summaryrefslogtreecommitdiff
path: root/cham-simd.cpp
diff options
context:
space:
mode:
authorJeffrey Walton <noloader@gmail.com>2018-06-19 18:03:28 -0400
committerJeffrey Walton <noloader@gmail.com>2018-06-19 18:03:28 -0400
commit6138829572f58cfe67e2e1c6a6bb1c69c9ed7872 (patch)
treea56dde0aee83031ccdb6851f27e10a14af52b5bf /cham-simd.cpp
parent34dcb0d4cd64623762188b7660b206e05e4836fc (diff)
downloadcryptopp-git-6138829572f58cfe67e2e1c6a6bb1c69c9ed7872.tar.gz
Add CHAM128 SSSE3 implementation (PR #670)
CHAM-128(128) from 10.5 cpb to 4.1 cpb. CHAM-128(256) from 12.5 cpb to 4.7 cpb.
Diffstat (limited to 'cham-simd.cpp')
-rw-r--r--cham-simd.cpp402
1 files changed, 402 insertions, 0 deletions
diff --git a/cham-simd.cpp b/cham-simd.cpp
new file mode 100644
index 00000000..718e2361
--- /dev/null
+++ b/cham-simd.cpp
@@ -0,0 +1,402 @@
+// cham-simd.cpp - written and placed in the public domain by Jeffrey Walton
+//
+// This source file uses intrinsics and built-ins to gain access to
+// SSSE3, ARM NEON and ARMv8a, and Power7 Altivec instructions. A separate
+// source file is needed because additional CXXFLAGS are required to enable
+// the appropriate instructions sets in some build configurations.
+
+#include "pch.h"
+#include "config.h"
+
+#include "cham.h"
+#include "misc.h"
+#include "adv-simd.h"
+
+// Uncomment for benchmarking C++ against SSE or NEON.
+// Do so in both simon.cpp and simon-simd.cpp.
+// #undef CRYPTOPP_SSSE3_AVAILABLE
+// #undef CRYPTOPP_ARM_NEON_AVAILABLE
+
+#if (CRYPTOPP_SSSE3_AVAILABLE)
+# include <pmmintrin.h>
+# include <tmmintrin.h>
+#endif
+
+ANONYMOUS_NAMESPACE_BEGIN
+
+using CryptoPP::word32;
+
+#if (CRYPTOPP_SSSE3_AVAILABLE)
+
+template <unsigned int R>
+inline __m128i RotateLeft32(const __m128i& val)
+{
+ return _mm_or_si128(
+ _mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
+}
+
+template <unsigned int R>
+inline __m128i RotateRight32(const __m128i& val)
+{
+ return _mm_or_si128(
+ _mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R));
+}
+
+// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
+template <>
+inline __m128i RotateLeft32<8>(const __m128i& val)
+{
+ const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
+ return _mm_shuffle_epi8(val, mask);
+}
+
+// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
+template <>
+inline __m128i RotateRight32<8>(const __m128i& val)
+{
+ const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1);
+ return _mm_shuffle_epi8(val, mask);
+}
+
+template <unsigned int IDX>
+inline __m128i UnpackXMM(__m128i a, __m128i b, __m128i c, __m128i d)
+{
+ // Should not be instantiated
+ CRYPTOPP_ASSERT(0);;
+ return _mm_setzero_si128();
+}
+
+template <>
+inline __m128i UnpackXMM<0>(__m128i a, __m128i b, __m128i c, __m128i d)
+{
+ // The shuffle converts to and from little-endian for SSE. A specialized
+ // CHAM implementation can avoid the shuffle by framing the data for
+ // encryption, decryption and benchmarks. The library cannot take the
+ // speed-up because of the byte oriented API.
+ const __m128i r1 = _mm_unpacklo_epi32(a, b);
+ const __m128i r2 = _mm_unpacklo_epi32(c, d);
+ return _mm_shuffle_epi8(_mm_unpacklo_epi64(r1, r2),
+ _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3));
+}
+
+template <>
+inline __m128i UnpackXMM<1>(__m128i a, __m128i b, __m128i c, __m128i d)
+{
+ // The shuffle converts to and from little-endian for SSE. A specialized
+ // CHAM implementation can avoid the shuffle by framing the data for
+ // encryption, decryption and benchmarks. The library cannot take the
+ // speed-up because of the byte oriented API.
+ const __m128i r1 = _mm_unpacklo_epi32(a, b);
+ const __m128i r2 = _mm_unpacklo_epi32(c, d);
+ return _mm_shuffle_epi8(_mm_unpackhi_epi64(r1, r2),
+ _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3));
+}
+
+template <>
+inline __m128i UnpackXMM<2>(__m128i a, __m128i b, __m128i c, __m128i d)
+{
+ // The shuffle converts to and from little-endian for SSE. A specialized
+ // CHAM implementation can avoid the shuffle by framing the data for
+ // encryption, decryption and benchmarks. The library cannot take the
+ // speed-up because of the byte oriented API.
+ const __m128i r1 = _mm_unpackhi_epi32(a, b);
+ const __m128i r2 = _mm_unpackhi_epi32(c, d);
+ return _mm_shuffle_epi8(_mm_unpacklo_epi64(r1, r2),
+ _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3));
+}
+
+template <>
+inline __m128i UnpackXMM<3>(__m128i a, __m128i b, __m128i c, __m128i d)
+{
+ // The shuffle converts to and from little-endian for SSE. A specialized
+ // CHAM implementation can avoid the shuffle by framing the data for
+ // encryption, decryption and benchmarks. The library cannot take the
+ // speed-up because of the byte oriented API.
+ const __m128i r1 = _mm_unpackhi_epi32(a, b);
+ const __m128i r2 = _mm_unpackhi_epi32(c, d);
+ return _mm_shuffle_epi8(_mm_unpackhi_epi64(r1, r2),
+ _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3));
+}
+
+template <unsigned int IDX>
+inline __m128i UnpackXMM(__m128i v)
+{
+ return UnpackXMM<IDX>(v, v, v, v);
+}
+
+template <unsigned int IDX>
+inline __m128i RepackXMM(__m128i a, __m128i b, __m128i c, __m128i d)
+{
+ return UnpackXMM<IDX>(a, b, c, d);
+}
+#endif
+
+template <unsigned int IDX>
+inline __m128i RepackXMM(__m128i v)
+{
+ return RepackXMM<IDX>(v, v, v, v);
+}
+
+inline void GCC_NO_UBSAN CHAM128_Enc_Block(__m128i &block0,
+ const word32 *subkeys, unsigned int rounds)
+{
+ // Rearrange the data for vectorization. UnpackXMM includes a
+ // little-endian swap for SSE. Thanks to Peter Cordes for help
+ // with packing and unpacking.
+ // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ...
+ __m128i a = UnpackXMM<0>(block0);
+ __m128i b = UnpackXMM<1>(block0);
+ __m128i c = UnpackXMM<2>(block0);
+ __m128i d = UnpackXMM<3>(block0);
+
+ __m128i counter = _mm_set_epi32(0,0,0,0);
+ __m128i increment = _mm_set_epi32(1,1,1,1);
+
+ const unsigned int MASK = (rounds == 80 ? 7 : 15);
+ for (int i=0; i<static_cast<int>(rounds); i+=4)
+ {
+ __m128i t1, t2, k, k1, k2;
+
+ k = _mm_loadu_si128((const __m128i*) &subkeys[i & MASK]);
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4));
+
+ t1 = _mm_xor_si128(a, counter);
+ t2 = _mm_xor_si128(RotateLeft32<1>(b), k1);
+ a = RotateLeft32<8>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+
+ t1 = _mm_xor_si128(b, counter);
+ t2 = _mm_xor_si128(RotateLeft32<8>(c), k2);
+ b = RotateLeft32<1>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,9,8, 11,10,9,8, 11,10,9,8, 11,10,9,8));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,13,12, 15,14,13,12, 15,14,13,12, 15,14,13,12));
+
+ t1 = _mm_xor_si128(c, counter);
+ t2 = _mm_xor_si128(RotateLeft32<1>(d), k1);
+ c = RotateLeft32<8>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+
+ t1 = _mm_xor_si128(d, counter);
+ t2 = _mm_xor_si128(RotateLeft32<8>(a), k2);
+ d = RotateLeft32<1>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+ }
+
+ // Repack
+ // [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ...
+ block0 = RepackXMM<0>(a,b,c,d);
+}
+
+inline void GCC_NO_UBSAN CHAM128_Dec_Block(__m128i &block0,
+ const word32 *subkeys, unsigned int rounds)
+{
+ // Rearrange the data for vectorization. UnpackXMM includes a
+ // little-endian swap for SSE. Thanks to Peter Cordes for help
+ // with packing and unpacking.
+ // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ...
+ __m128i a = UnpackXMM<0>(block0);
+ __m128i b = UnpackXMM<1>(block0);
+ __m128i c = UnpackXMM<2>(block0);
+ __m128i d = UnpackXMM<3>(block0);
+
+ __m128i counter = _mm_set_epi32(rounds-1,rounds-1,rounds-1,rounds-1);
+ __m128i decrement = _mm_set_epi32(1,1,1,1);
+
+ const unsigned int MASK = (rounds == 80 ? 7 : 15);
+ for (int i = static_cast<int>(rounds)-1; i >= 0; i-=4)
+ {
+ __m128i t1, t2, k, k1, k2;
+
+ k = _mm_loadu_si128((const __m128i*) &subkeys[(i-3) & MASK]);
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,13,12, 15,14,13,12, 15,14,13,12, 15,14,13,12));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,9,8, 11,10,9,8, 11,10,9,8, 11,10,9,8));
+
+ // Odd round
+ t1 = RotateRight32<1>(d);
+ t2 = _mm_xor_si128(RotateLeft32<8>(a), k1);
+ d = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+
+ // Even round
+ t1 = RotateRight32<8>(c);
+ t2 = _mm_xor_si128(RotateLeft32<1>(d), k2);
+ c = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0));
+
+ // Odd round
+ t1 = RotateRight32<1>(b);
+ t2 = _mm_xor_si128(RotateLeft32<8>(c), k1);
+ b = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+
+ // Even round
+ t1 = RotateRight32<8>(a);
+ t2 = _mm_xor_si128(RotateLeft32<1>(b), k2);
+ a = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+ }
+
+ // Repack
+ // [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ...
+ block0 = RepackXMM<0>(a,b,c,d);
+}
+
+inline void GCC_NO_UBSAN CHAM128_Enc_4_Blocks(__m128i &block0, __m128i &block1,
+ __m128i &block2, __m128i &block3, const word32 *subkeys, unsigned int rounds)
+{
+ // Rearrange the data for vectorization. UnpackXMM includes a
+ // little-endian swap for SSE. Thanks to Peter Cordes for help
+ // with packing and unpacking.
+ // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ...
+ __m128i a = UnpackXMM<0>(block0, block1, block2, block3);
+ __m128i b = UnpackXMM<1>(block0, block1, block2, block3);
+ __m128i c = UnpackXMM<2>(block0, block1, block2, block3);
+ __m128i d = UnpackXMM<3>(block0, block1, block2, block3);
+
+ __m128i counter = _mm_set_epi32(0,0,0,0);
+ __m128i increment = _mm_set_epi32(1,1,1,1);
+
+ const unsigned int MASK = (rounds == 80 ? 7 : 15);
+ for (int i=0; i<static_cast<int>(rounds); i+=4)
+ {
+ __m128i t1, t2, k, k1, k2;
+
+ k = _mm_loadu_si128((const __m128i*) &subkeys[i & MASK]);
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4));
+
+ t1 = _mm_xor_si128(a, counter);
+ t2 = _mm_xor_si128(RotateLeft32<1>(b), k1);
+ a = RotateLeft32<8>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+
+ t1 = _mm_xor_si128(b, counter);
+ t2 = _mm_xor_si128(RotateLeft32<8>(c), k2);
+ b = RotateLeft32<1>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,9,8, 11,10,9,8, 11,10,9,8, 11,10,9,8));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,13,12, 15,14,13,12, 15,14,13,12, 15,14,13,12));
+
+ t1 = _mm_xor_si128(c, counter);
+ t2 = _mm_xor_si128(RotateLeft32<1>(d), k1);
+ c = RotateLeft32<8>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+
+ t1 = _mm_xor_si128(d, counter);
+ t2 = _mm_xor_si128(RotateLeft32<8>(a), k2);
+ d = RotateLeft32<1>(_mm_add_epi32(t1, t2));
+
+ counter = _mm_add_epi32(counter, increment);
+ }
+
+ // Repack
+ // [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ...
+ block0 = RepackXMM<0>(a,b,c,d);
+ block1 = RepackXMM<1>(a,b,c,d);
+ block2 = RepackXMM<2>(a,b,c,d);
+ block3 = RepackXMM<3>(a,b,c,d);
+}
+
+inline void GCC_NO_UBSAN CHAM128_Dec_4_Blocks(__m128i &block0, __m128i &block1,
+ __m128i &block2, __m128i &block3, const word32 *subkeys, unsigned int rounds)
+{
+ // Rearrange the data for vectorization. UnpackXMM includes a
+ // little-endian swap for SSE. Thanks to Peter Cordes for help
+ // with packing and unpacking.
+ // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ...
+ __m128i a = UnpackXMM<0>(block0, block1, block2, block3);
+ __m128i b = UnpackXMM<1>(block0, block1, block2, block3);
+ __m128i c = UnpackXMM<2>(block0, block1, block2, block3);
+ __m128i d = UnpackXMM<3>(block0, block1, block2, block3);
+
+ __m128i counter = _mm_set_epi32(rounds-1,rounds-1,rounds-1,rounds-1);
+ __m128i decrement = _mm_set_epi32(1,1,1,1);
+
+ const unsigned int MASK = (rounds == 80 ? 7 : 15);
+ for (int i = static_cast<int>(rounds)-1; i >= 0; i-=4)
+ {
+ __m128i t1, t2, k, k1, k2;
+
+ k = _mm_loadu_si128((const __m128i*) &subkeys[(i-3) & MASK]);
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,13,12, 15,14,13,12, 15,14,13,12, 15,14,13,12));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,9,8, 11,10,9,8, 11,10,9,8, 11,10,9,8));
+
+ // Odd round
+ t1 = RotateRight32<1>(d);
+ t2 = _mm_xor_si128(RotateLeft32<8>(a), k1);
+ d = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+
+ // Even round
+ t1 = RotateRight32<8>(c);
+ t2 = _mm_xor_si128(RotateLeft32<1>(d), k2);
+ c = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+
+ k1 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4));
+ k2 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0));
+
+ // Odd round
+ t1 = RotateRight32<1>(b);
+ t2 = _mm_xor_si128(RotateLeft32<8>(c), k1);
+ b = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+
+ // Even round
+ t1 = RotateRight32<8>(a);
+ t2 = _mm_xor_si128(RotateLeft32<1>(b), k2);
+ a = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter);
+
+ counter = _mm_sub_epi32(counter, decrement);
+ }
+
+ // Repack
+ // [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ...
+ block0 = RepackXMM<0>(a,b,c,d);
+ block1 = RepackXMM<1>(a,b,c,d);
+ block2 = RepackXMM<2>(a,b,c,d);
+ block3 = RepackXMM<3>(a,b,c,d);
+}
+
+ANONYMOUS_NAMESPACE_END
+
+NAMESPACE_BEGIN(CryptoPP)
+
+#if defined(CRYPTOPP_SSSE3_AVAILABLE)
+size_t CHAM128_Enc_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
+ const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
+{
+ return AdvancedProcessBlocks128_4x1_SSE(CHAM128_Enc_Block, CHAM128_Enc_4_Blocks,
+ subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
+}
+
+size_t CHAM128_Dec_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
+ const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
+{
+ return AdvancedProcessBlocks128_4x1_SSE(CHAM128_Dec_Block, CHAM128_Dec_4_Blocks,
+ subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
+}
+#endif // CRYPTOPP_SSSE3_AVAILABLE
+
+NAMESPACE_END