can be generated independent of the transformation input, false otherwise
+ //! \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
bool CanOperateKeystream() const {return true;}
+
+ //! \brief Operates the keystream
+ //! \param operation the operation with additional flags
+ //! \param output the output buffer
+ //! \param input the input buffer
+ //! \param iterationCount the number of iterations to perform on the input
+ //! \details OperateKeystream() will attempt to operate upon GetOptimalBlockSize() buffer,
+ //! which will be derived from GetBytesPerIteration().
+ //! \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream(), KeystreamOperation()
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount) =0;
};
-// use these to implement OperateKeystream
+//! \brief Helper macro to implement OperateKeystream
#define CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, b, i, a) \
PutWord(bool(x & OUTPUT_ALIGNED), b, output+i*sizeof(WordType), (x & INPUT_NULL) ? (a) : (a) ^ GetWord<WordType>(bool(x & INPUT_ALIGNED), b, input+i*sizeof(WordType)));
+
+//! \brief Helper macro to implement OperateKeystream
#define CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, i, a) {\
__m128i t = (x & INPUT_NULL) ? a : _mm_xor_si128(a, (x & INPUT_ALIGNED) ? _mm_load_si128((__m128i *)input+i) : _mm_loadu_si128((__m128i *)input+i));\
if (x & OUTPUT_ALIGNED) _mm_store_si128((__m128i *)output+i, t);\
else _mm_storeu_si128((__m128i *)output+i, t);}
+
+//! \brief Helper macro to implement OperateKeystream
#define CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(x, y) \
switch (operation) \
{ \
@@ -141,19 +262,73 @@ struct CRYPTOPP_NO_VTABLE AdditiveCipherConcretePolicy : public BASE
} \
output += y;
+//! \class AdditiveCipherTemplate
+//! \brief Base class for additive stream ciphers with SymmetricCipher interface
+//! \tparam BASE AbstractPolicyHolder base class
template <class BASE = AbstractPolicyHolder<AdditiveCipherAbstractPolicy, SymmetricCipher> >
class CRYPTOPP_NO_VTABLE AdditiveCipherTemplate : public BASE, public RandomNumberGenerator
{
public:
+ //! \brief Generate random array of bytes
+ //! \param output the byte buffer
+ //! \param size the length of the buffer, in bytes
+ //! \details All generated values are uniformly distributed over the range specified within the
+ //! the contraints of a particular generator.
void GenerateBlock(byte *output, size_t size);
+
+ //! \brief Apply keystream to data
+ //! \param outString a buffer to write the transformed data
+ //! \param inString a buffer to read the data
+ //! \param length the size fo the buffers, in bytes
+ //! \details This is the primary method to operate a stream cipher. For example:
+ //! <pre>
+ //! size_t size = 30;
+ //! byte plain[size] = "Do or do not; there is no try";
+ //! byte cipher[size];
+ //! ...
+ //! ChaCha20 chacha(key, keySize);
+ //! chacha.ProcessData(cipher, plain, size);
+ //! </pre>
void ProcessData(byte *outString, const byte *inString, size_t length);
+
+ //! \brief Resynchronize the cipher
+ //! \param iv a byte array used to resynchronize the cipher
+ //! \param length the size of the IV array
void Resynchronize(const byte *iv, int length=-1);
+
+ //! \brief Provides number of ideal bytes to process
+ //! \returns the ideal number of bytes to process
+ //! \details Internally, the default implementation returns GetBytesPerIteration()
+ //! \sa GetBytesPerIteration() and GetOptimalNextBlockSize()
unsigned int OptimalBlockSize() const {return this->GetPolicy().GetOptimalBlockSize();}
+
+ //! \brief Provides number of ideal bytes to process
+ //! \returns the ideal number of bytes to process
+ //! \details Internally, the default implementation returns remaining unprocessed bytes
+ //! \sa GetBytesPerIteration() and OptimalBlockSize()
unsigned int GetOptimalNextBlockSize() const {return (unsigned int)this->m_leftOver;}
+
+ //! \brief Provides number of ideal data alignment
+ //! \returns the ideal data alignment, in bytes
+ //! \sa GetAlignment() and OptimalBlockSize()
unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
+
+ //! \brief Determines if the cipher is self inverting
+ //! \returns true if the stream cipher is self inverting, false otherwise
bool IsSelfInverting() const {return true;}
+
+ //! \brief Determines if the cipher is a forward transformation
+ //! \returns true if the stream cipher is a forward transformation, false otherwise
bool IsForwardTransformation() const {return true;}
+
+ //! \brief Flag indicating random access
+ //! \returns true if the cipher is seekable, false otherwise
+ //! \sa Seek()
bool IsRandomAccess() const {return this->GetPolicy().CipherIsRandomAccess();}
+
+ //! \brief Seeks to a random position in the stream
+ //! \param position the absolute position in the stream
+ //! \sa IsRandomAccess()
void Seek(lword position);
typedef typename BASE::PolicyInterface PolicyInterface;
@@ -170,39 +345,100 @@ protected:
size_t m_leftOver;
};
+//! \class CFB_CipherAbstractPolicy
+//! \brief Policy object for feeback based stream ciphers
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CFB_CipherAbstractPolicy
{
public:
virtual ~CFB_CipherAbstractPolicy() {}
+
+ //! \brief Provides data alignment requirements
+ //! \returns data alignment requirements, in bytes
+ //! \details Internally, the default implementation returns 1. If the stream cipher is implemented
+ //! using an SSE2 ASM or intrinsics, then the value returned is usually 16.
virtual unsigned int GetAlignment() const =0;
+
+ //! \brief Provides number of bytes operated upon during an iteration
+ //! \returns bytes operated upon during an iteration, in bytes
+ //! \sa GetOptimalBlockSize()
virtual unsigned int GetBytesPerIteration() const =0;
+
+ //! \brief Access the feedback register
+ //! \returns pointer to the first byte of the feedback register
virtual byte * GetRegisterBegin() =0;
+
+ //! \brief TODO
virtual void TransformRegister() =0;
+
+ //! \brief Flag indicating iteration support
+ //! \returns true if the cipher supports iteration, false otherwise
virtual bool CanIterate() const {return false;}
+
+ //! \brief Iterate the cipher
+ //! \param output the output buffer
+ //! \param input the input buffer
+ //! \param dir the direction of the cipher
+ //! \param iterationCount the number of iterations to perform on the input
+ //! \sa IsSelfInverting() and IsForwardTransformation()
virtual void Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
{CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(dir); CRYPTOPP_UNUSED(iterationCount);
assert(false); /*throw 0;*/ throw Exception(Exception::OTHER_ERROR, "SimpleKeyingInterface: unexpected error");}
+
+ //! \brief Key the cipher
+ //! \param params set of NameValuePairs use to initialize this object
+ //! \param key a byte array used to key the cipher
+ //! \param length the size of the key array
virtual void CipherSetKey(const NameValuePairs &params, const byte *key, size_t length) =0;
+
+ //! \brief Resynchronize the cipher
+ //! \param iv a byte array used to resynchronize the cipher
+ //! \param length the size of the IV array
virtual void CipherResynchronize(const byte *iv, size_t length)
{CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(length); throw NotImplemented("SimpleKeyingInterface: this object doesn't support resynchronization");}
};
+//! \class CFB_CipherConcretePolicy
+//! \brief Base class for feedback based stream ciphers
+//! \tparam WT word type
+//! \tparam W count of words
+//! \tparam BASE CFB_CipherAbstractPolicy derived base class
template <typename WT, unsigned int W, class BASE = CFB_CipherAbstractPolicy>
struct CRYPTOPP_NO_VTABLE CFB_CipherConcretePolicy : public BASE
{
typedef WT WordType;
+ //! \brief Provides data alignment requirements
+ //! \returns data alignment requirements, in bytes
+ //! \details Internally, the default implementation returns 1. If the stream cipher is implemented
+ //! using an SSE2 ASM or intrinsics, then the value returned is usually 16.
unsigned int GetAlignment() const {return sizeof(WordType);}
+
+ //! \brief Provides number of bytes operated upon during an iteration
+ //! \returns bytes operated upon during an iteration, in bytes
+ //! \sa GetOptimalBlockSize()
unsigned int GetBytesPerIteration() const {return sizeof(WordType) * W;}
+
+ //! \brief Flag indicating iteration support
+ //! \returns true if the cipher supports iteration, false otherwise
bool CanIterate() const {return true;}
+
+ //! \brief Perform one iteration in the forward direction
void TransformRegister() {this->Iterate(NULL, NULL, ENCRYPTION, 1);}
+ //! \brief
+ //! \tparam B enumeration indicating endianess
+ //! \details RegisterOutput() provides alternate access to the feedback register. The
+ //! enumeration B is BigEndian or LittleEndian. Repeatedly applying operator()
+ //! results in advancing in the register.
template <class B>
struct RegisterOutput
{
RegisterOutput(byte *output, const byte *input, CipherDir dir)
: m_output(output), m_input(input), m_dir(dir) {}
+ //! \brief XOR feedback register with data
+ //! \param registerWord data represented as a word type
+ //! \returns reference to the next feedback register word
inline RegisterOutput& operator()(WordType &registerWord)
{
assert(IsAligned<WordType>(m_output));
@@ -244,16 +480,57 @@ struct CRYPTOPP_NO_VTABLE CFB_CipherConcretePolicy : public BASE
};
};
+//! \class AdditiveCipherTemplate
+//! \brief Base class for stream ciphers with SymmetricCipher interface
+//! \tparam BASE AbstractPolicyHolder base class
template <class BASE>
class CRYPTOPP_NO_VTABLE CFB_CipherTemplate : public BASE
{
public:
+ //! \brief Apply keystream to data
+ //! \param outString a buffer to write the transformed data
+ //! \param inString a buffer to read the data
+ //! \param length the size fo the buffers, in bytes
+ //! \details This is the primary method to operate a stream cipher. For example:
+ //! <pre>
+ //! size_t size = 30;
+ //! byte plain[size] = "Do or do not; there is no try";
+ //! byte cipher[size];
+ //! ...
+ //! ChaCha20 chacha(key, keySize);
+ //! chacha.ProcessData(cipher, plain, size);
+ //! </pre>
void ProcessData(byte *outString, const byte *inString, size_t length);
+
+ //! \brief Resynchronize the cipher
+ //! \param iv a byte array used to resynchronize the cipher
+ //! \param length the size of the IV array
void Resynchronize(const byte *iv, int length=-1);
+
+ //! \brief Provides number of ideal bytes to process
+ //! \returns the ideal number of bytes to process
+ //! \details Internally, the default implementation returns GetBytesPerIteration()
+ //! \sa GetBytesPerIteration() and GetOptimalNextBlockSize()
unsigned int OptimalBlockSize() const {return this->GetPolicy().GetBytesPerIteration();}
+
+ //! \brief Provides number of ideal bytes to process
+ //! \returns the ideal number of bytes to process
+ //! \details Internally, the default implementation returns remaining unprocessed bytes
+ //! \sa GetBytesPerIteration() and OptimalBlockSize()
unsigned int GetOptimalNextBlockSize() const {return (unsigned int)m_leftOver;}
+
+ //! \brief Provides number of ideal data alignment
+ //! \returns the ideal data alignment, in bytes
+ //! \sa GetAlignment() and OptimalBlockSize()
unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
+
+ //! \brief Flag indicating random access
+ //! \returns true if the cipher is seekable, false otherwise
+ //! \sa Seek()
bool IsRandomAccess() const {return false;}
+
+ //! \brief Determines if the cipher is self inverting
+ //! \returns true if the stream cipher is self inverting, false otherwise
bool IsSelfInverting() const {return false;}
typedef typename BASE::PolicyInterface PolicyInterface;
@@ -266,6 +543,9 @@ protected:
size_t m_leftOver;
};
+//! \class CFB_EncryptionTemplate
+//! \brief Base class for feedback based stream ciphers in the forward direction with SymmetricCipher interface
+//! \tparam BASE AbstractPolicyHolder base class
template <class BASE = AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >
class CRYPTOPP_NO_VTABLE CFB_EncryptionTemplate : public CFB_CipherTemplate<BASE>
{
@@ -273,6 +553,9 @@ class CRYPTOPP_NO_VTABLE CFB_EncryptionTemplate : public CFB_CipherTemplate<BASE
void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length);
};
+//! \class CFB_DecryptionTemplate
+//! \brief Base class for feedback based stream ciphers in the reverse direction with SymmetricCipher interface
+//! \tparam BASE AbstractPolicyHolder base class
template <class BASE = AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >
class CRYPTOPP_NO_VTABLE CFB_DecryptionTemplate : public CFB_CipherTemplate<BASE>
{
@@ -280,6 +563,9 @@ class CRYPTOPP_NO_VTABLE CFB_DecryptionTemplate : public CFB_CipherTemplate<BASE
void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length);
};
+//! \class CFB_RequireFullDataBlocks
+//! \brief Base class for feedback based stream ciphers with a mandatory block size
+//! \tparam BASE CFB_EncryptionTemplate or CFB_DecryptionTemplate base class
template <class BASE>
class CFB_RequireFullDataBlocks : public BASE
{
@@ -287,19 +573,39 @@ public:
unsigned int MandatoryBlockSize() const {return this->OptimalBlockSize();}
};
-//! _
+//! \class SymmetricCipherFinal
+//! \brief SymmetricCipher implementation
+//! \tparam BASE AbstractPolicyHolder derived base class
+//! \tparam INFO AbstractPolicyHolder derived information class
+//! \sa Weak::ARC4, ChaCha8, ChaCha12, ChaCha20, Salsa20, SEAL, Sosemanuk, WAKE
template <class BASE, class INFO = BASE>
class SymmetricCipherFinal : public AlgorithmImpl<SimpleKeyingInterfaceImpl<BASE, INFO>, INFO>
{
public:
+ //! \brief Construct a stream cipher
SymmetricCipherFinal() {}
+
+ //! \brief Construct a stream cipher
+ //! \param key a byte array used to key the cipher
+ //! \details This overload uses DEFAULT_KEYLENGTH
SymmetricCipherFinal(const byte *key)
{this->SetKey(key, this->DEFAULT_KEYLENGTH);}
+
+ //! \brief Construct a stream cipher
+ //! \param key a byte array used to key the cipher
+ //! \param length the size of the key array
SymmetricCipherFinal(const byte *key, size_t length)
{this->SetKey(key, length);}
+
+ //! \brief Construct a stream cipher
+ //! \param key a byte array used to key the cipher
+ //! \param length the size of the key array
+ //! \param iv a byte array used as an initialization vector
SymmetricCipherFinal(const byte *key, size_t length, const byte *iv)
{this->SetKeyWithIV(key, length, iv);}
+ //! \brief Clone a SymmetricCipher
+ //! \returns a new SymmetricCipher based on this object
Clonable * Clone() const {return static_cast<SymmetricCipher *>(new SymmetricCipherFinal<BASE, INFO>(*this));}
};