summaryrefslogtreecommitdiff
path: root/modarith.h
diff options
context:
space:
mode:
authorJeffrey Walton <noloader@gmail.com>2017-11-29 10:54:33 -0500
committerJeffrey Walton <noloader@gmail.com>2017-11-29 10:54:33 -0500
commit61ec50dabe14c5d4582ac187706ea27645b3562b (patch)
tree18a2eebb7adc8c9556ce132d7081a105fa058d6b /modarith.h
parent16ebfa72bf130c4725e652e4d3688d97d3feb0ee (diff)
downloadcryptopp-git-61ec50dabe14c5d4582ac187706ea27645b3562b.tar.gz
Change Doxygen comment style from //! to ///
Also see https://groups.google.com/forum/#!topic/cryptopp-users/A7-Xt5Knlzw
Diffstat (limited to 'modarith.h')
-rw-r--r--modarith.h302
1 files changed, 151 insertions, 151 deletions
diff --git a/modarith.h b/modarith.h
index 1a78f535..709a9121 100644
--- a/modarith.h
+++ b/modarith.h
@@ -1,7 +1,7 @@
// modarith.h - originally written and placed in the public domain by Wei Dai
-//! \file modarith.h
-//! \brief Class file for performing modular arithmetic.
+/// \file modarith.h
+/// \brief Class file for performing modular arithmetic.
#ifndef CRYPTOPP_MODARITH_H
#define CRYPTOPP_MODARITH_H
@@ -25,17 +25,17 @@ CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
-//! \class ModularArithmetic
-//! \brief Ring of congruence classes modulo n
-//! \details This implementation represents each congruence class as the smallest
-//! non-negative integer in that class.
-//! \details <tt>const Element&</tt> returned by member functions are references
-//! to internal data members. Since each object may have only
-//! one such data member for holding results, the following code
-//! will produce incorrect results:
-//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
-//! But this should be fine:
-//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
+/// \class ModularArithmetic
+/// \brief Ring of congruence classes modulo n
+/// \details This implementation represents each congruence class as the smallest
+/// non-negative integer in that class.
+/// \details <tt>const Element&</tt> returned by member functions are references
+/// to internal data members. Since each object may have only
+/// one such data member for holding results, the following code
+/// will produce incorrect results:
+/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
+/// But this should be fine:
+/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
{
public:
@@ -45,201 +45,201 @@ public:
virtual ~ModularArithmetic() {}
- //! \brief Construct a ModularArithmetic
- //! \param modulus congruence class modulus
+ /// \brief Construct a ModularArithmetic
+ /// \param modulus congruence class modulus
ModularArithmetic(const Integer &modulus = Integer::One())
: AbstractRing<Integer>(), m_modulus(modulus), m_result((word)0, modulus.reg.size()) {}
- //! \brief Copy construct a ModularArithmetic
- //! \param ma other ModularArithmetic
+ /// \brief Copy construct a ModularArithmetic
+ /// \param ma other ModularArithmetic
ModularArithmetic(const ModularArithmetic &ma)
: AbstractRing<Integer>(), m_modulus(ma.m_modulus), m_result((word)0, ma.m_modulus.reg.size()) {}
- //! \brief Construct a ModularArithmetic
- //! \param bt BER encoded ModularArithmetic
+ /// \brief Construct a ModularArithmetic
+ /// \param bt BER encoded ModularArithmetic
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
- //! \brief Clone a ModularArithmetic
- //! \returns pointer to a new ModularArithmetic
- //! \details Clone effectively copy constructs a new ModularArithmetic. The caller is
- //! responsible for deleting the pointer returned from this method.
+ /// \brief Clone a ModularArithmetic
+ /// \returns pointer to a new ModularArithmetic
+ /// \details Clone effectively copy constructs a new ModularArithmetic. The caller is
+ /// responsible for deleting the pointer returned from this method.
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
- //! \brief Encodes in DER format
- //! \param bt BufferedTransformation object
+ /// \brief Encodes in DER format
+ /// \param bt BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
- //! \brief Encodes element in DER format
- //! \param out BufferedTransformation object
- //! \param a Element to encode
+ /// \brief Encodes element in DER format
+ /// \param out BufferedTransformation object
+ /// \param a Element to encode
void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
- //! \brief Decodes element in DER format
- //! \param in BufferedTransformation object
- //! \param a Element to decode
+ /// \brief Decodes element in DER format
+ /// \param in BufferedTransformation object
+ /// \param a Element to decode
void BERDecodeElement(BufferedTransformation &in, Element &a) const;
- //! \brief Retrieves the modulus
- //! \returns the modulus
+ /// \brief Retrieves the modulus
+ /// \returns the modulus
const Integer& GetModulus() const {return m_modulus;}
- //! \brief Sets the modulus
- //! \param newModulus the new modulus
+ /// \brief Sets the modulus
+ /// \param newModulus the new modulus
void SetModulus(const Integer &newModulus)
{m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
- //! \brief Retrieves the representation
- //! \returns true if the if the modulus is in Montgomery form for multiplication, false otherwise
+ /// \brief Retrieves the representation
+ /// \returns true if the if the modulus is in Montgomery form for multiplication, false otherwise
virtual bool IsMontgomeryRepresentation() const {return false;}
- //! \brief Reduces an element in the congruence class
- //! \param a element to convert
- //! \returns the reduced element
- //! \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which
- //! must convert between representations.
+ /// \brief Reduces an element in the congruence class
+ /// \param a element to convert
+ /// \returns the reduced element
+ /// \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which
+ /// must convert between representations.
virtual Integer ConvertIn(const Integer &a) const
{return a%m_modulus;}
- //! \brief Reduces an element in the congruence class
- //! \param a element to convert
- //! \returns the reduced element
- //! \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which
- //! must convert between representations.
+ /// \brief Reduces an element in the congruence class
+ /// \param a element to convert
+ /// \returns the reduced element
+ /// \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which
+ /// must convert between representations.
virtual Integer ConvertOut(const Integer &a) const
{return a;}
- //! \brief Divides an element by 2
- //! \param a element to convert
+ /// \brief Divides an element by 2
+ /// \param a element to convert
const Integer& Half(const Integer &a) const;
- //! \brief Compare two elements for equality
- //! \param a first element
- //! \param b second element
- //! \returns true if the elements are equal, false otherwise
- //! \details Equal() tests the elements for equality using <tt>a==b</tt>
+ /// \brief Compare two elements for equality
+ /// \param a first element
+ /// \param b second element
+ /// \returns true if the elements are equal, false otherwise
+ /// \details Equal() tests the elements for equality using <tt>a==b</tt>
bool Equal(const Integer &a, const Integer &b) const
{return a==b;}
- //! \brief Provides the Identity element
- //! \returns the Identity element
+ /// \brief Provides the Identity element
+ /// \returns the Identity element
const Integer& Identity() const
{return Integer::Zero();}
- //! \brief Adds elements in the ring
- //! \param a first element
- //! \param b second element
- //! \returns the sum of <tt>a</tt> and <tt>b</tt>
+ /// \brief Adds elements in the ring
+ /// \param a first element
+ /// \param b second element
+ /// \returns the sum of <tt>a</tt> and <tt>b</tt>
const Integer& Add(const Integer &a, const Integer &b) const;
- //! \brief TODO
- //! \param a first element
- //! \param b second element
- //! \returns TODO
+ /// \brief TODO
+ /// \param a first element
+ /// \param b second element
+ /// \returns TODO
Integer& Accumulate(Integer &a, const Integer &b) const;
- //! \brief Inverts the element in the ring
- //! \param a first element
- //! \returns the inverse of the element
+ /// \brief Inverts the element in the ring
+ /// \param a first element
+ /// \returns the inverse of the element
const Integer& Inverse(const Integer &a) const;
- //! \brief Subtracts elements in the ring
- //! \param a first element
- //! \param b second element
- //! \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
+ /// \brief Subtracts elements in the ring
+ /// \param a first element
+ /// \param b second element
+ /// \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
const Integer& Subtract(const Integer &a, const Integer &b) const;
- //! \brief TODO
- //! \param a first element
- //! \param b second element
- //! \returns TODO
+ /// \brief TODO
+ /// \param a first element
+ /// \param b second element
+ /// \returns TODO
Integer& Reduce(Integer &a, const Integer &b) const;
- //! \brief Doubles an element in the ring
- //! \param a the element
- //! \returns the element doubled
- //! \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function.
+ /// \brief Doubles an element in the ring
+ /// \param a the element
+ /// \returns the element doubled
+ /// \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function.
const Integer& Double(const Integer &a) const
{return Add(a, a);}
- //! \brief Retrieves the multiplicative identity
- //! \returns the multiplicative identity
- //! \details the base class implementations returns 1.
+ /// \brief Retrieves the multiplicative identity
+ /// \returns the multiplicative identity
+ /// \details the base class implementations returns 1.
const Integer& MultiplicativeIdentity() const
{return Integer::One();}
- //! \brief Multiplies elements in the ring
- //! \param a the multiplicand
- //! \param b the multiplier
- //! \returns the product of a and b
- //! \details Multiply returns <tt>a*b\%n</tt>.
+ /// \brief Multiplies elements in the ring
+ /// \param a the multiplicand
+ /// \param b the multiplier
+ /// \returns the product of a and b
+ /// \details Multiply returns <tt>a*b\%n</tt>.
const Integer& Multiply(const Integer &a, const Integer &b) const
{return m_result1 = a*b%m_modulus;}
- //! \brief Square an element in the ring
- //! \param a the element
- //! \returns the element squared
- //! \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function.
+ /// \brief Square an element in the ring
+ /// \param a the element
+ /// \returns the element squared
+ /// \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function.
const Integer& Square(const Integer &a) const
{return m_result1 = a.Squared()%m_modulus;}
- //! \brief Determines whether an element is a unit in the ring
- //! \param a the element
- //! \returns true if the element is a unit after reduction, false otherwise.
+ /// \brief Determines whether an element is a unit in the ring
+ /// \param a the element
+ /// \returns true if the element is a unit after reduction, false otherwise.
bool IsUnit(const Integer &a) const
{return Integer::Gcd(a, m_modulus).IsUnit();}
- //! \brief Calculate the multiplicative inverse of an element in the ring
- //! \param a the element
- //! \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must
- //! provide a InverseMod member function.
+ /// \brief Calculate the multiplicative inverse of an element in the ring
+ /// \param a the element
+ /// \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must
+ /// provide a InverseMod member function.
const Integer& MultiplicativeInverse(const Integer &a) const
{return m_result1 = a.InverseMod(m_modulus);}
- //! \brief Divides elements in the ring
- //! \param a the dividend
- //! \param b the divisor
- //! \returns the quotient
- //! \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>.
+ /// \brief Divides elements in the ring
+ /// \param a the dividend
+ /// \param b the divisor
+ /// \returns the quotient
+ /// \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>.
const Integer& Divide(const Integer &a, const Integer &b) const
{return Multiply(a, MultiplicativeInverse(b));}
- //! \brief TODO
- //! \param x first element
- //! \param e1 first exponent
- //! \param y second element
- //! \param e2 second exponent
- //! \returns TODO
+ /// \brief TODO
+ /// \param x first element
+ /// \param e1 first exponent
+ /// \param y second element
+ /// \param e2 second exponent
+ /// \returns TODO
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
- //! \brief Exponentiates a base to multiple exponents in the ring
- //! \param results an array of Elements
- //! \param base the base to raise to the exponents
- //! \param exponents an array of exponents
- //! \param exponentsCount the number of exponents in the array
- //! \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
- //! result at the respective position in the results array.
- //! \details SimultaneousExponentiate() must be implemented in a derived class.
- //! \pre <tt>COUNTOF(results) == exponentsCount</tt>
- //! \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
+ /// \brief Exponentiates a base to multiple exponents in the ring
+ /// \param results an array of Elements
+ /// \param base the base to raise to the exponents
+ /// \param exponents an array of exponents
+ /// \param exponentsCount the number of exponents in the array
+ /// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
+ /// result at the respective position in the results array.
+ /// \details SimultaneousExponentiate() must be implemented in a derived class.
+ /// \pre <tt>COUNTOF(results) == exponentsCount</tt>
+ /// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
- //! \brief Provides the maximum bit size of an element in the ring
- //! \returns maximum bit size of an element
+ /// \brief Provides the maximum bit size of an element in the ring
+ /// \returns maximum bit size of an element
unsigned int MaxElementBitLength() const
{return (m_modulus-1).BitCount();}
- //! \brief Provides the maximum byte size of an element in the ring
- //! \returns maximum byte size of an element
+ /// \brief Provides the maximum byte size of an element in the ring
+ /// \returns maximum byte size of an element
unsigned int MaxElementByteLength() const
{return (m_modulus-1).ByteCount();}
- //! \brief Provides a random element in the ring
- //! \param rng RandomNumberGenerator used to generate material
- //! \param ignore_for_now unused
- //! \returns a random element that is uniformly distributed
- //! \details RandomElement constructs a new element in the range <tt>[0,n-1]</tt>, inclusive.
- //! The element's class must provide a constructor with the signature <tt>Element(RandomNumberGenerator rng,
- //! Element min, Element max)</tt>.
+ /// \brief Provides a random element in the ring
+ /// \param rng RandomNumberGenerator used to generate material
+ /// \param ignore_for_now unused
+ /// \returns a random element that is uniformly distributed
+ /// \details RandomElement constructs a new element in the range <tt>[0,n-1]</tt>, inclusive.
+ /// The element's class must provide a constructor with the signature <tt>Element(RandomNumberGenerator rng,
+ /// Element min, Element max)</tt>.
Element RandomElement(RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0) const
// left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
{
@@ -247,10 +247,10 @@ public:
return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ;
}
- //! \brief Compares two ModularArithmetic for equality
- //! \param rhs other ModularArithmetic
- //! \returns true if this is equal to the other, false otherwise
- //! \details The operator tests for equality using <tt>this.m_modulus == rhs.m_modulus</tt>.
+ /// \brief Compares two ModularArithmetic for equality
+ /// \param rhs other ModularArithmetic
+ /// \returns true if this is equal to the other, false otherwise
+ /// \details The operator tests for equality using <tt>this.m_modulus == rhs.m_modulus</tt>.
bool operator==(const ModularArithmetic &rhs) const
{return m_modulus == rhs.m_modulus;}
@@ -263,30 +263,30 @@ protected:
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
-//! \class MontgomeryRepresentation
-//! \brief Performs modular arithmetic in Montgomery representation for increased speed
-//! \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
-//! <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2.
-//! \details <tt>const Element&</tt> returned by member functions are references to
-//! internal data members. Since each object may have only one such data member for holding
-//! results, the following code will produce incorrect results:
-//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
-//! But this should be fine:
-//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
+/// \class MontgomeryRepresentation
+/// \brief Performs modular arithmetic in Montgomery representation for increased speed
+/// \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
+/// <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2.
+/// \details <tt>const Element&</tt> returned by member functions are references to
+/// internal data members. Since each object may have only one such data member for holding
+/// results, the following code will produce incorrect results:
+/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
+/// But this should be fine:
+/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
{
public:
virtual ~MontgomeryRepresentation() {}
- //! \brief Construct a MontgomeryRepresentation
- //! \param modulus congruence class modulus
- //! \note The modulus must be odd.
+ /// \brief Construct a MontgomeryRepresentation
+ /// \param modulus congruence class modulus
+ /// \note The modulus must be odd.
MontgomeryRepresentation(const Integer &modulus);
- //! \brief Clone a MontgomeryRepresentation
- //! \returns pointer to a new MontgomeryRepresentation
- //! \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is
- //! responsible for deleting the pointer returned from this method.
+ /// \brief Clone a MontgomeryRepresentation
+ /// \returns pointer to a new MontgomeryRepresentation
+ /// \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is
+ /// responsible for deleting the pointer returned from this method.
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
bool IsMontgomeryRepresentation() const {return true;}