summaryrefslogtreecommitdiff
path: root/integer.h
diff options
context:
space:
mode:
authorJeffrey Walton <noloader@gmail.com>2017-11-29 10:54:33 -0500
committerJeffrey Walton <noloader@gmail.com>2017-11-29 10:54:33 -0500
commit61ec50dabe14c5d4582ac187706ea27645b3562b (patch)
tree18a2eebb7adc8c9556ce132d7081a105fa058d6b /integer.h
parent16ebfa72bf130c4725e652e4d3688d97d3feb0ee (diff)
downloadcryptopp-git-61ec50dabe14c5d4582ac187706ea27645b3562b.tar.gz
Change Doxygen comment style from //! to ///
Also see https://groups.google.com/forum/#!topic/cryptopp-users/A7-Xt5Knlzw
Diffstat (limited to 'integer.h')
-rw-r--r--integer.h878
1 files changed, 439 insertions, 439 deletions
diff --git a/integer.h b/integer.h
index 3f8bb9c5..864cdecb 100644
--- a/integer.h
+++ b/integer.h
@@ -1,17 +1,17 @@
// integer.h - originally written and placed in the public domain by Wei Dai
-//! \file integer.h
-//! \brief Multiple precision integer with arithmetic operations
-//! \details The Integer class can represent positive and negative integers
-//! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
-//! \details Internally, the library uses a sign magnitude representation, and the class
-//! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
-//! used to hold the representation. The second is a Sign (an enumeration), and it is
-//! used to track the sign of the Integer.
-//! \details For details on how the Integer class initializes its function pointers using
-//! InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
-//! Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
-//! \since Crypto++ 1.0
+/// \file integer.h
+/// \brief Multiple precision integer with arithmetic operations
+/// \details The Integer class can represent positive and negative integers
+/// with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
+/// \details Internally, the library uses a sign magnitude representation, and the class
+/// has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
+/// used to hold the representation. The second is a Sign (an enumeration), and it is
+/// used to track the sign of the Integer.
+/// \details For details on how the Integer class initializes its function pointers using
+/// InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
+/// Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
+/// \since Crypto++ 1.0
#ifndef CRYPTOPP_INTEGER_H
#define CRYPTOPP_INTEGER_H
@@ -24,8 +24,8 @@
NAMESPACE_BEGIN(CryptoPP)
-//! \struct InitializeInteger
-//! \brief Performs static initialization of the Integer class
+/// \struct InitializeInteger
+/// \brief Performs static initialization of the Integer class
struct InitializeInteger
{
InitializeInteger();
@@ -34,417 +34,417 @@ struct InitializeInteger
// Always align, http://github.com/weidai11/cryptopp/issues/256
typedef SecBlock<word, AllocatorWithCleanup<word, true> > IntegerSecBlock;
-//! \brief Multiple precision integer with arithmetic operations
-//! \details The Integer class can represent positive and negative integers
-//! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
-//! \details Internally, the library uses a sign magnitude representation, and the class
-//! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
-//! used to hold the representation. The second is a Sign (an enumeration), and it is
-//! used to track the sign of the Integer.
-//! \details For details on how the Integer class initializes its function pointers using
-//! InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
-//! Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
-//! \since Crypto++ 1.0
-//! \nosubgrouping
+/// \brief Multiple precision integer with arithmetic operations
+/// \details The Integer class can represent positive and negative integers
+/// with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
+/// \details Internally, the library uses a sign magnitude representation, and the class
+/// has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
+/// used to hold the representation. The second is a Sign (an enumeration), and it is
+/// used to track the sign of the Integer.
+/// \details For details on how the Integer class initializes its function pointers using
+/// InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
+/// Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
+/// \since Crypto++ 1.0
+/// \nosubgrouping
class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object
{
public:
- //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
+ /// \name ENUMS, EXCEPTIONS, and TYPEDEFS
//@{
- //! \brief Exception thrown when division by 0 is encountered
+ /// \brief Exception thrown when division by 0 is encountered
class DivideByZero : public Exception
{
public:
DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
};
- //! \brief Exception thrown when a random number cannot be found that
- //! satisfies the condition
+ /// \brief Exception thrown when a random number cannot be found that
+ /// satisfies the condition
class RandomNumberNotFound : public Exception
{
public:
RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
};
- //! \enum Sign
- //! \brief Used internally to represent the integer
- //! \details Sign is used internally to represent the integer. It is also used in a few API functions.
- //! \sa SetPositive(), SetNegative(), Signedness
+ /// \enum Sign
+ /// \brief Used internally to represent the integer
+ /// \details Sign is used internally to represent the integer. It is also used in a few API functions.
+ /// \sa SetPositive(), SetNegative(), Signedness
enum Sign {
- //! \brief the value is positive or 0
+ /// \brief the value is positive or 0
POSITIVE=0,
- //! \brief the value is negative
+ /// \brief the value is negative
NEGATIVE=1};
- //! \enum Signedness
- //! \brief Used when importing and exporting integers
- //! \details Signedness is usually used in API functions.
- //! \sa Sign
+ /// \enum Signedness
+ /// \brief Used when importing and exporting integers
+ /// \details Signedness is usually used in API functions.
+ /// \sa Sign
enum Signedness {
- //! \brief an unsigned value
+ /// \brief an unsigned value
UNSIGNED,
- //! \brief a signed value
+ /// \brief a signed value
SIGNED};
- //! \enum RandomNumberType
- //! \brief Properties of a random integer
+ /// \enum RandomNumberType
+ /// \brief Properties of a random integer
enum RandomNumberType {
- //! \brief a number with no special properties
+ /// \brief a number with no special properties
ANY,
- //! \brief a number which is probabilistically prime
+ /// \brief a number which is probabilistically prime
PRIME};
//@}
- //! \name CREATORS
+ /// \name CREATORS
//@{
- //! \brief Creates the zero integer
+ /// \brief Creates the zero integer
Integer();
- //! copy constructor
+ /// copy constructor
Integer(const Integer& t);
- //! \brief Convert from signed long
+ /// \brief Convert from signed long
Integer(signed long value);
- //! \brief Convert from lword
- //! \param sign enumeration indicating Sign
- //! \param value the long word
+ /// \brief Convert from lword
+ /// \param sign enumeration indicating Sign
+ /// \param value the long word
Integer(Sign sign, lword value);
- //! \brief Convert from two words
- //! \param sign enumeration indicating Sign
- //! \param highWord the high word
- //! \param lowWord the low word
+ /// \brief Convert from two words
+ /// \param sign enumeration indicating Sign
+ /// \param highWord the high word
+ /// \param lowWord the low word
Integer(Sign sign, word highWord, word lowWord);
- //! \brief Convert from a C-string
- //! \param str C-string value
- //! \param order the ByteOrder of the string to be processed
- //! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
- //! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
- //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
- //! integers with curve25519, Poly1305 and Microsoft CAPI.
+ /// \brief Convert from a C-string
+ /// \param str C-string value
+ /// \param order the ByteOrder of the string to be processed
+ /// \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
+ /// insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
+ /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
+ /// integers with curve25519, Poly1305 and Microsoft CAPI.
explicit Integer(const char *str, ByteOrder order = BIG_ENDIAN_ORDER);
- //! \brief Convert from a wide C-string
- //! \param str wide C-string value
- //! \param order the ByteOrder of the string to be processed
- //! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
- //! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
- //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
- //! integers with curve25519, Poly1305 and Microsoft CAPI.
+ /// \brief Convert from a wide C-string
+ /// \param str wide C-string value
+ /// \param order the ByteOrder of the string to be processed
+ /// \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
+ /// insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
+ /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
+ /// integers with curve25519, Poly1305 and Microsoft CAPI.
explicit Integer(const wchar_t *str, ByteOrder order = BIG_ENDIAN_ORDER);
- //! \brief Convert from a big-endian byte array
- //! \param encodedInteger big-endian byte array
- //! \param byteCount length of the byte array
- //! \param sign enumeration indicating Signedness
- //! \param order the ByteOrder of the array to be processed
- //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
- //! integers with curve25519, Poly1305 and Microsoft CAPI.
+ /// \brief Convert from a big-endian byte array
+ /// \param encodedInteger big-endian byte array
+ /// \param byteCount length of the byte array
+ /// \param sign enumeration indicating Signedness
+ /// \param order the ByteOrder of the array to be processed
+ /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
+ /// integers with curve25519, Poly1305 and Microsoft CAPI.
Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER);
- //! \brief Convert from a big-endian array
- //! \param bt BufferedTransformation object with big-endian byte array
- //! \param byteCount length of the byte array
- //! \param sign enumeration indicating Signedness
- //! \param order the ByteOrder of the data to be processed
- //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
- //! integers with curve25519, Poly1305 and Microsoft CAPI.
+ /// \brief Convert from a big-endian array
+ /// \param bt BufferedTransformation object with big-endian byte array
+ /// \param byteCount length of the byte array
+ /// \param sign enumeration indicating Signedness
+ /// \param order the ByteOrder of the data to be processed
+ /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
+ /// integers with curve25519, Poly1305 and Microsoft CAPI.
Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER);
- //! \brief Convert from a BER encoded byte array
- //! \param bt BufferedTransformation object with BER encoded byte array
+ /// \brief Convert from a BER encoded byte array
+ /// \param bt BufferedTransformation object with BER encoded byte array
explicit Integer(BufferedTransformation &bt);
- //! \brief Create a random integer
- //! \param rng RandomNumberGenerator used to generate material
- //! \param bitCount the number of bits in the resulting integer
- //! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
+ /// \brief Create a random integer
+ /// \param rng RandomNumberGenerator used to generate material
+ /// \param bitCount the number of bits in the resulting integer
+ /// \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
Integer(RandomNumberGenerator &rng, size_t bitCount);
- //! \brief Integer representing 0
- //! \returns an Integer representing 0
- //! \details Zero() avoids calling constructors for frequently used integers
+ /// \brief Integer representing 0
+ /// \returns an Integer representing 0
+ /// \details Zero() avoids calling constructors for frequently used integers
static const Integer & CRYPTOPP_API Zero();
- //! \brief Integer representing 1
- //! \returns an Integer representing 1
- //! \details One() avoids calling constructors for frequently used integers
+ /// \brief Integer representing 1
+ /// \returns an Integer representing 1
+ /// \details One() avoids calling constructors for frequently used integers
static const Integer & CRYPTOPP_API One();
- //! \brief Integer representing 2
- //! \returns an Integer representing 2
- //! \details Two() avoids calling constructors for frequently used integers
+ /// \brief Integer representing 2
+ /// \returns an Integer representing 2
+ /// \details Two() avoids calling constructors for frequently used integers
static const Integer & CRYPTOPP_API Two();
- //! \brief Create a random integer of special form
- //! \param rng RandomNumberGenerator used to generate material
- //! \param min the minimum value
- //! \param max the maximum value
- //! \param rnType RandomNumberType to specify the type
- //! \param equiv the equivalence class based on the parameter \p mod
- //! \param mod the modulus used to reduce the equivalence class
- //! \throw RandomNumberNotFound if the set is empty.
- //! \details Ideally, the random integer created should be uniformly distributed
- //! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
- //! However the actual distribution may not be uniform because sequential
- //! search is used to find an appropriate number from a random starting
- //! point.
- //! \details May return (with very small probability) a pseudoprime when a prime
- //! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
- //! is declared in nbtheory.h.
+ /// \brief Create a random integer of special form
+ /// \param rng RandomNumberGenerator used to generate material
+ /// \param min the minimum value
+ /// \param max the maximum value
+ /// \param rnType RandomNumberType to specify the type
+ /// \param equiv the equivalence class based on the parameter \p mod
+ /// \param mod the modulus used to reduce the equivalence class
+ /// \throw RandomNumberNotFound if the set is empty.
+ /// \details Ideally, the random integer created should be uniformly distributed
+ /// over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
+ /// However the actual distribution may not be uniform because sequential
+ /// search is used to find an appropriate number from a random starting
+ /// point.
+ /// \details May return (with very small probability) a pseudoprime when a prime
+ /// is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
+ /// is declared in nbtheory.h.
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
- //! \brief Exponentiates to a power of 2
- //! \returns the Integer 2<sup>e</sup>
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Exponentiates to a power of 2
+ /// \returns the Integer 2<sup>e</sup>
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
static Integer CRYPTOPP_API Power2(size_t e);
//@}
- //! \name ENCODE/DECODE
+ /// \name ENCODE/DECODE
//@{
- //! \brief Minimum number of bytes to encode this integer
- //! \param sign enumeration indicating Signedness
- //! \note The MinEncodedSize() of 0 is 1.
+ /// \brief Minimum number of bytes to encode this integer
+ /// \param sign enumeration indicating Signedness
+ /// \note The MinEncodedSize() of 0 is 1.
size_t MinEncodedSize(Signedness sign=UNSIGNED) const;
- //! \brief Encode in big-endian format
- //! \param output big-endian byte array
- //! \param outputLen length of the byte array
- //! \param sign enumeration indicating Signedness
- //! \details Unsigned means encode absolute value, signed means encode two's complement if negative.
- //! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
- //! minimum size). An exact size is useful, for example, when encoding to a field element size.
+ /// \brief Encode in big-endian format
+ /// \param output big-endian byte array
+ /// \param outputLen length of the byte array
+ /// \param sign enumeration indicating Signedness
+ /// \details Unsigned means encode absolute value, signed means encode two's complement if negative.
+ /// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
+ /// minimum size). An exact size is useful, for example, when encoding to a field element size.
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const;
- //! \brief Encode in big-endian format
- //! \param bt BufferedTransformation object
- //! \param outputLen length of the encoding
- //! \param sign enumeration indicating Signedness
- //! \details Unsigned means encode absolute value, signed means encode two's complement if negative.
- //! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
- //! minimum size). An exact size is useful, for example, when encoding to a field element size.
+ /// \brief Encode in big-endian format
+ /// \param bt BufferedTransformation object
+ /// \param outputLen length of the encoding
+ /// \param sign enumeration indicating Signedness
+ /// \details Unsigned means encode absolute value, signed means encode two's complement if negative.
+ /// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
+ /// minimum size). An exact size is useful, for example, when encoding to a field element size.
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const;
- //! \brief Encode in DER format
- //! \param bt BufferedTransformation object
- //! \details Encodes the Integer using Distinguished Encoding Rules
- //! The result is placed into a BufferedTransformation object
+ /// \brief Encode in DER format
+ /// \param bt BufferedTransformation object
+ /// \details Encodes the Integer using Distinguished Encoding Rules
+ /// The result is placed into a BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
- //! \brief Encode absolute value as big-endian octet string
- //! \param bt BufferedTransformation object
- //! \param length the number of mytes to decode
+ /// \brief Encode absolute value as big-endian octet string
+ /// \param bt BufferedTransformation object
+ /// \param length the number of mytes to decode
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
- //! \brief Encode absolute value in OpenPGP format
- //! \param output big-endian byte array
- //! \param bufferSize length of the byte array
- //! \returns length of the output
- //! \details OpenPGPEncode places result into the buffer and returns the
- //! number of bytes used for the encoding
+ /// \brief Encode absolute value in OpenPGP format
+ /// \param output big-endian byte array
+ /// \param bufferSize length of the byte array
+ /// \returns length of the output
+ /// \details OpenPGPEncode places result into the buffer and returns the
+ /// number of bytes used for the encoding
size_t OpenPGPEncode(byte *output, size_t bufferSize) const;
- //! \brief Encode absolute value in OpenPGP format
- //! \param bt BufferedTransformation object
- //! \returns length of the output
- //! \details OpenPGPEncode places result into a BufferedTransformation object and returns the
- //! number of bytes used for the encoding
+ /// \brief Encode absolute value in OpenPGP format
+ /// \param bt BufferedTransformation object
+ /// \returns length of the output
+ /// \details OpenPGPEncode places result into a BufferedTransformation object and returns the
+ /// number of bytes used for the encoding
size_t OpenPGPEncode(BufferedTransformation &bt) const;
- //! \brief Decode from big-endian byte array
- //! \param input big-endian byte array
- //! \param inputLen length of the byte array
- //! \param sign enumeration indicating Signedness
+ /// \brief Decode from big-endian byte array
+ /// \param input big-endian byte array
+ /// \param inputLen length of the byte array
+ /// \param sign enumeration indicating Signedness
void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED);
- //! \brief Decode nonnegative value from big-endian byte array
- //! \param bt BufferedTransformation object
- //! \param inputLen length of the byte array
- //! \param sign enumeration indicating Signedness
- //! \note <tt>bt.MaxRetrievable() \>= inputLen</tt>.
+ /// \brief Decode nonnegative value from big-endian byte array
+ /// \param bt BufferedTransformation object
+ /// \param inputLen length of the byte array
+ /// \param sign enumeration indicating Signedness
+ /// \note <tt>bt.MaxRetrievable() \>= inputLen</tt>.
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED);
- //! \brief Decode from BER format
- //! \param input big-endian byte array
- //! \param inputLen length of the byte array
+ /// \brief Decode from BER format
+ /// \param input big-endian byte array
+ /// \param inputLen length of the byte array
void BERDecode(const byte *input, size_t inputLen);
- //! \brief Decode from BER format
- //! \param bt BufferedTransformation object
+ /// \brief Decode from BER format
+ /// \param bt BufferedTransformation object
void BERDecode(BufferedTransformation &bt);
- //! \brief Decode nonnegative value from big-endian octet string
- //! \param bt BufferedTransformation object
- //! \param length length of the byte array
+ /// \brief Decode nonnegative value from big-endian octet string
+ /// \param bt BufferedTransformation object
+ /// \param length length of the byte array
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
- //! \brief Exception thrown when an error is encountered decoding an OpenPGP integer
+ /// \brief Exception thrown when an error is encountered decoding an OpenPGP integer
class OpenPGPDecodeErr : public Exception
{
public:
OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
};
- //! \brief Decode from OpenPGP format
- //! \param input big-endian byte array
- //! \param inputLen length of the byte array
+ /// \brief Decode from OpenPGP format
+ /// \param input big-endian byte array
+ /// \param inputLen length of the byte array
void OpenPGPDecode(const byte *input, size_t inputLen);
- //! \brief Decode from OpenPGP format
- //! \param bt BufferedTransformation object
+ /// \brief Decode from OpenPGP format
+ /// \param bt BufferedTransformation object
void OpenPGPDecode(BufferedTransformation &bt);
//@}
- //! \name ACCESSORS
+ /// \name ACCESSORS
//@{
- //! \brief Determines if the Integer is convertable to Long
- //! \returns true if *this can be represented as a signed long
- //! \sa ConvertToLong()
+ /// \brief Determines if the Integer is convertable to Long
+ /// \returns true if *this can be represented as a signed long
+ /// \sa ConvertToLong()
bool IsConvertableToLong() const;
- //! \brief Convert the Integer to Long
- //! \return equivalent signed long if possible, otherwise undefined
- //! \sa IsConvertableToLong()
+ /// \brief Convert the Integer to Long
+ /// \return equivalent signed long if possible, otherwise undefined
+ /// \sa IsConvertableToLong()
signed long ConvertToLong() const;
- //! \brief Determines the number of bits required to represent the Integer
- //! \returns number of significant bits = floor(log2(abs(*this))) + 1
+ /// \brief Determines the number of bits required to represent the Integer
+ /// \returns number of significant bits = floor(log2(abs(*this))) + 1
unsigned int BitCount() const;
- //! \brief Determines the number of bytes required to represent the Integer
- //! \returns number of significant bytes = ceiling(BitCount()/8)
+ /// \brief Determines the number of bytes required to represent the Integer
+ /// \returns number of significant bytes = ceiling(BitCount()/8)
unsigned int ByteCount() const;
- //! \brief Determines the number of words required to represent the Integer
- //! \returns number of significant words = ceiling(ByteCount()/sizeof(word))
+ /// \brief Determines the number of words required to represent the Integer
+ /// \returns number of significant words = ceiling(ByteCount()/sizeof(word))
unsigned int WordCount() const;
- //! \brief Provides the i-th bit of the Integer
- //! \returns the i-th bit, i=0 being the least significant bit
+ /// \brief Provides the i-th bit of the Integer
+ /// \returns the i-th bit, i=0 being the least significant bit
bool GetBit(size_t i) const;
- //! \brief Provides the i-th byte of the Integer
- //! \returns the i-th byte
+ /// \brief Provides the i-th byte of the Integer
+ /// \returns the i-th byte
byte GetByte(size_t i) const;
- //! \brief Provides the low order bits of the Integer
- //! \returns n lowest bits of *this >> i
+ /// \brief Provides the low order bits of the Integer
+ /// \returns n lowest bits of *this >> i
lword GetBits(size_t i, size_t n) const;
- //! \brief Determines if the Integer is 0
- //! \returns true if the Integer is 0, false otherwise
+ /// \brief Determines if the Integer is 0
+ /// \returns true if the Integer is 0, false otherwise
bool IsZero() const {return !*this;}
- //! \brief Determines if the Integer is non-0
- //! \returns true if the Integer is non-0, false otherwise
+ /// \brief Determines if the Integer is non-0
+ /// \returns true if the Integer is non-0, false otherwise
bool NotZero() const {return !IsZero();}
- //! \brief Determines if the Integer is negative
- //! \returns true if the Integer is negative, false otherwise
+ /// \brief Determines if the Integer is negative
+ /// \returns true if the Integer is negative, false otherwise
bool IsNegative() const {return sign == NEGATIVE;}
- //! \brief Determines if the Integer is non-negative
- //! \returns true if the Integer is non-negative, false otherwise
+ /// \brief Determines if the Integer is non-negative
+ /// \returns true if the Integer is non-negative, false otherwise
bool NotNegative() const {return !IsNegative();}
- //! \brief Determines if the Integer is positive
- //! \returns true if the Integer is positive, false otherwise
+ /// \brief Determines if the Integer is positive
+ /// \returns true if the Integer is positive, false otherwise
bool IsPositive() const {return NotNegative() && NotZero();}
- //! \brief Determines if the Integer is non-positive
- //! \returns true if the Integer is non-positive, false otherwise
+ /// \brief Determines if the Integer is non-positive
+ /// \returns true if the Integer is non-positive, false otherwise
bool NotPositive() const {return !IsPositive();}
- //! \brief Determines if the Integer is even parity
- //! \returns true if the Integer is even, false otherwise
+ /// \brief Determines if the Integer is even parity
+ /// \returns true if the Integer is even, false otherwise
bool IsEven() const {return GetBit(0) == 0;}
- //! \brief Determines if the Integer is odd parity
- //! \returns true if the Integer is odd, false otherwise
+ /// \brief Determines if the Integer is odd parity
+ /// \returns true if the Integer is odd, false otherwise
bool IsOdd() const {return GetBit(0) == 1;}
//@}
- //! \name MANIPULATORS
+ /// \name MANIPULATORS
//@{
- //! \brief Assignment
+ /// \brief Assignment
Integer& operator=(const Integer& t);
- //! \brief Addition Assignment
+ /// \brief Addition Assignment
Integer& operator+=(const Integer& t);
- //! \brief Subtraction Assignment
+ /// \brief Subtraction Assignment
Integer& operator-=(const Integer& t);
- //! \brief Multiplication Assignment
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Multiplication Assignment
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer& operator*=(const Integer& t) {return *this = Times(t);}
- //! \brief Division Assignment
+ /// \brief Division Assignment
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);}
- //! \brief Remainder Assignment
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Remainder Assignment
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer& operator%=(const Integer& t) {return *this = Modulo(t);}
- //! \brief Division Assignment
+ /// \brief Division Assignment
Integer& operator/=(word t) {return *this = DividedBy(t);}
- //! \brief Remainder Assignment
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Remainder Assignment
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));}
- //! \brief Left-shift Assignment
+ /// \brief Left-shift Assignment
Integer& operator<<=(size_t n);
- //! \brief Right-shift Assignment
+ /// \brief Right-shift Assignment
Integer& operator>>=(size_t n);
- //! \brief Bitwise AND Assignment
- //! \param t the other Integer
- //! \returns the result of *this & t
- //! \details operator&=() performs a bitwise AND on *this. Missing bits are truncated
- //! at the most significant bit positions, so the result is as small as the
- //! smaller of the operands.
- //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
- //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
- //! the integer should be converted to a 2's compliment representation before performing
- //! the operation.
- //! \since Crypto++ 6.0
+ /// \brief Bitwise AND Assignment
+ /// \param t the other Integer
+ /// \returns the result of *this & t
+ /// \details operator&=() performs a bitwise AND on *this. Missing bits are truncated
+ /// at the most significant bit positions, so the result is as small as the
+ /// smaller of the operands.
+ /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ /// the integer should be converted to a 2's compliment representation before performing
+ /// the operation.
+ /// \since Crypto++ 6.0
Integer& operator&=(const Integer& t);
- //! \brief Bitwise OR Assignment
- //! \param t the second Integer
- //! \returns the result of *this | t
- //! \details operator|=() performs a bitwise OR on *this. Missing bits are shifted in
- //! at the most significant bit positions, so the result is as large as the
- //! larger of the operands.
- //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
- //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
- //! the integer should be converted to a 2's compliment representation before performing
- //! the operation.
- //! \since Crypto++ 6.0
+ /// \brief Bitwise OR Assignment
+ /// \param t the second Integer
+ /// \returns the result of *this | t
+ /// \details operator|=() performs a bitwise OR on *this. Missing bits are shifted in
+ /// at the most significant bit positions, so the result is as large as the
+ /// larger of the operands.
+ /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ /// the integer should be converted to a 2's compliment representation before performing
+ /// the operation.
+ /// \since Crypto++ 6.0
Integer& operator|=(const Integer& t);
- //! \brief Bitwise XOR Assignment
- //! \param t the other Integer
- //! \returns the result of *this ^ t
- //! \details operator^=() performs a bitwise XOR on *this. Missing bits are shifted
- //! in at the most significant bit positions, so the result is as large as the
- //! larger of the operands.
- //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
- //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
- //! the integer should be converted to a 2's compliment representation before performing
- //! the operation.
- //! \since Crypto++ 6.0
+ /// \brief Bitwise XOR Assignment
+ /// \param t the other Integer
+ /// \returns the result of *this ^ t
+ /// \details operator^=() performs a bitwise XOR on *this. Missing bits are shifted
+ /// in at the most significant bit positions, so the result is as large as the
+ /// larger of the operands.
+ /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ /// the integer should be converted to a 2's compliment representation before performing
+ /// the operation.
+ /// \since Crypto++ 6.0
Integer& operator^=(const Integer& t);
- //! \brief Set this Integer to random integer
- //! \param rng RandomNumberGenerator used to generate material
- //! \param bitCount the number of bits in the resulting integer
- //! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
+ /// \brief Set this Integer to random integer
+ /// \param rng RandomNumberGenerator used to generate material
+ /// \param bitCount the number of bits in the resulting integer
+ /// \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
void Randomize(RandomNumberGenerator &rng, size_t bitCount);
- //! \brief Set this Integer to random integer
- //! \param rng RandomNumberGenerator used to generate material
- //! \param min the minimum value
- //! \param max the maximum value
- //! \details The random integer created is uniformly distributed over <tt>[min, max]</tt>.
+ /// \brief Set this Integer to random integer
+ /// \param rng RandomNumberGenerator used to generate material
+ /// \param min the minimum value
+ /// \param max the maximum value
+ /// \details The random integer created is uniformly distributed over <tt>[min, max]</tt>.
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
- //! \brief Set this Integer to random integer of special form
- //! \param rng RandomNumberGenerator used to generate material
- //! \param min the minimum value
- //! \param max the maximum value
- //! \param rnType RandomNumberType to specify the type
- //! \param equiv the equivalence class based on the parameter \p mod
- //! \param mod the modulus used to reduce the equivalence class
- //! \throw RandomNumberNotFound if the set is empty.
- //! \details Ideally, the random integer created should be uniformly distributed
- //! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
- //! However the actual distribution may not be uniform because sequential
- //! search is used to find an appropriate number from a random starting
- //! point.
- //! \details May return (with very small probability) a pseudoprime when a prime
- //! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
- //! is declared in nbtheory.h.
+ /// \brief Set this Integer to random integer of special form
+ /// \param rng RandomNumberGenerator used to generate material
+ /// \param min the minimum value
+ /// \param max the maximum value
+ /// \param rnType RandomNumberType to specify the type
+ /// \param equiv the equivalence class based on the parameter \p mod
+ /// \param mod the modulus used to reduce the equivalence class
+ /// \throw RandomNumberNotFound if the set is empty.
+ /// \details Ideally, the random integer created should be uniformly distributed
+ /// over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
+ /// However the actual distribution may not be uniform because sequential
+ /// search is used to find an appropriate number from a random starting
+ /// point.
+ /// \details May return (with very small probability) a pseudoprime when a prime
+ /// is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
+ /// is declared in nbtheory.h.
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs);
@@ -454,179 +454,179 @@ public:
throw RandomNumberNotFound();
}
- //! \brief Set the n-th bit to value
- //! \details 0-based numbering.
+ /// \brief Set the n-th bit to value
+ /// \details 0-based numbering.
void SetBit(size_t n, bool value=1);
- //! \brief Set the n-th byte to value
- //! \details 0-based numbering.
+ /// \brief Set the n-th byte to value
+ /// \details 0-based numbering.
void SetByte(size_t n, byte value);
- //! \brief Reverse the Sign of the Integer
+ /// \brief Reverse the Sign of the Integer
void Negate();
- //! \brief Sets the Integer to positive
+ /// \brief Sets the Integer to positive
void SetPositive() {sign = POSITIVE;}
- //! \brief Sets the Integer to negative
+ /// \brief Sets the Integer to negative
void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
- //! \brief Swaps this Integer with another Integer
+ /// \brief Swaps this Integer with another Integer
void swap(Integer &a);
//@}
- //! \name UNARY OPERATORS
+ /// \name UNARY OPERATORS
//@{
- //! \brief Negation
+ /// \brief Negation
bool operator!() const;
- //! \brief Addition
+ /// \brief Addition
Integer operator+() const {return *this;}
- //! \brief Subtraction
+ /// \brief Subtraction
Integer operator-() const;
- //! \brief Pre-increment
+ /// \brief Pre-increment
Integer& operator++();
- //! \brief Pre-decrement
+ /// \brief Pre-decrement
Integer& operator--();
- //! \brief Post-increment
+ /// \brief Post-increment
Integer operator++(int) {Integer temp = *this; ++*this; return temp;}
- //! \brief Post-decrement
+ /// \brief Post-decrement
Integer operator--(int) {Integer temp = *this; --*this; return temp;}
//@}
- //! \name BINARY OPERATORS
+ /// \name BINARY OPERATORS
//@{
- //! \brief Perform signed comparison
- //! \param a the Integer to comapre
- //! \retval -1 if <tt>*this < a</tt>
- //! \retval 0 if <tt>*this = a</tt>
- //! \retval 1 if <tt>*this > a</tt>
+ /// \brief Perform signed comparison
+ /// \param a the Integer to comapre
+ /// \retval -1 if <tt>*this < a</tt>
+ /// \retval 0 if <tt>*this = a</tt>
+ /// \retval 1 if <tt>*this > a</tt>
int Compare(const Integer& a) const;
- //! \brief Addition
+ /// \brief Addition
Integer Plus(const Integer &b) const;
- //! \brief Subtraction
+ /// \brief Subtraction
Integer Minus(const Integer &b) const;
- //! \brief Multiplication
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Multiplication
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer Times(const Integer &b) const;
- //! \brief Division
+ /// \brief Division
Integer DividedBy(const Integer &b) const;
- //! \brief Remainder
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Remainder
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer Modulo(const Integer &b) const;
- //! \brief Division
+ /// \brief Division
Integer DividedBy(word b) const;
- //! \brief Remainder
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Remainder
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
word Modulo(word b) const;
- //! \brief Bitwise AND
- //! \param t the other Integer
- //! \returns the result of <tt>*this & t</tt>
- //! \details And() performs a bitwise AND on the operands. Missing bits are truncated
- //! at the most significant bit positions, so the result is as small as the
- //! smaller of the operands.
- //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
- //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
- //! the integer should be converted to a 2's compliment representation before performing
- //! the operation.
- //! \since Crypto++ 6.0
+ /// \brief Bitwise AND
+ /// \param t the other Integer
+ /// \returns the result of <tt>*this & t</tt>
+ /// \details And() performs a bitwise AND on the operands. Missing bits are truncated
+ /// at the most significant bit positions, so the result is as small as the
+ /// smaller of the operands.
+ /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ /// the integer should be converted to a 2's compliment representation before performing
+ /// the operation.
+ /// \since Crypto++ 6.0
Integer And(const Integer& t) const;
- //! \brief Bitwise OR
- //! \param t the other Integer
- //! \returns the result of <tt>*this | t</tt>
- //! \details Or() performs a bitwise OR on the operands. Missing bits are shifted in
- //! at the most significant bit positions, so the result is as large as the
- //! larger of the operands.
- //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
- //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
- //! the integer should be converted to a 2's compliment representation before performing
- //! the operation.
- //! \since Crypto++ 6.0
+ /// \brief Bitwise OR
+ /// \param t the other Integer
+ /// \returns the result of <tt>*this | t</tt>
+ /// \details Or() performs a bitwise OR on the operands. Missing bits are shifted in
+ /// at the most significant bit positions, so the result is as large as the
+ /// larger of the operands.
+ /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ /// the integer should be converted to a 2's compliment representation before performing
+ /// the operation.
+ /// \since Crypto++ 6.0
Integer Or(const Integer& t) const;
- //! \brief Bitwise XOR
- //! \param t the other Integer
- //! \returns the result of <tt>*this ^ t</tt>
- //! \details Xor() performs a bitwise XOR on the operands. Missing bits are shifted in
- //! at the most significant bit positions, so the result is as large as the
- //! larger of the operands.
- //! \details Internally, Crypto++ uses a sign-magnitude representation. The library
- //! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
- //! the integer should be converted to a 2's compliment representation before performing
- //! the operation.
- //! \since Crypto++ 6.0
+ /// \brief Bitwise XOR
+ /// \param t the other Integer
+ /// \returns the result of <tt>*this ^ t</tt>
+ /// \details Xor() performs a bitwise XOR on the operands. Missing bits are shifted in
+ /// at the most significant bit positions, so the result is as large as the
+ /// larger of the operands.
+ /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+ /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+ /// the integer should be converted to a 2's compliment representation before performing
+ /// the operation.
+ /// \since Crypto++ 6.0
Integer Xor(const Integer& t) const;
- //! \brief Right-shift
+ /// \brief Right-shift
Integer operator>>(size_t n) const {return Integer(*this)>>=n;}
- //! \brief Left-shift
+ /// \brief Left-shift
Integer operator<<(size_t n) const {return Integer(*this)<<=n;}
//@}
- //! \name OTHER ARITHMETIC FUNCTIONS
+ /// \name OTHER ARITHMETIC FUNCTIONS
//@{
- //! \brief Retrieve the absolute value of this integer
+ /// \brief Retrieve the absolute value of this integer
Integer AbsoluteValue() const;
- //! \brief Add this integer to itself
+ /// \brief Add this integer to itself
Integer Doubled() const {return Plus(*this);}
- //! \brief Multiply this integer by itself
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ /// \brief Multiply this integer by itself
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
Integer Squared() const {return Times(*this);}
- //! \brief Extract square root
- //! \details if negative return 0, else return floor of square root
+ /// \brief Extract square root
+ /// \details if negative return 0, else return floor of square root
Integer SquareRoot() const;
- //! \brief Determine whether this integer is a perfect square
+ /// \brief Determine whether this integer is a perfect square
bool IsSquare() const;
- //! is 1 or -1
+ /// is 1 or -1
bool IsUnit() const;
- //! return inverse if 1 or -1, otherwise return 0
+ /// return inverse if 1 or -1, otherwise return 0
Integer MultiplicativeInverse() const;
- //! \brief calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
+ /// \brief calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
- //! \brief use a faster division algorithm when divisor is short
+ /// \brief use a faster division algorithm when divisor is short
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
- //! \brief returns same result as Divide(r, q, a, Power2(n)), but faster
+ /// \brief returns same result as Divide(r, q, a, Power2(n)), but faster
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
- //! greatest common divisor
+ /// greatest common divisor
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
- //! \brief calculate multiplicative inverse of *this mod n
+ /// \brief calculate multiplicative inverse of *this mod n
Integer InverseMod(const Integer &n) const;
- //!
- //! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+ ///
+ /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
word InverseMod(word n) const;
//@}
- //! \name INPUT/OUTPUT
+ /// \name INPUT/OUTPUT
//@{
- //! \brief Extraction operator
- //! \param in a reference to a std::istream
- //! \param a a reference to an Integer
- //! \returns a reference to a std::istream reference
+ /// \brief Extraction operator
+ /// \param in a reference to a std::istream
+ /// \param a a reference to an Integer
+ /// \returns a reference to a std::istream reference
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);
- //!
- //! \brief Insertion operator
- //! \param out a reference to a std::ostream
- //! \param a a constant reference to an Integer
- //! \returns a reference to a std::ostream reference
- //! \details The output integer responds to std::hex, std::oct, std::hex, std::upper and
- //! std::lower. The output includes the suffix \a \b h (for hex), \a \b . (\a \b dot, for dec)
- //! and \a \b o (for octal). There is currently no way to suppress the suffix.
- //! \details If you want to print an Integer without the suffix or using an arbitrary base, then
- //! use IntToString<Integer>().
- //! \sa IntToString<Integer>
+ ///
+ /// \brief Insertion operator
+ /// \param out a reference to a std::ostream
+ /// \param a a constant reference to an Integer
+ /// \returns a reference to a std::ostream reference
+ /// \details The output integer responds to std::hex, std::oct, std::hex, std::upper and
+ /// std::lower. The output includes the suffix \a \b h (for hex), \a \b . (\a \b dot, for dec)
+ /// and \a \b o (for octal). There is currently no way to suppress the suffix.
+ /// \details If you want to print an Integer without the suffix or using an arbitrary base, then
+ /// use IntToString<Integer>().
+ /// \sa IntToString<Integer>
friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a);
//@}
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
- //! modular multiplication
+ /// modular multiplication
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
- //! modular exponentiation
+ /// modular exponentiation
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
#endif
@@ -650,76 +650,76 @@ private:
#endif
};
-//! \brief Comparison
+/// \brief Comparison
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
-//! \brief Comparison
+/// \brief Comparison
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
-//! \brief Comparison
+/// \brief Comparison
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
-//! \brief Comparison
+/// \brief Comparison
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
-//! \brief Comparison
+/// \brief Comparison
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
-//! \brief Comparison
+/// \brief Comparison
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
-//! \brief Addition
+/// \brief Addition
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
-//! \brief Subtraction
+/// \brief Subtraction
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
-//! \brief Multiplication
-//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+/// \brief Multiplication
+/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
-//! \brief Division
+/// \brief Division
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
-//! \brief Remainder
-//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+/// \brief Remainder
+/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
-//! \brief Division
+/// \brief Division
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
-//! \brief Remainder
-//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
+/// \brief Remainder
+/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
-//! \brief Bitwise AND
-//! \param a the first Integer
-//! \param b the second Integer
-//! \returns the result of a & b
-//! \details operator&() performs a bitwise AND on the operands. Missing bits are truncated
-//! at the most significant bit positions, so the result is as small as the
-//! smaller of the operands.
-//! \details Internally, Crypto++ uses a sign-magnitude representation. The library
-//! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
-//! the integer should be converted to a 2's compliment representation before performing
-//! the operation.
-//! \since Crypto++ 6.0
+/// \brief Bitwise AND
+/// \param a the first Integer
+/// \param b the second Integer
+/// \returns the result of a & b
+/// \details operator&() performs a bitwise AND on the operands. Missing bits are truncated
+/// at the most significant bit positions, so the result is as small as the
+/// smaller of the operands.
+/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+/// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+/// the integer should be converted to a 2's compliment representation before performing
+/// the operation.
+/// \since Crypto++ 6.0
inline CryptoPP::Integer operator&(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.And(b);}
-//! \brief Bitwise OR
-//! \param a the first Integer
-//! \param b the second Integer
-//! \returns the result of a | b
-//! \details operator|() performs a bitwise OR on the operands. Missing bits are shifted in
-//! at the most significant bit positions, so the result is as large as the
-//! larger of the operands.
-//! \details Internally, Crypto++ uses a sign-magnitude representation. The library
-//! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
-//! the integer should be converted to a 2's compliment representation before performing
-//! the operation.
-//! \since Crypto++ 6.0
+/// \brief Bitwise OR
+/// \param a the first Integer
+/// \param b the second Integer
+/// \returns the result of a | b
+/// \details operator|() performs a bitwise OR on the operands. Missing bits are shifted in
+/// at the most significant bit positions, so the result is as large as the
+/// larger of the operands.
+/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+/// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+/// the integer should be converted to a 2's compliment representation before performing
+/// the operation.
+/// \since Crypto++ 6.0
inline CryptoPP::Integer operator|(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Or(b);}
-//! \brief Bitwise XOR
-//! \param a the first Integer
-//! \param b the second Integer
-//! \returns the result of a ^ b
-//! \details operator^() performs a bitwise XOR on the operands. Missing bits are shifted
-//! in at the most significant bit positions, so the result is as large as the
-//! larger of the operands.
-//! \details Internally, Crypto++ uses a sign-magnitude representation. The library
-//! does not attempt to interpret bits, and the result is always POSITIVE. If needed,
-//! the integer should be converted to a 2's compliment representation before performing
-//! the operation.
-//! \since Crypto++ 6.0
+/// \brief Bitwise XOR
+/// \param a the first Integer
+/// \param b the second Integer
+/// \returns the result of a ^ b
+/// \details operator^() performs a bitwise XOR on the operands. Missing bits are shifted
+/// in at the most significant bit positions, so the result is as large as the
+/// larger of the operands.
+/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
+/// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
+/// the integer should be converted to a 2's compliment representation before performing
+/// the operation.
+/// \since Crypto++ 6.0
inline CryptoPP::Integer operator^(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Xor(b);}
NAMESPACE_END