summaryrefslogtreecommitdiff
path: root/Lib/typing.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/typing.py')
-rw-r--r--Lib/typing.py1648
1 files changed, 1648 insertions, 0 deletions
diff --git a/Lib/typing.py b/Lib/typing.py
new file mode 100644
index 0000000000..1a4982ead9
--- /dev/null
+++ b/Lib/typing.py
@@ -0,0 +1,1648 @@
+# TODO nits:
+# Get rid of asserts that are the caller's fault.
+# Docstrings (e.g. ABCs).
+
+import abc
+from abc import abstractmethod, abstractproperty
+import collections
+import functools
+import re as stdlib_re # Avoid confusion with the re we export.
+import sys
+import types
+try:
+ import collections.abc as collections_abc
+except ImportError:
+ import collections as collections_abc # Fallback for PY3.2.
+
+
+# Please keep __all__ alphabetized within each category.
+__all__ = [
+ # Super-special typing primitives.
+ 'Any',
+ 'Callable',
+ 'Generic',
+ 'Optional',
+ 'TypeVar',
+ 'Union',
+ 'Tuple',
+
+ # ABCs (from collections.abc).
+ 'AbstractSet', # collections.abc.Set.
+ 'ByteString',
+ 'Container',
+ 'Hashable',
+ 'ItemsView',
+ 'Iterable',
+ 'Iterator',
+ 'KeysView',
+ 'Mapping',
+ 'MappingView',
+ 'MutableMapping',
+ 'MutableSequence',
+ 'MutableSet',
+ 'Sequence',
+ 'Sized',
+ 'ValuesView',
+
+ # Structural checks, a.k.a. protocols.
+ 'Reversible',
+ 'SupportsAbs',
+ 'SupportsFloat',
+ 'SupportsInt',
+ 'SupportsRound',
+
+ # Concrete collection types.
+ 'Dict',
+ 'List',
+ 'Set',
+ 'NamedTuple', # Not really a type.
+ 'Generator',
+
+ # One-off things.
+ 'AnyStr',
+ 'cast',
+ 'get_type_hints',
+ 'no_type_check',
+ 'no_type_check_decorator',
+ 'overload',
+
+ # Submodules.
+ 'io',
+ 're',
+]
+
+
+def _qualname(x):
+ if sys.version_info[:2] >= (3, 3):
+ return x.__qualname__
+ else:
+ # Fall back to just name.
+ return x.__name__
+
+
+class TypingMeta(type):
+ """Metaclass for every type defined below.
+
+ This overrides __new__() to require an extra keyword parameter
+ '_root', which serves as a guard against naive subclassing of the
+ typing classes. Any legitimate class defined using a metaclass
+ derived from TypingMeta (including internal subclasses created by
+ e.g. Union[X, Y]) must pass _root=True.
+
+ This also defines a dummy constructor (all the work is done in
+ __new__) and a nicer repr().
+ """
+
+ _is_protocol = False
+
+ def __new__(cls, name, bases, namespace, *, _root=False):
+ if not _root:
+ raise TypeError("Cannot subclass %s" %
+ (', '.join(map(_type_repr, bases)) or '()'))
+ return super().__new__(cls, name, bases, namespace)
+
+ def __init__(self, *args, **kwds):
+ pass
+
+ def _eval_type(self, globalns, localns):
+ """Override this in subclasses to interpret forward references.
+
+ For example, Union['C'] is internally stored as
+ Union[_ForwardRef('C')], which should evaluate to _Union[C],
+ where C is an object found in globalns or localns (searching
+ localns first, of course).
+ """
+ return self
+
+ def _has_type_var(self):
+ return False
+
+ def __repr__(self):
+ return '%s.%s' % (self.__module__, _qualname(self))
+
+
+class Final:
+ """Mix-in class to prevent instantiation."""
+
+ __slots__ = ()
+
+ def __new__(self, *args, **kwds):
+ raise TypeError("Cannot instantiate %r" % self.__class__)
+
+
+class _ForwardRef(TypingMeta):
+ """Wrapper to hold a forward reference."""
+
+ def __new__(cls, arg):
+ if not isinstance(arg, str):
+ raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
+ try:
+ code = compile(arg, '<string>', 'eval')
+ except SyntaxError:
+ raise SyntaxError('ForwardRef must be an expression -- got %r' %
+ (arg,))
+ self = super().__new__(cls, arg, (), {}, _root=True)
+ self.__forward_arg__ = arg
+ self.__forward_code__ = code
+ self.__forward_evaluated__ = False
+ self.__forward_value__ = None
+ typing_globals = globals()
+ frame = sys._getframe(1)
+ while frame is not None and frame.f_globals is typing_globals:
+ frame = frame.f_back
+ assert frame is not None
+ self.__forward_frame__ = frame
+ return self
+
+ def _eval_type(self, globalns, localns):
+ if not isinstance(localns, dict):
+ raise TypeError('ForwardRef localns must be a dict -- got %r' %
+ (localns,))
+ if not isinstance(globalns, dict):
+ raise TypeError('ForwardRef globalns must be a dict -- got %r' %
+ (globalns,))
+ if not self.__forward_evaluated__:
+ if globalns is None and localns is None:
+ globalns = localns = {}
+ elif globalns is None:
+ globalns = localns
+ elif localns is None:
+ localns = globalns
+ self.__forward_value__ = _type_check(
+ eval(self.__forward_code__, globalns, localns),
+ "Forward references must evaluate to types.")
+ self.__forward_evaluated__ = True
+ return self.__forward_value__
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Forward references cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if not self.__forward_evaluated__:
+ globalns = self.__forward_frame__.f_globals
+ localns = self.__forward_frame__.f_locals
+ try:
+ self._eval_type(globalns, localns)
+ except NameError:
+ return False # Too early.
+ return issubclass(cls, self.__forward_value__)
+
+ def __repr__(self):
+ return '_ForwardRef(%r)' % (self.__forward_arg__,)
+
+
+class _TypeAlias:
+ """Internal helper class for defining generic variants of concrete types.
+
+ Note that this is not a type; let's call it a pseudo-type. It can
+ be used in instance and subclass checks, e.g. isinstance(m, Match)
+ or issubclass(type(m), Match). However, it cannot be itself the
+ target of an issubclass() call; e.g. issubclass(Match, C) (for
+ some arbitrary class C) raises TypeError rather than returning
+ False.
+ """
+
+ __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')
+
+ def __new__(cls, *args, **kwds):
+ """Constructor.
+
+ This only exists to give a better error message in case
+ someone tries to subclass a type alias (not a good idea).
+ """
+ if (len(args) == 3 and
+ isinstance(args[0], str) and
+ isinstance(args[1], tuple)):
+ # Close enough.
+ raise TypeError("A type alias cannot be subclassed")
+ return object.__new__(cls)
+
+ def __init__(self, name, type_var, impl_type, type_checker):
+ """Initializer.
+
+ Args:
+ name: The name, e.g. 'Pattern'.
+ type_var: The type parameter, e.g. AnyStr, or the
+ specific type, e.g. str.
+ impl_type: The implementation type.
+ type_checker: Function that takes an impl_type instance.
+ and returns a value that should be a type_var instance.
+ """
+ assert isinstance(name, str), repr(name)
+ assert isinstance(type_var, type), repr(type_var)
+ assert isinstance(impl_type, type), repr(impl_type)
+ assert not isinstance(impl_type, TypingMeta), repr(impl_type)
+ self.name = name
+ self.type_var = type_var
+ self.impl_type = impl_type
+ self.type_checker = type_checker
+
+ def __repr__(self):
+ return "%s[%s]" % (self.name, _type_repr(self.type_var))
+
+ def __getitem__(self, parameter):
+ assert isinstance(parameter, type), repr(parameter)
+ if not isinstance(self.type_var, TypeVar):
+ raise TypeError("%s cannot be further parameterized." % self)
+ if self.type_var.__constraints__:
+ if not issubclass(parameter, Union[self.type_var.__constraints__]):
+ raise TypeError("%s is not a valid substitution for %s." %
+ (parameter, self.type_var))
+ return self.__class__(self.name, parameter,
+ self.impl_type, self.type_checker)
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Type aliases cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if isinstance(cls, _TypeAlias):
+ # Covariance. For now, we compare by name.
+ return (cls.name == self.name and
+ issubclass(cls.type_var, self.type_var))
+ else:
+ # Note that this is too lenient, because the
+ # implementation type doesn't carry information about
+ # whether it is about bytes or str (for example).
+ return issubclass(cls, self.impl_type)
+
+
+def _has_type_var(t):
+ return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
+
+
+def _eval_type(t, globalns, localns):
+ if isinstance(t, TypingMeta):
+ return t._eval_type(globalns, localns)
+ else:
+ return t
+
+
+def _type_check(arg, msg):
+ """Check that the argument is a type, and return it.
+
+ As a special case, accept None and return type(None) instead.
+ Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
+
+ The msg argument is a human-readable error message, e.g.
+
+ "Union[arg, ...]: arg should be a type."
+
+ We append the repr() of the actual value (truncated to 100 chars).
+ """
+ if arg is None:
+ return type(None)
+ if isinstance(arg, str):
+ arg = _ForwardRef(arg)
+ if not isinstance(arg, (type, _TypeAlias)):
+ raise TypeError(msg + " Got %.100r." % (arg,))
+ return arg
+
+
+def _type_repr(obj):
+ """Return the repr() of an object, special-casing types.
+
+ If obj is a type, we return a shorter version than the default
+ type.__repr__, based on the module and qualified name, which is
+ typically enough to uniquely identify a type. For everything
+ else, we fall back on repr(obj).
+ """
+ if isinstance(obj, type) and not isinstance(obj, TypingMeta):
+ if obj.__module__ == 'builtins':
+ return _qualname(obj)
+ else:
+ return '%s.%s' % (obj.__module__, _qualname(obj))
+ else:
+ return repr(obj)
+
+
+class AnyMeta(TypingMeta):
+ """Metaclass for Any."""
+
+ def __new__(cls, name, bases, namespace, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ return self
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Any cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if not isinstance(cls, type):
+ return super().__subclasscheck__(cls) # To TypeError.
+ return True
+
+
+class Any(Final, metaclass=AnyMeta, _root=True):
+ """Special type indicating an unconstrained type.
+
+ - Any object is an instance of Any.
+ - Any class is a subclass of Any.
+ - As a special case, Any and object are subclasses of each other.
+ """
+
+ __slots__ = ()
+
+
+class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
+ """Type variable.
+
+ Usage::
+
+ T = TypeVar('T') # Can be anything
+ A = TypeVar('A', str, bytes) # Must be str or bytes
+
+ Type variables exist primarily for the benefit of static type
+ checkers. They serve as the parameters for generic types as well
+ as for generic function definitions. See class Generic for more
+ information on generic types. Generic functions work as follows:
+
+ def repeat(x: T, n: int) -> Sequence[T]:
+ '''Return a list containing n references to x.'''
+ return [x]*n
+
+ def longest(x: A, y: A) -> A:
+ '''Return the longest of two strings.'''
+ return x if len(x) >= len(y) else y
+
+ The latter example's signature is essentially the overloading
+ of (str, str) -> str and (bytes, bytes) -> bytes. Also note
+ that if the arguments are instances of some subclass of str,
+ the return type is still plain str.
+
+ At runtime, isinstance(x, T) will raise TypeError. However,
+ issubclass(C, T) is true for any class C, and issubclass(str, A)
+ and issubclass(bytes, A) are true, and issubclass(int, A) is
+ false.
+
+ Type variables may be marked covariant or contravariant by passing
+ covariant=True or contravariant=True. See PEP 484 for more
+ details. By default type variables are invariant.
+
+ Type variables can be introspected. e.g.:
+
+ T.__name__ == 'T'
+ T.__constraints__ == ()
+ T.__covariant__ == False
+ T.__contravariant__ = False
+ A.__constraints__ == (str, bytes)
+ """
+
+ def __new__(cls, name, *constraints, bound=None,
+ covariant=False, contravariant=False):
+ self = super().__new__(cls, name, (Final,), {}, _root=True)
+ if covariant and contravariant:
+ raise ValueError("Bivariant type variables are not supported.")
+ self.__covariant__ = bool(covariant)
+ self.__contravariant__ = bool(contravariant)
+ if constraints and bound is not None:
+ raise TypeError("Constraints cannot be combined with bound=...")
+ if constraints and len(constraints) == 1:
+ raise TypeError("A single constraint is not allowed")
+ msg = "TypeVar(name, constraint, ...): constraints must be types."
+ self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
+ if bound:
+ self.__bound__ = _type_check(bound, "Bound must be a type.")
+ else:
+ self.__bound__ = None
+ return self
+
+ def _has_type_var(self):
+ return True
+
+ def __repr__(self):
+ if self.__covariant__:
+ prefix = '+'
+ elif self.__contravariant__:
+ prefix = '-'
+ else:
+ prefix = '~'
+ return prefix + self.__name__
+
+ def __instancecheck__(self, instance):
+ raise TypeError("Type variables cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ # TODO: Make this raise TypeError too?
+ if cls is self:
+ return True
+ if cls is Any:
+ return True
+ if self.__bound__ is not None:
+ return issubclass(cls, self.__bound__)
+ if self.__constraints__:
+ return any(issubclass(cls, c) for c in self.__constraints__)
+ return True
+
+
+# Some unconstrained type variables. These are used by the container types.
+T = TypeVar('T') # Any type.
+KT = TypeVar('KT') # Key type.
+VT = TypeVar('VT') # Value type.
+T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
+V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
+VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
+T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
+
+# A useful type variable with constraints. This represents string types.
+# TODO: What about bytearray, memoryview?
+AnyStr = TypeVar('AnyStr', bytes, str)
+
+
+class UnionMeta(TypingMeta):
+ """Metaclass for Union."""
+
+ def __new__(cls, name, bases, namespace, parameters=None, _root=False):
+ if parameters is None:
+ return super().__new__(cls, name, bases, namespace, _root=_root)
+ if not isinstance(parameters, tuple):
+ raise TypeError("Expected parameters=<tuple>")
+ # Flatten out Union[Union[...], ...] and type-check non-Union args.
+ params = []
+ msg = "Union[arg, ...]: each arg must be a type."
+ for p in parameters:
+ if isinstance(p, UnionMeta):
+ params.extend(p.__union_params__)
+ else:
+ params.append(_type_check(p, msg))
+ # Weed out strict duplicates, preserving the first of each occurrence.
+ all_params = set(params)
+ if len(all_params) < len(params):
+ new_params = []
+ for t in params:
+ if t in all_params:
+ new_params.append(t)
+ all_params.remove(t)
+ params = new_params
+ assert not all_params, all_params
+ # Weed out subclasses.
+ # E.g. Union[int, Employee, Manager] == Union[int, Employee].
+ # If Any or object is present it will be the sole survivor.
+ # If both Any and object are present, Any wins.
+ # Never discard type variables, except against Any.
+ # (In particular, Union[str, AnyStr] != AnyStr.)
+ all_params = set(params)
+ for t1 in params:
+ if t1 is Any:
+ return Any
+ if isinstance(t1, TypeVar):
+ continue
+ if any(issubclass(t1, t2)
+ for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
+ all_params.remove(t1)
+ # It's not a union if there's only one type left.
+ if len(all_params) == 1:
+ return all_params.pop()
+ # Create a new class with these params.
+ self = super().__new__(cls, name, bases, {}, _root=True)
+ self.__union_params__ = tuple(t for t in params if t in all_params)
+ self.__union_set_params__ = frozenset(self.__union_params__)
+ return self
+
+ def _eval_type(self, globalns, localns):
+ p = tuple(_eval_type(t, globalns, localns)
+ for t in self.__union_params__)
+ if p == self.__union_params__:
+ return self
+ else:
+ return self.__class__(self.__name__, self.__bases__, {},
+ p, _root=True)
+
+ def _has_type_var(self):
+ if self.__union_params__:
+ for t in self.__union_params__:
+ if _has_type_var(t):
+ return True
+ return False
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__union_params__:
+ r += '[%s]' % (', '.join(_type_repr(t)
+ for t in self.__union_params__))
+ return r
+
+ def __getitem__(self, parameters):
+ if self.__union_params__ is not None:
+ raise TypeError(
+ "Cannot subscript an existing Union. Use Union[u, t] instead.")
+ if parameters == ():
+ raise TypeError("Cannot take a Union of no types.")
+ if not isinstance(parameters, tuple):
+ parameters = (parameters,)
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__), parameters, _root=True)
+
+ def __eq__(self, other):
+ if not isinstance(other, UnionMeta):
+ return NotImplemented
+ return self.__union_set_params__ == other.__union_set_params__
+
+ def __hash__(self):
+ return hash(self.__union_set_params__)
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Unions cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if self.__union_params__ is None:
+ return isinstance(cls, UnionMeta)
+ elif isinstance(cls, UnionMeta):
+ if cls.__union_params__ is None:
+ return False
+ return all(issubclass(c, self) for c in (cls.__union_params__))
+ elif isinstance(cls, TypeVar):
+ if cls in self.__union_params__:
+ return True
+ if cls.__constraints__:
+ return issubclass(Union[cls.__constraints__], self)
+ return False
+ else:
+ return any(issubclass(cls, t) for t in self.__union_params__)
+
+
+class Union(Final, metaclass=UnionMeta, _root=True):
+ """Union type; Union[X, Y] means either X or Y.
+
+ To define a union, use e.g. Union[int, str]. Details:
+
+ - The arguments must be types and there must be at least one.
+
+ - None as an argument is a special case and is replaced by
+ type(None).
+
+ - Unions of unions are flattened, e.g.::
+
+ Union[Union[int, str], float] == Union[int, str, float]
+
+ - Unions of a single argument vanish, e.g.::
+
+ Union[int] == int # The constructor actually returns int
+
+ - Redundant arguments are skipped, e.g.::
+
+ Union[int, str, int] == Union[int, str]
+
+ - When comparing unions, the argument order is ignored, e.g.::
+
+ Union[int, str] == Union[str, int]
+
+ - When two arguments have a subclass relationship, the least
+ derived argument is kept, e.g.::
+
+ class Employee: pass
+ class Manager(Employee): pass
+ Union[int, Employee, Manager] == Union[int, Employee]
+ Union[Manager, int, Employee] == Union[int, Employee]
+ Union[Employee, Manager] == Employee
+
+ - Corollary: if Any is present it is the sole survivor, e.g.::
+
+ Union[int, Any] == Any
+
+ - Similar for object::
+
+ Union[int, object] == object
+
+ - To cut a tie: Union[object, Any] == Union[Any, object] == Any.
+
+ - You cannot subclass or instantiate a union.
+
+ - You cannot write Union[X][Y] (what would it mean?).
+
+ - You can use Optional[X] as a shorthand for Union[X, None].
+ """
+
+ # Unsubscripted Union type has params set to None.
+ __union_params__ = None
+ __union_set_params__ = None
+
+
+class OptionalMeta(TypingMeta):
+ """Metaclass for Optional."""
+
+ def __new__(cls, name, bases, namespace, _root=False):
+ return super().__new__(cls, name, bases, namespace, _root=_root)
+
+ def __getitem__(self, arg):
+ arg = _type_check(arg, "Optional[t] requires a single type.")
+ return Union[arg, type(None)]
+
+
+class Optional(Final, metaclass=OptionalMeta, _root=True):
+ """Optional type.
+
+ Optional[X] is equivalent to Union[X, type(None)].
+ """
+
+ __slots__ = ()
+
+
+class TupleMeta(TypingMeta):
+ """Metaclass for Tuple."""
+
+ def __new__(cls, name, bases, namespace, parameters=None,
+ use_ellipsis=False, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ self.__tuple_params__ = parameters
+ self.__tuple_use_ellipsis__ = use_ellipsis
+ return self
+
+ def _has_type_var(self):
+ if self.__tuple_params__:
+ for t in self.__tuple_params__:
+ if _has_type_var(t):
+ return True
+ return False
+
+ def _eval_type(self, globalns, localns):
+ tp = self.__tuple_params__
+ if tp is None:
+ return self
+ p = tuple(_eval_type(t, globalns, localns) for t in tp)
+ if p == self.__tuple_params__:
+ return self
+ else:
+ return self.__class__(self.__name__, self.__bases__, {},
+ p, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__tuple_params__ is not None:
+ params = [_type_repr(p) for p in self.__tuple_params__]
+ if self.__tuple_use_ellipsis__:
+ params.append('...')
+ r += '[%s]' % (
+ ', '.join(params))
+ return r
+
+ def __getitem__(self, parameters):
+ if self.__tuple_params__ is not None:
+ raise TypeError("Cannot re-parameterize %r" % (self,))
+ if not isinstance(parameters, tuple):
+ parameters = (parameters,)
+ if len(parameters) == 2 and parameters[1] == Ellipsis:
+ parameters = parameters[:1]
+ use_ellipsis = True
+ msg = "Tuple[t, ...]: t must be a type."
+ else:
+ use_ellipsis = False
+ msg = "Tuple[t0, t1, ...]: each t must be a type."
+ parameters = tuple(_type_check(p, msg) for p in parameters)
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__), parameters,
+ use_ellipsis=use_ellipsis, _root=True)
+
+ def __eq__(self, other):
+ if not isinstance(other, TupleMeta):
+ return NotImplemented
+ return self.__tuple_params__ == other.__tuple_params__
+
+ def __hash__(self):
+ return hash(self.__tuple_params__)
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Tuples cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if not isinstance(cls, type):
+ return super().__subclasscheck__(cls) # To TypeError.
+ if issubclass(cls, tuple):
+ return True # Special case.
+ if not isinstance(cls, TupleMeta):
+ return super().__subclasscheck__(cls) # False.
+ if self.__tuple_params__ is None:
+ return True
+ if cls.__tuple_params__ is None:
+ return False # ???
+ if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
+ return False
+ # Covariance.
+ return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
+ all(issubclass(x, p)
+ for x, p in zip(cls.__tuple_params__,
+ self.__tuple_params__)))
+
+
+class Tuple(Final, metaclass=TupleMeta, _root=True):
+ """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
+
+ Example: Tuple[T1, T2] is a tuple of two elements corresponding
+ to type variables T1 and T2. Tuple[int, float, str] is a tuple
+ of an int, a float and a string.
+
+ To specify a variable-length tuple of homogeneous type, use Sequence[T].
+ """
+
+ __slots__ = ()
+
+
+class CallableMeta(TypingMeta):
+ """Metaclass for Callable."""
+
+ def __new__(cls, name, bases, namespace, _root=False,
+ args=None, result=None):
+ if args is None and result is None:
+ pass # Must be 'class Callable'.
+ else:
+ if args is not Ellipsis:
+ if not isinstance(args, list):
+ raise TypeError("Callable[args, result]: "
+ "args must be a list."
+ " Got %.100r." % (args,))
+ msg = "Callable[[arg, ...], result]: each arg must be a type."
+ args = tuple(_type_check(arg, msg) for arg in args)
+ msg = "Callable[args, result]: result must be a type."
+ result = _type_check(result, msg)
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ self.__args__ = args
+ self.__result__ = result
+ return self
+
+ def _has_type_var(self):
+ if self.__args__:
+ for t in self.__args__:
+ if _has_type_var(t):
+ return True
+ return _has_type_var(self.__result__)
+
+ def _eval_type(self, globalns, localns):
+ if self.__args__ is None and self.__result__ is None:
+ return self
+ if self.__args__ is Ellipsis:
+ args = self.__args__
+ else:
+ args = [_eval_type(t, globalns, localns) for t in self.__args__]
+ result = _eval_type(self.__result__, globalns, localns)
+ if args == self.__args__ and result == self.__result__:
+ return self
+ else:
+ return self.__class__(self.__name__, self.__bases__, {},
+ args=args, result=result, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__args__ is not None or self.__result__ is not None:
+ if self.__args__ is Ellipsis:
+ args_r = '...'
+ else:
+ args_r = '[%s]' % ', '.join(_type_repr(t)
+ for t in self.__args__)
+ r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
+ return r
+
+ def __getitem__(self, parameters):
+ if self.__args__ is not None or self.__result__ is not None:
+ raise TypeError("This Callable type is already parameterized.")
+ if not isinstance(parameters, tuple) or len(parameters) != 2:
+ raise TypeError(
+ "Callable must be used as Callable[[arg, ...], result].")
+ args, result = parameters
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__), _root=True,
+ args=args, result=result)
+
+ def __eq__(self, other):
+ if not isinstance(other, CallableMeta):
+ return NotImplemented
+ return (self.__args__ == other.__args__ and
+ self.__result__ == other.__result__)
+
+ def __hash__(self):
+ return hash(self.__args__) ^ hash(self.__result__)
+
+ def __instancecheck__(self, obj):
+ # For unparametrized Callable we allow this, because
+ # typing.Callable should be equivalent to
+ # collections.abc.Callable.
+ if self.__args__ is None and self.__result__ is None:
+ return isinstance(obj, collections_abc.Callable)
+ else:
+ raise TypeError("Callable[] cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if not isinstance(cls, CallableMeta):
+ return super().__subclasscheck__(cls)
+ if self.__args__ is None and self.__result__ is None:
+ return True
+ # We're not doing covariance or contravariance -- this is *invariance*.
+ return self == cls
+
+
+class Callable(Final, metaclass=CallableMeta, _root=True):
+ """Callable type; Callable[[int], str] is a function of (int) -> str.
+
+ The subscription syntax must always be used with exactly two
+ values: the argument list and the return type. The argument list
+ must be a list of types; the return type must be a single type.
+
+ There is no syntax to indicate optional or keyword arguments,
+ such function types are rarely used as callback types.
+ """
+
+ __slots__ = ()
+
+
+def _gorg(a):
+ """Return the farthest origin of a generic class."""
+ assert isinstance(a, GenericMeta)
+ while a.__origin__ is not None:
+ a = a.__origin__
+ return a
+
+
+def _geqv(a, b):
+ """Return whether two generic classes are equivalent.
+
+ The intention is to consider generic class X and any of its
+ parameterized forms (X[T], X[int], etc.) as equivalent.
+
+ However, X is not equivalent to a subclass of X.
+
+ The relation is reflexive, symmetric and transitive.
+ """
+ assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
+ # Reduce each to its origin.
+ return _gorg(a) is _gorg(b)
+
+
+class GenericMeta(TypingMeta, abc.ABCMeta):
+ """Metaclass for generic types."""
+
+ # TODO: Constrain more how Generic is used; only a few
+ # standard patterns should be allowed.
+
+ # TODO: Use a more precise rule than matching __name__ to decide
+ # whether two classes are the same. Also, save the formal
+ # parameters. (These things are related! A solution lies in
+ # using origin.)
+
+ __extra__ = None
+
+ def __new__(cls, name, bases, namespace,
+ parameters=None, origin=None, extra=None):
+ if parameters is None:
+ # Extract parameters from direct base classes. Only
+ # direct bases are considered and only those that are
+ # themselves generic, and parameterized with type
+ # variables. Don't use bases like Any, Union, Tuple,
+ # Callable or type variables.
+ params = None
+ for base in bases:
+ if isinstance(base, TypingMeta):
+ if not isinstance(base, GenericMeta):
+ raise TypeError(
+ "You cannot inherit from magic class %s" %
+ repr(base))
+ if base.__parameters__ is None:
+ continue # The base is unparameterized.
+ for bp in base.__parameters__:
+ if _has_type_var(bp) and not isinstance(bp, TypeVar):
+ raise TypeError(
+ "Cannot inherit from a generic class "
+ "parameterized with "
+ "non-type-variable %s" % bp)
+ if params is None:
+ params = []
+ if bp not in params:
+ params.append(bp)
+ if params is not None:
+ parameters = tuple(params)
+ self = super().__new__(cls, name, bases, namespace, _root=True)
+ self.__parameters__ = parameters
+ if extra is not None:
+ self.__extra__ = extra
+ # Else __extra__ is inherited, eventually from the
+ # (meta-)class default above.
+ self.__origin__ = origin
+ return self
+
+ def _has_type_var(self):
+ if self.__parameters__:
+ for t in self.__parameters__:
+ if _has_type_var(t):
+ return True
+ return False
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__parameters__ is not None:
+ r += '[%s]' % (
+ ', '.join(_type_repr(p) for p in self.__parameters__))
+ return r
+
+ def __eq__(self, other):
+ if not isinstance(other, GenericMeta):
+ return NotImplemented
+ return (_geqv(self, other) and
+ self.__parameters__ == other.__parameters__)
+
+ def __hash__(self):
+ return hash((self.__name__, self.__parameters__))
+
+ def __getitem__(self, params):
+ if not isinstance(params, tuple):
+ params = (params,)
+ if not params:
+ raise TypeError("Cannot have empty parameter list")
+ msg = "Parameters to generic types must be types."
+ params = tuple(_type_check(p, msg) for p in params)
+ if self.__parameters__ is None:
+ for p in params:
+ if not isinstance(p, TypeVar):
+ raise TypeError("Initial parameters must be "
+ "type variables; got %s" % p)
+ if len(set(params)) != len(params):
+ raise TypeError(
+ "All type variables in Generic[...] must be distinct.")
+ else:
+ if len(params) != len(self.__parameters__):
+ raise TypeError("Cannot change parameter count from %d to %d" %
+ (len(self.__parameters__), len(params)))
+ for new, old in zip(params, self.__parameters__):
+ if isinstance(old, TypeVar):
+ if not old.__constraints__:
+ # Substituting for an unconstrained TypeVar is OK.
+ continue
+ if issubclass(new, Union[old.__constraints__]):
+ # Specializing a constrained type variable is OK.
+ continue
+ if not issubclass(new, old):
+ raise TypeError(
+ "Cannot substitute %s for %s in %s" %
+ (_type_repr(new), _type_repr(old), self))
+
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__),
+ parameters=params,
+ origin=self,
+ extra=self.__extra__)
+
+ def __instancecheck__(self, instance):
+ # Since we extend ABC.__subclasscheck__ and
+ # ABC.__instancecheck__ inlines the cache checking done by the
+ # latter, we must extend __instancecheck__ too. For simplicity
+ # we just skip the cache check -- instance checks for generic
+ # classes are supposed to be rare anyways.
+ return self.__subclasscheck__(instance.__class__)
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if isinstance(cls, GenericMeta):
+ # For a class C(Generic[T]) where T is co-variant,
+ # C[X] is a subclass of C[Y] iff X is a subclass of Y.
+ origin = self.__origin__
+ if origin is not None and origin is cls.__origin__:
+ assert len(self.__parameters__) == len(origin.__parameters__)
+ assert len(cls.__parameters__) == len(origin.__parameters__)
+ for p_self, p_cls, p_origin in zip(self.__parameters__,
+ cls.__parameters__,
+ origin.__parameters__):
+ if isinstance(p_origin, TypeVar):
+ if p_origin.__covariant__:
+ # Covariant -- p_cls must be a subclass of p_self.
+ if not issubclass(p_cls, p_self):
+ break
+ elif p_origin.__contravariant__:
+ # Contravariant. I think it's the opposite. :-)
+ if not issubclass(p_self, p_cls):
+ break
+ else:
+ # Invariant -- p_cls and p_self must equal.
+ if p_self != p_cls:
+ break
+ else:
+ # If the origin's parameter is not a typevar,
+ # insist on invariance.
+ if p_self != p_cls:
+ break
+ else:
+ return True
+ # If we break out of the loop, the superclass gets a chance.
+ if super().__subclasscheck__(cls):
+ return True
+ if self.__extra__ is None or isinstance(cls, GenericMeta):
+ return False
+ return issubclass(cls, self.__extra__)
+
+
+class Generic(metaclass=GenericMeta):
+ """Abstract base class for generic types.
+
+ A generic type is typically declared by inheriting from an
+ instantiation of this class with one or more type variables.
+ For example, a generic mapping type might be defined as::
+
+ class Mapping(Generic[KT, VT]):
+ def __getitem__(self, key: KT) -> VT:
+ ...
+ # Etc.
+
+ This class can then be used as follows::
+
+ def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
+ try:
+ return mapping[key]
+ except KeyError:
+ return default
+
+ For clarity the type variables may be redefined, e.g.::
+
+ X = TypeVar('X')
+ Y = TypeVar('Y')
+ def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
+ # Same body as above.
+ """
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ next_in_mro = object
+ # Look for the last occurrence of Generic or Generic[...].
+ for i, c in enumerate(cls.__mro__[:-1]):
+ if isinstance(c, GenericMeta) and _gorg(c) is Generic:
+ next_in_mro = cls.__mro__[i+1]
+ return next_in_mro.__new__(_gorg(cls))
+
+
+def cast(typ, val):
+ """Cast a value to a type.
+
+ This returns the value unchanged. To the type checker this
+ signals that the return value has the designated type, but at
+ runtime we intentionally don't check anything (we want this
+ to be as fast as possible).
+ """
+ return val
+
+
+def _get_defaults(func):
+ """Internal helper to extract the default arguments, by name."""
+ code = func.__code__
+ pos_count = code.co_argcount
+ kw_count = code.co_kwonlyargcount
+ arg_names = code.co_varnames
+ kwarg_names = arg_names[pos_count:pos_count + kw_count]
+ arg_names = arg_names[:pos_count]
+ defaults = func.__defaults__ or ()
+ kwdefaults = func.__kwdefaults__
+ res = dict(kwdefaults) if kwdefaults else {}
+ pos_offset = pos_count - len(defaults)
+ for name, value in zip(arg_names[pos_offset:], defaults):
+ assert name not in res
+ res[name] = value
+ return res
+
+
+def get_type_hints(obj, globalns=None, localns=None):
+ """Return type hints for a function or method object.
+
+ This is often the same as obj.__annotations__, but it handles
+ forward references encoded as string literals, and if necessary
+ adds Optional[t] if a default value equal to None is set.
+
+ BEWARE -- the behavior of globalns and localns is counterintuitive
+ (unless you are familiar with how eval() and exec() work). The
+ search order is locals first, then globals.
+
+ - If no dict arguments are passed, an attempt is made to use the
+ globals from obj, and these are also used as the locals. If the
+ object does not appear to have globals, an exception is raised.
+
+ - If one dict argument is passed, it is used for both globals and
+ locals.
+
+ - If two dict arguments are passed, they specify globals and
+ locals, respectively.
+ """
+ if getattr(obj, '__no_type_check__', None):
+ return {}
+ if globalns is None:
+ globalns = getattr(obj, '__globals__', {})
+ if localns is None:
+ localns = globalns
+ elif localns is None:
+ localns = globalns
+ defaults = _get_defaults(obj)
+ hints = dict(obj.__annotations__)
+ for name, value in hints.items():
+ if isinstance(value, str):
+ value = _ForwardRef(value)
+ value = _eval_type(value, globalns, localns)
+ if name in defaults and defaults[name] is None:
+ value = Optional[value]
+ hints[name] = value
+ return hints
+
+
+# TODO: Also support this as a class decorator.
+def no_type_check(arg):
+ """Decorator to indicate that annotations are not type hints.
+
+ The argument must be a class or function; if it is a class, it
+ applies recursively to all methods defined in that class (but not
+ to methods defined in its superclasses or subclasses).
+
+ This mutates the function(s) in place.
+ """
+ if isinstance(arg, type):
+ for obj in arg.__dict__.values():
+ if isinstance(obj, types.FunctionType):
+ obj.__no_type_check__ = True
+ else:
+ arg.__no_type_check__ = True
+ return arg
+
+
+def no_type_check_decorator(decorator):
+ """Decorator to give another decorator the @no_type_check effect.
+
+ This wraps the decorator with something that wraps the decorated
+ function in @no_type_check.
+ """
+
+ @functools.wraps(decorator)
+ def wrapped_decorator(*args, **kwds):
+ func = decorator(*args, **kwds)
+ func = no_type_check(func)
+ return func
+
+ return wrapped_decorator
+
+
+def overload(func):
+ raise RuntimeError("Overloading is only supported in library stubs")
+
+
+class _ProtocolMeta(GenericMeta):
+ """Internal metaclass for _Protocol.
+
+ This exists so _Protocol classes can be generic without deriving
+ from Generic.
+ """
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Protocols cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ if not self._is_protocol:
+ # No structural checks since this isn't a protocol.
+ return NotImplemented
+
+ if self is _Protocol:
+ # Every class is a subclass of the empty protocol.
+ return True
+
+ # Find all attributes defined in the protocol.
+ attrs = self._get_protocol_attrs()
+
+ for attr in attrs:
+ if not any(attr in d.__dict__ for d in cls.__mro__):
+ return False
+ return True
+
+ def _get_protocol_attrs(self):
+ # Get all Protocol base classes.
+ protocol_bases = []
+ for c in self.__mro__:
+ if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
+ protocol_bases.append(c)
+
+ # Get attributes included in protocol.
+ attrs = set()
+ for base in protocol_bases:
+ for attr in base.__dict__.keys():
+ # Include attributes not defined in any non-protocol bases.
+ for c in self.__mro__:
+ if (c is not base and attr in c.__dict__ and
+ not getattr(c, '_is_protocol', False)):
+ break
+ else:
+ if (not attr.startswith('_abc_') and
+ attr != '__abstractmethods__' and
+ attr != '_is_protocol' and
+ attr != '__dict__' and
+ attr != '__slots__' and
+ attr != '_get_protocol_attrs' and
+ attr != '__parameters__' and
+ attr != '__origin__' and
+ attr != '__module__'):
+ attrs.add(attr)
+
+ return attrs
+
+
+class _Protocol(metaclass=_ProtocolMeta):
+ """Internal base class for protocol classes.
+
+ This implements a simple-minded structural isinstance check
+ (similar but more general than the one-offs in collections.abc
+ such as Hashable).
+ """
+
+ __slots__ = ()
+
+ _is_protocol = True
+
+
+# Various ABCs mimicking those in collections.abc.
+# A few are simply re-exported for completeness.
+
+Hashable = collections_abc.Hashable # Not generic.
+
+
+class Iterable(Generic[T_co], extra=collections_abc.Iterable):
+ __slots__ = ()
+
+
+class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
+ __slots__ = ()
+
+
+class SupportsInt(_Protocol):
+ __slots__ = ()
+
+ @abstractmethod
+ def __int__(self) -> int:
+ pass
+
+
+class SupportsFloat(_Protocol):
+ __slots__ = ()
+
+ @abstractmethod
+ def __float__(self) -> float:
+ pass
+
+
+class SupportsComplex(_Protocol):
+ __slots__ = ()
+
+ @abstractmethod
+ def __complex__(self) -> complex:
+ pass
+
+
+class SupportsBytes(_Protocol):
+ __slots__ = ()
+
+ @abstractmethod
+ def __bytes__(self) -> bytes:
+ pass
+
+
+class SupportsAbs(_Protocol[T_co]):
+ __slots__ = ()
+
+ @abstractmethod
+ def __abs__(self) -> T_co:
+ pass
+
+
+class SupportsRound(_Protocol[T_co]):
+ __slots__ = ()
+
+ @abstractmethod
+ def __round__(self, ndigits: int = 0) -> T_co:
+ pass
+
+
+class Reversible(_Protocol[T_co]):
+ __slots__ = ()
+
+ @abstractmethod
+ def __reversed__(self) -> 'Iterator[T_co]':
+ pass
+
+
+Sized = collections_abc.Sized # Not generic.
+
+
+class Container(Generic[T_co], extra=collections_abc.Container):
+ __slots__ = ()
+
+
+# Callable was defined earlier.
+
+
+class AbstractSet(Sized, Iterable[T_co], Container[T_co],
+ extra=collections_abc.Set):
+ pass
+
+
+class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
+ pass
+
+
+# NOTE: Only the value type is covariant.
+class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co],
+ extra=collections_abc.Mapping):
+ pass
+
+
+class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
+ pass
+
+
+class Sequence(Sized, Iterable[T_co], Container[T_co],
+ extra=collections_abc.Sequence):
+ pass
+
+
+class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
+ pass
+
+
+class ByteString(Sequence[int], extra=collections_abc.ByteString):
+ pass
+
+
+ByteString.register(type(memoryview(b'')))
+
+
+class List(list, MutableSequence[T]):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, List):
+ raise TypeError("Type List cannot be instantiated; "
+ "use list() instead")
+ return list.__new__(cls, *args, **kwds)
+
+
+class Set(set, MutableSet[T]):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Set):
+ raise TypeError("Type Set cannot be instantiated; "
+ "use set() instead")
+ return set.__new__(cls, *args, **kwds)
+
+
+class _FrozenSetMeta(GenericMeta):
+ """This metaclass ensures set is not a subclass of FrozenSet.
+
+ Without this metaclass, set would be considered a subclass of
+ FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
+ set is a subclass of that.
+ """
+
+ def __subclasscheck__(self, cls):
+ if issubclass(cls, Set):
+ return False
+ return super().__subclasscheck__(cls)
+
+
+class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, FrozenSet):
+ raise TypeError("Type FrozenSet cannot be instantiated; "
+ "use frozenset() instead")
+ return frozenset.__new__(cls, *args, **kwds)
+
+
+class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
+ pass
+
+
+class KeysView(MappingView[KT], AbstractSet[KT],
+ extra=collections_abc.KeysView):
+ pass
+
+
+# TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co].
+class ItemsView(MappingView, Generic[KT, VT_co],
+ extra=collections_abc.ItemsView):
+ pass
+
+
+class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
+ pass
+
+
+class Dict(dict, MutableMapping[KT, VT]):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Dict):
+ raise TypeError("Type Dict cannot be instantiated; "
+ "use dict() instead")
+ return dict.__new__(cls, *args, **kwds)
+
+
+# Determine what base class to use for Generator.
+if hasattr(collections_abc, 'Generator'):
+ # Sufficiently recent versions of 3.5 have a Generator ABC.
+ _G_base = collections_abc.Generator
+else:
+ # Fall back on the exact type.
+ _G_base = types.GeneratorType
+
+
+class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
+ extra=_G_base):
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Generator):
+ raise TypeError("Type Generator cannot be instantiated; "
+ "create a subclass instead")
+ return super().__new__(cls, *args, **kwds)
+
+
+def NamedTuple(typename, fields):
+ """Typed version of namedtuple.
+
+ Usage::
+
+ Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
+
+ This is equivalent to::
+
+ Employee = collections.namedtuple('Employee', ['name', 'id'])
+
+ The resulting class has one extra attribute: _field_types,
+ giving a dict mapping field names to types. (The field names
+ are in the _fields attribute, which is part of the namedtuple
+ API.)
+ """
+ fields = [(n, t) for n, t in fields]
+ cls = collections.namedtuple(typename, [n for n, t in fields])
+ cls._field_types = dict(fields)
+ return cls
+
+
+class IO(Generic[AnyStr]):
+ """Generic base class for TextIO and BinaryIO.
+
+ This is an abstract, generic version of the return of open().
+
+ NOTE: This does not distinguish between the different possible
+ classes (text vs. binary, read vs. write vs. read/write,
+ append-only, unbuffered). The TextIO and BinaryIO subclasses
+ below capture the distinctions between text vs. binary, which is
+ pervasive in the interface; however we currently do not offer a
+ way to track the other distinctions in the type system.
+ """
+
+ __slots__ = ()
+
+ @abstractproperty
+ def mode(self) -> str:
+ pass
+
+ @abstractproperty
+ def name(self) -> str:
+ pass
+
+ @abstractmethod
+ def close(self) -> None:
+ pass
+
+ @abstractmethod
+ def closed(self) -> bool:
+ pass
+
+ @abstractmethod
+ def fileno(self) -> int:
+ pass
+
+ @abstractmethod
+ def flush(self) -> None:
+ pass
+
+ @abstractmethod
+ def isatty(self) -> bool:
+ pass
+
+ @abstractmethod
+ def read(self, n: int = -1) -> AnyStr:
+ pass
+
+ @abstractmethod
+ def readable(self) -> bool:
+ pass
+
+ @abstractmethod
+ def readline(self, limit: int = -1) -> AnyStr:
+ pass
+
+ @abstractmethod
+ def readlines(self, hint: int = -1) -> List[AnyStr]:
+ pass
+
+ @abstractmethod
+ def seek(self, offset: int, whence: int = 0) -> int:
+ pass
+
+ @abstractmethod
+ def seekable(self) -> bool:
+ pass
+
+ @abstractmethod
+ def tell(self) -> int:
+ pass
+
+ @abstractmethod
+ def truncate(self, size: int = None) -> int:
+ pass
+
+ @abstractmethod
+ def writable(self) -> bool:
+ pass
+
+ @abstractmethod
+ def write(self, s: AnyStr) -> int:
+ pass
+
+ @abstractmethod
+ def writelines(self, lines: List[AnyStr]) -> None:
+ pass
+
+ @abstractmethod
+ def __enter__(self) -> 'IO[AnyStr]':
+ pass
+
+ @abstractmethod
+ def __exit__(self, type, value, traceback) -> None:
+ pass
+
+
+class BinaryIO(IO[bytes]):
+ """Typed version of the return of open() in binary mode."""
+
+ __slots__ = ()
+
+ @abstractmethod
+ def write(self, s: Union[bytes, bytearray]) -> int:
+ pass
+
+ @abstractmethod
+ def __enter__(self) -> 'BinaryIO':
+ pass
+
+
+class TextIO(IO[str]):
+ """Typed version of the return of open() in text mode."""
+
+ __slots__ = ()
+
+ @abstractproperty
+ def buffer(self) -> BinaryIO:
+ pass
+
+ @abstractproperty
+ def encoding(self) -> str:
+ pass
+
+ @abstractproperty
+ def errors(self) -> str:
+ pass
+
+ @abstractproperty
+ def line_buffering(self) -> bool:
+ pass
+
+ @abstractproperty
+ def newlines(self) -> Any:
+ pass
+
+ @abstractmethod
+ def __enter__(self) -> 'TextIO':
+ pass
+
+
+class io:
+ """Wrapper namespace for IO generic classes."""
+
+ __all__ = ['IO', 'TextIO', 'BinaryIO']
+ IO = IO
+ TextIO = TextIO
+ BinaryIO = BinaryIO
+
+io.__name__ = __name__ + '.io'
+sys.modules[io.__name__] = io
+
+
+Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
+ lambda p: p.pattern)
+Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
+ lambda m: m.re.pattern)
+
+
+class re:
+ """Wrapper namespace for re type aliases."""
+
+ __all__ = ['Pattern', 'Match']
+ Pattern = Pattern
+ Match = Match
+
+re.__name__ = __name__ + '.re'
+sys.modules[re.__name__] = re