summaryrefslogtreecommitdiff
path: root/Objects/obmalloc.c
blob: 9adcff7a27efd496eeb3f8157b2e0577c7a68e2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
#include "Python.h"

#if defined(__has_feature)  /* Clang */
 #if __has_feature(address_sanitizer)  /* is ASAN enabled? */
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
        __attribute__((no_address_safety_analysis)) \
        __attribute__ ((noinline))
 #else
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
 #endif
#else
 #if defined(__SANITIZE_ADDRESS__)  /* GCC 4.8.x, is ASAN enabled? */
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
        __attribute__((no_address_safety_analysis)) \
        __attribute__ ((noinline))
 #else
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
 #endif
#endif

#ifdef WITH_PYMALLOC

#ifdef HAVE_MMAP
 #include <sys/mman.h>
 #ifdef MAP_ANONYMOUS
  #define ARENAS_USE_MMAP
 #endif
#endif

#ifdef WITH_VALGRIND
#include <valgrind/valgrind.h>

/* If we're using GCC, use __builtin_expect() to reduce overhead of
   the valgrind checks */
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
#  define UNLIKELY(value) __builtin_expect((value), 0)
#else
#  define UNLIKELY(value) (value)
#endif

/* -1 indicates that we haven't checked that we're running on valgrind yet. */
static int running_on_valgrind = -1;
#endif

/* An object allocator for Python.

   Here is an introduction to the layers of the Python memory architecture,
   showing where the object allocator is actually used (layer +2), It is
   called for every object allocation and deallocation (PyObject_New/Del),
   unless the object-specific allocators implement a proprietary allocation
   scheme (ex.: ints use a simple free list). This is also the place where
   the cyclic garbage collector operates selectively on container objects.


    Object-specific allocators
    _____   ______   ______       ________
   [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
    _______________________________       |                           |
   [   Python's object allocator   ]      |                           |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
    ______________________________________________________________    |
   [          Python's raw memory allocator (PyMem_ API)          ]   |
+1 | <----- Python memory (under PyMem manager's control) ------> |   |
    __________________________________________________________________
   [    Underlying general-purpose allocator (ex: C library malloc)   ]
 0 | <------ Virtual memory allocated for the python process -------> |

   =========================================================================
    _______________________________________________________________________
   [                OS-specific Virtual Memory Manager (VMM)               ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
    __________________________________   __________________________________
   [                                  ] [                                  ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

*/
/*==========================================================================*/

/* A fast, special-purpose memory allocator for small blocks, to be used
   on top of a general-purpose malloc -- heavily based on previous art. */

/* Vladimir Marangozov -- August 2000 */

/*
 * "Memory management is where the rubber meets the road -- if we do the wrong
 * thing at any level, the results will not be good. And if we don't make the
 * levels work well together, we are in serious trouble." (1)
 *
 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
 *    "Dynamic Storage Allocation: A Survey and Critical Review",
 *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
 */

/* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */

/*==========================================================================*/

/*
 * Allocation strategy abstract:
 *
 * For small requests, the allocator sub-allocates <Big> blocks of memory.
 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
 * system's allocator.
 *
 * Small requests are grouped in size classes spaced 8 bytes apart, due
 * to the required valid alignment of the returned address. Requests of
 * a particular size are serviced from memory pools of 4K (one VMM page).
 * Pools are fragmented on demand and contain free lists of blocks of one
 * particular size class. In other words, there is a fixed-size allocator
 * for each size class. Free pools are shared by the different allocators
 * thus minimizing the space reserved for a particular size class.
 *
 * This allocation strategy is a variant of what is known as "simple
 * segregated storage based on array of free lists". The main drawback of
 * simple segregated storage is that we might end up with lot of reserved
 * memory for the different free lists, which degenerate in time. To avoid
 * this, we partition each free list in pools and we share dynamically the
 * reserved space between all free lists. This technique is quite efficient
 * for memory intensive programs which allocate mainly small-sized blocks.
 *
 * For small requests we have the following table:
 *
 * Request in bytes     Size of allocated block      Size class idx
 * ----------------------------------------------------------------
 *        1-8                     8                       0
 *        9-16                   16                       1
 *       17-24                   24                       2
 *       25-32                   32                       3
 *       33-40                   40                       4
 *       41-48                   48                       5
 *       49-56                   56                       6
 *       57-64                   64                       7
 *       65-72                   72                       8
 *        ...                   ...                     ...
 *      497-504                 504                      62
 *      505-512                 512                      63
 *
 *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
 *      allocator.
 */

/*==========================================================================*/

/*
 * -- Main tunable settings section --
 */

/*
 * Alignment of addresses returned to the user. 8-bytes alignment works
 * on most current architectures (with 32-bit or 64-bit address busses).
 * The alignment value is also used for grouping small requests in size
 * classes spaced ALIGNMENT bytes apart.
 *
 * You shouldn't change this unless you know what you are doing.
 */
#define ALIGNMENT               8               /* must be 2^N */
#define ALIGNMENT_SHIFT         3
#define ALIGNMENT_MASK          (ALIGNMENT - 1)

/* Return the number of bytes in size class I, as a uint. */
#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)

/*
 * Max size threshold below which malloc requests are considered to be
 * small enough in order to use preallocated memory pools. You can tune
 * this value according to your application behaviour and memory needs.
 *
 * The following invariants must hold:
 *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
 *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
 *
 * Note: a size threshold of 512 guarantees that newly created dictionaries
 * will be allocated from preallocated memory pools on 64-bit.
 *
 * Although not required, for better performance and space efficiency,
 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
 */
#define SMALL_REQUEST_THRESHOLD 512
#define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)

/*
 * The system's VMM page size can be obtained on most unices with a
 * getpagesize() call or deduced from various header files. To make
 * things simpler, we assume that it is 4K, which is OK for most systems.
 * It is probably better if this is the native page size, but it doesn't
 * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page
 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
 * violation fault.  4K is apparently OK for all the platforms that python
 * currently targets.
 */
#define SYSTEM_PAGE_SIZE        (4 * 1024)
#define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)

/*
 * Maximum amount of memory managed by the allocator for small requests.
 */
#ifdef WITH_MEMORY_LIMITS
#ifndef SMALL_MEMORY_LIMIT
#define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */
#endif
#endif

/*
 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
 * on a page boundary. This is a reserved virtual address space for the
 * current process (obtained through a malloc()/mmap() call). In no way this
 * means that the memory arenas will be used entirely. A malloc(<Big>) is
 * usually an address range reservation for <Big> bytes, unless all pages within
 * this space are referenced subsequently. So malloc'ing big blocks and not
 * using them does not mean "wasting memory". It's an addressable range
 * wastage...
 *
 * Arenas are allocated with mmap() on systems supporting anonymous memory
 * mappings to reduce heap fragmentation.
 */
#define ARENA_SIZE              (256 << 10)     /* 256KiB */

#ifdef WITH_MEMORY_LIMITS
#define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)
#endif

/*
 * Size of the pools used for small blocks. Should be a power of 2,
 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
 */
#define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
#define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK

/*
 * -- End of tunable settings section --
 */

/*==========================================================================*/

/*
 * Locking
 *
 * To reduce lock contention, it would probably be better to refine the
 * crude function locking with per size class locking. I'm not positive
 * however, whether it's worth switching to such locking policy because
 * of the performance penalty it might introduce.
 *
 * The following macros describe the simplest (should also be the fastest)
 * lock object on a particular platform and the init/fini/lock/unlock
 * operations on it. The locks defined here are not expected to be recursive
 * because it is assumed that they will always be called in the order:
 * INIT, [LOCK, UNLOCK]*, FINI.
 */

/*
 * Python's threads are serialized, so object malloc locking is disabled.
 */
#define SIMPLELOCK_DECL(lock)   /* simple lock declaration              */
#define SIMPLELOCK_INIT(lock)   /* allocate (if needed) and initialize  */
#define SIMPLELOCK_FINI(lock)   /* free/destroy an existing lock        */
#define SIMPLELOCK_LOCK(lock)   /* acquire released lock */
#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */

/*
 * Basic types
 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
 */
#undef  uchar
#define uchar   unsigned char   /* assuming == 8 bits  */

#undef  uint
#define uint    unsigned int    /* assuming >= 16 bits */

#undef  ulong
#define ulong   unsigned long   /* assuming >= 32 bits */

#undef uptr
#define uptr    Py_uintptr_t

/* When you say memory, my mind reasons in terms of (pointers to) blocks */
typedef uchar block;

/* Pool for small blocks. */
struct pool_header {
    union { block *_padding;
            uint count; } ref;          /* number of allocated blocks    */
    block *freeblock;                   /* pool's free list head         */
    struct pool_header *nextpool;       /* next pool of this size class  */
    struct pool_header *prevpool;       /* previous pool       ""        */
    uint arenaindex;                    /* index into arenas of base adr */
    uint szidx;                         /* block size class index        */
    uint nextoffset;                    /* bytes to virgin block         */
    uint maxnextoffset;                 /* largest valid nextoffset      */
};

typedef struct pool_header *poolp;

/* Record keeping for arenas. */
struct arena_object {
    /* The address of the arena, as returned by malloc.  Note that 0
     * will never be returned by a successful malloc, and is used
     * here to mark an arena_object that doesn't correspond to an
     * allocated arena.
     */
    uptr address;

    /* Pool-aligned pointer to the next pool to be carved off. */
    block* pool_address;

    /* The number of available pools in the arena:  free pools + never-
     * allocated pools.
     */
    uint nfreepools;

    /* The total number of pools in the arena, whether or not available. */
    uint ntotalpools;

    /* Singly-linked list of available pools. */
    struct pool_header* freepools;

    /* Whenever this arena_object is not associated with an allocated
     * arena, the nextarena member is used to link all unassociated
     * arena_objects in the singly-linked `unused_arena_objects` list.
     * The prevarena member is unused in this case.
     *
     * When this arena_object is associated with an allocated arena
     * with at least one available pool, both members are used in the
     * doubly-linked `usable_arenas` list, which is maintained in
     * increasing order of `nfreepools` values.
     *
     * Else this arena_object is associated with an allocated arena
     * all of whose pools are in use.  `nextarena` and `prevarena`
     * are both meaningless in this case.
     */
    struct arena_object* nextarena;
    struct arena_object* prevarena;
};

#undef  ROUNDUP
#define ROUNDUP(x)              (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
#define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))

#define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */

/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))

/* Return total number of blocks in pool of size index I, as a uint. */
#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))

/*==========================================================================*/

/*
 * This malloc lock
 */
SIMPLELOCK_DECL(_malloc_lock)
#define LOCK()          SIMPLELOCK_LOCK(_malloc_lock)
#define UNLOCK()        SIMPLELOCK_UNLOCK(_malloc_lock)
#define LOCK_INIT()     SIMPLELOCK_INIT(_malloc_lock)
#define LOCK_FINI()     SIMPLELOCK_FINI(_malloc_lock)

/*
 * Pool table -- headed, circular, doubly-linked lists of partially used pools.

This is involved.  For an index i, usedpools[i+i] is the header for a list of
all partially used pools holding small blocks with "size class idx" i. So
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.

Pools are carved off an arena's highwater mark (an arena_object's pool_address
member) as needed.  Once carved off, a pool is in one of three states forever
after:

used == partially used, neither empty nor full
    At least one block in the pool is currently allocated, and at least one
    block in the pool is not currently allocated (note this implies a pool
    has room for at least two blocks).
    This is a pool's initial state, as a pool is created only when malloc
    needs space.
    The pool holds blocks of a fixed size, and is in the circular list headed
    at usedpools[i] (see above).  It's linked to the other used pools of the
    same size class via the pool_header's nextpool and prevpool members.
    If all but one block is currently allocated, a malloc can cause a
    transition to the full state.  If all but one block is not currently
    allocated, a free can cause a transition to the empty state.

full == all the pool's blocks are currently allocated
    On transition to full, a pool is unlinked from its usedpools[] list.
    It's not linked to from anything then anymore, and its nextpool and
    prevpool members are meaningless until it transitions back to used.
    A free of a block in a full pool puts the pool back in the used state.
    Then it's linked in at the front of the appropriate usedpools[] list, so
    that the next allocation for its size class will reuse the freed block.

empty == all the pool's blocks are currently available for allocation
    On transition to empty, a pool is unlinked from its usedpools[] list,
    and linked to the front of its arena_object's singly-linked freepools list,
    via its nextpool member.  The prevpool member has no meaning in this case.
    Empty pools have no inherent size class:  the next time a malloc finds
    an empty list in usedpools[], it takes the first pool off of freepools.
    If the size class needed happens to be the same as the size class the pool
    last had, some pool initialization can be skipped.


Block Management

Blocks within pools are again carved out as needed.  pool->freeblock points to
the start of a singly-linked list of free blocks within the pool.  When a
block is freed, it's inserted at the front of its pool's freeblock list.  Note
that the available blocks in a pool are *not* linked all together when a pool
is initialized.  Instead only "the first two" (lowest addresses) blocks are
set up, returning the first such block, and setting pool->freeblock to a
one-block list holding the second such block.  This is consistent with that
pymalloc strives at all levels (arena, pool, and block) never to touch a piece
of memory until it's actually needed.

So long as a pool is in the used state, we're certain there *is* a block
available for allocating, and pool->freeblock is not NULL.  If pool->freeblock
points to the end of the free list before we've carved the entire pool into
blocks, that means we simply haven't yet gotten to one of the higher-address
blocks.  The offset from the pool_header to the start of "the next" virgin
block is stored in the pool_header nextoffset member, and the largest value
of nextoffset that makes sense is stored in the maxnextoffset member when a
pool is initialized.  All the blocks in a pool have been passed out at least
once when and only when nextoffset > maxnextoffset.


Major obscurity:  While the usedpools vector is declared to have poolp
entries, it doesn't really.  It really contains two pointers per (conceptual)
poolp entry, the nextpool and prevpool members of a pool_header.  The
excruciating initialization code below fools C so that

    usedpool[i+i]

"acts like" a genuine poolp, but only so long as you only reference its
nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is
compensating for that a pool_header's nextpool and prevpool members
immediately follow a pool_header's first two members:

    union { block *_padding;
            uint count; } ref;
    block *freeblock;

each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really
contains is a fudged-up pointer p such that *if* C believes it's a poolp
pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
circular list is empty).

It's unclear why the usedpools setup is so convoluted.  It could be to
minimize the amount of cache required to hold this heavily-referenced table
(which only *needs* the two interpool pointer members of a pool_header). OTOH,
referencing code has to remember to "double the index" and doing so isn't
free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
on that C doesn't insert any padding anywhere in a pool_header at or before
the prevpool member.
**************************************************************************** */

#define PTA(x)  ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x)   PTA(x), PTA(x)

static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
    PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
#if NB_SMALL_SIZE_CLASSES > 8
    , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
#if NB_SMALL_SIZE_CLASSES > 16
    , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
#if NB_SMALL_SIZE_CLASSES > 24
    , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
#if NB_SMALL_SIZE_CLASSES > 32
    , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
#if NB_SMALL_SIZE_CLASSES > 40
    , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
#if NB_SMALL_SIZE_CLASSES > 48
    , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
#if NB_SMALL_SIZE_CLASSES > 56
    , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
#if NB_SMALL_SIZE_CLASSES > 64
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
#endif /* NB_SMALL_SIZE_CLASSES >  8 */
};

/*==========================================================================
Arena management.

`arenas` is a vector of arena_objects.  It contains maxarenas entries, some of
which may not be currently used (== they're arena_objects that aren't
currently associated with an allocated arena).  Note that arenas proper are
separately malloc'ed.

Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,
we do try to free() arenas, and use some mild heuristic strategies to increase
the likelihood that arenas eventually can be freed.

unused_arena_objects

    This is a singly-linked list of the arena_objects that are currently not
    being used (no arena is associated with them).  Objects are taken off the
    head of the list in new_arena(), and are pushed on the head of the list in
    PyObject_Free() when the arena is empty.  Key invariant:  an arena_object
    is on this list if and only if its .address member is 0.

usable_arenas

    This is a doubly-linked list of the arena_objects associated with arenas
    that have pools available.  These pools are either waiting to be reused,
    or have not been used before.  The list is sorted to have the most-
    allocated arenas first (ascending order based on the nfreepools member).
    This means that the next allocation will come from a heavily used arena,
    which gives the nearly empty arenas a chance to be returned to the system.
    In my unscientific tests this dramatically improved the number of arenas
    that could be freed.

Note that an arena_object associated with an arena all of whose pools are
currently in use isn't on either list.
*/

/* Array of objects used to track chunks of memory (arenas). */
static struct arena_object* arenas = NULL;
/* Number of slots currently allocated in the `arenas` vector. */
static uint maxarenas = 0;

/* The head of the singly-linked, NULL-terminated list of available
 * arena_objects.
 */
static struct arena_object* unused_arena_objects = NULL;

/* The head of the doubly-linked, NULL-terminated at each end, list of
 * arena_objects associated with arenas that have pools available.
 */
static struct arena_object* usable_arenas = NULL;

/* How many arena_objects do we initially allocate?
 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
 * `arenas` vector.
 */
#define INITIAL_ARENA_OBJECTS 16

/* Number of arenas allocated that haven't been free()'d. */
static size_t narenas_currently_allocated = 0;

#ifdef PYMALLOC_DEBUG
/* Total number of times malloc() called to allocate an arena. */
static size_t ntimes_arena_allocated = 0;
/* High water mark (max value ever seen) for narenas_currently_allocated. */
static size_t narenas_highwater = 0;
#endif

/* Allocate a new arena.  If we run out of memory, return NULL.  Else
 * allocate a new arena, and return the address of an arena_object
 * describing the new arena.  It's expected that the caller will set
 * `usable_arenas` to the return value.
 */
static struct arena_object*
new_arena(void)
{
    struct arena_object* arenaobj;
    uint excess;        /* number of bytes above pool alignment */
    void *address;
    int err;

#ifdef PYMALLOC_DEBUG
    if (Py_GETENV("PYTHONMALLOCSTATS"))
        _PyObject_DebugMallocStats();
#endif
    if (unused_arena_objects == NULL) {
        uint i;
        uint numarenas;
        size_t nbytes;

        /* Double the number of arena objects on each allocation.
         * Note that it's possible for `numarenas` to overflow.
         */
        numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
        if (numarenas <= maxarenas)
            return NULL;                /* overflow */
#if SIZEOF_SIZE_T <= SIZEOF_INT
        if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
            return NULL;                /* overflow */
#endif
        nbytes = numarenas * sizeof(*arenas);
        arenaobj = (struct arena_object *)realloc(arenas, nbytes);
        if (arenaobj == NULL)
            return NULL;
        arenas = arenaobj;

        /* We might need to fix pointers that were copied.  However,
         * new_arena only gets called when all the pages in the
         * previous arenas are full.  Thus, there are *no* pointers
         * into the old array. Thus, we don't have to worry about
         * invalid pointers.  Just to be sure, some asserts:
         */
        assert(usable_arenas == NULL);
        assert(unused_arena_objects == NULL);

        /* Put the new arenas on the unused_arena_objects list. */
        for (i = maxarenas; i < numarenas; ++i) {
            arenas[i].address = 0;              /* mark as unassociated */
            arenas[i].nextarena = i < numarenas - 1 ?
                                   &arenas[i+1] : NULL;
        }

        /* Update globals. */
        unused_arena_objects = &arenas[maxarenas];
        maxarenas = numarenas;
    }

    /* Take the next available arena object off the head of the list. */
    assert(unused_arena_objects != NULL);
    arenaobj = unused_arena_objects;
    unused_arena_objects = arenaobj->nextarena;
    assert(arenaobj->address == 0);
#ifdef ARENAS_USE_MMAP
    address = mmap(NULL, ARENA_SIZE, PROT_READ|PROT_WRITE,
                   MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    err = (address == MAP_FAILED);
#else
    address = malloc(ARENA_SIZE);
    err = (address == 0);
#endif
    if (err) {
        /* The allocation failed: return NULL after putting the
         * arenaobj back.
         */
        arenaobj->nextarena = unused_arena_objects;
        unused_arena_objects = arenaobj;
        return NULL;
    }
    arenaobj->address = (uptr)address;

    ++narenas_currently_allocated;
#ifdef PYMALLOC_DEBUG
    ++ntimes_arena_allocated;
    if (narenas_currently_allocated > narenas_highwater)
        narenas_highwater = narenas_currently_allocated;
#endif
    arenaobj->freepools = NULL;
    /* pool_address <- first pool-aligned address in the arena
       nfreepools <- number of whole pools that fit after alignment */
    arenaobj->pool_address = (block*)arenaobj->address;
    arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
    assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
    excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
    if (excess != 0) {
        --arenaobj->nfreepools;
        arenaobj->pool_address += POOL_SIZE - excess;
    }
    arenaobj->ntotalpools = arenaobj->nfreepools;

    return arenaobj;
}

/*
Py_ADDRESS_IN_RANGE(P, POOL)

Return true if and only if P is an address that was allocated by pymalloc.
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
(the caller is asked to compute this because the macro expands POOL more than
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
called on every alloc/realloc/free, micro-efficiency is important here).

Tricky:  Let B be the arena base address associated with the pool, B =
arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if

    B <= P < B + ARENA_SIZE

Subtracting B throughout, this is true iff

    0 <= P-B < ARENA_SIZE

By using unsigned arithmetic, the "0 <=" half of the test can be skipped.

Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
before the first arena has been allocated.  `arenas` is still NULL in that
case.  We're relying on that maxarenas is also 0 in that case, so that
(POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
into a NULL arenas.

Details:  given P and POOL, the arena_object corresponding to P is AO =
arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
stores, etc), POOL is the correct address of P's pool, AO.address is the
correct base address of the pool's arena, and P must be within ARENA_SIZE of
AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
(NULL)).  Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
controls P.

Now suppose obmalloc does not control P (e.g., P was obtained via a direct
call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
in this case -- it may even be uninitialized trash.  If the trash arenaindex
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
control P.

Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
allocated arena, obmalloc controls all the memory in slice AO.address :
AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
so P doesn't lie in that slice, so the macro correctly reports that P is not
controlled by obmalloc.

Finally, if P is not controlled by obmalloc and AO corresponds to an unused
arena_object (one not currently associated with an allocated arena),
AO.address is 0, and the second test in the macro reduces to:

    P < ARENA_SIZE

If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
of the test still passes, and the third clause (AO.address != 0) is necessary
to get the correct result:  AO.address is 0 in this case, so the macro
correctly reports that P is not controlled by obmalloc (despite that P lies in
slice AO.address : AO.address + ARENA_SIZE).

Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
corresponded to a currently-allocated arena, so the "P is not controlled by
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
was impossible.

Note that the logic is excruciating, and reading up possibly uninitialized
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
creates problems for some memory debuggers.  The overwhelming advantage is
that this test determines whether an arbitrary address is controlled by
obmalloc in a small constant time, independent of the number of arenas
obmalloc controls.  Since this test is needed at every entry point, it's
extremely desirable that it be this fast.

Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
by Python, it is important that (POOL)->arenaindex is read only once, as
another thread may be concurrently modifying the value without holding the
GIL.  To accomplish this, the arenaindex_temp variable is used to store
(POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
execution.  The caller of the macro is responsible for declaring this
variable.
*/
#define Py_ADDRESS_IN_RANGE(P, POOL)                    \
    ((arenaindex_temp = (POOL)->arenaindex) < maxarenas &&              \
     (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
     arenas[arenaindex_temp].address != 0)


/* This is only useful when running memory debuggers such as
 * Purify or Valgrind.  Uncomment to use.
 *
#define Py_USING_MEMORY_DEBUGGER
 */

#ifdef Py_USING_MEMORY_DEBUGGER

/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
 * This leads to thousands of spurious warnings when using
 * Purify or Valgrind.  By making a function, we can easily
 * suppress the uninitialized memory reads in this one function.
 * So we won't ignore real errors elsewhere.
 *
 * Disable the macro and use a function.
 */

#undef Py_ADDRESS_IN_RANGE

#if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
                          (__GNUC__ >= 4))
#define Py_NO_INLINE __attribute__((__noinline__))
#else
#define Py_NO_INLINE
#endif

/* Don't make static, to try to ensure this isn't inlined. */
int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
#undef Py_NO_INLINE
#endif

/*==========================================================================*/

/* malloc.  Note that nbytes==0 tries to return a non-NULL pointer, distinct
 * from all other currently live pointers.  This may not be possible.
 */

/*
 * The basic blocks are ordered by decreasing execution frequency,
 * which minimizes the number of jumps in the most common cases,
 * improves branching prediction and instruction scheduling (small
 * block allocations typically result in a couple of instructions).
 * Unless the optimizer reorders everything, being too smart...
 */

#undef PyObject_Malloc
void *
PyObject_Malloc(size_t nbytes)
{
    block *bp;
    poolp pool;
    poolp next;
    uint size;

#ifdef WITH_VALGRIND
    if (UNLIKELY(running_on_valgrind == -1))
        running_on_valgrind = RUNNING_ON_VALGRIND;
    if (UNLIKELY(running_on_valgrind))
        goto redirect;
#endif

    /*
     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
     * Most python internals blindly use a signed Py_ssize_t to track
     * things without checking for overflows or negatives.
     * As size_t is unsigned, checking for nbytes < 0 is not required.
     */
    if (nbytes > PY_SSIZE_T_MAX)
        return NULL;

    /*
     * This implicitly redirects malloc(0).
     */
    if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
        LOCK();
        /*
         * Most frequent paths first
         */
        size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
        pool = usedpools[size + size];
        if (pool != pool->nextpool) {
            /*
             * There is a used pool for this size class.
             * Pick up the head block of its free list.
             */
            ++pool->ref.count;
            bp = pool->freeblock;
            assert(bp != NULL);
            if ((pool->freeblock = *(block **)bp) != NULL) {
                UNLOCK();
                return (void *)bp;
            }
            /*
             * Reached the end of the free list, try to extend it.
             */
            if (pool->nextoffset <= pool->maxnextoffset) {
                /* There is room for another block. */
                pool->freeblock = (block*)pool +
                                  pool->nextoffset;
                pool->nextoffset += INDEX2SIZE(size);
                *(block **)(pool->freeblock) = NULL;
                UNLOCK();
                return (void *)bp;
            }
            /* Pool is full, unlink from used pools. */
            next = pool->nextpool;
            pool = pool->prevpool;
            next->prevpool = pool;
            pool->nextpool = next;
            UNLOCK();
            return (void *)bp;
        }

        /* There isn't a pool of the right size class immediately
         * available:  use a free pool.
         */
        if (usable_arenas == NULL) {
            /* No arena has a free pool:  allocate a new arena. */
#ifdef WITH_MEMORY_LIMITS
            if (narenas_currently_allocated >= MAX_ARENAS) {
                UNLOCK();
                goto redirect;
            }
#endif
            usable_arenas = new_arena();
            if (usable_arenas == NULL) {
                UNLOCK();
                goto redirect;
            }
            usable_arenas->nextarena =
                usable_arenas->prevarena = NULL;
        }
        assert(usable_arenas->address != 0);

        /* Try to get a cached free pool. */
        pool = usable_arenas->freepools;
        if (pool != NULL) {
            /* Unlink from cached pools. */
            usable_arenas->freepools = pool->nextpool;

            /* This arena already had the smallest nfreepools
             * value, so decreasing nfreepools doesn't change
             * that, and we don't need to rearrange the
             * usable_arenas list.  However, if the arena has
             * become wholly allocated, we need to remove its
             * arena_object from usable_arenas.
             */
            --usable_arenas->nfreepools;
            if (usable_arenas->nfreepools == 0) {
                /* Wholly allocated:  remove. */
                assert(usable_arenas->freepools == NULL);
                assert(usable_arenas->nextarena == NULL ||
                       usable_arenas->nextarena->prevarena ==
                       usable_arenas);

                usable_arenas = usable_arenas->nextarena;
                if (usable_arenas != NULL) {
                    usable_arenas->prevarena = NULL;
                    assert(usable_arenas->address != 0);
                }
            }
            else {
                /* nfreepools > 0:  it must be that freepools
                 * isn't NULL, or that we haven't yet carved
                 * off all the arena's pools for the first
                 * time.
                 */
                assert(usable_arenas->freepools != NULL ||
                       usable_arenas->pool_address <=
                       (block*)usable_arenas->address +
                           ARENA_SIZE - POOL_SIZE);
            }
        init_pool:
            /* Frontlink to used pools. */
            next = usedpools[size + size]; /* == prev */
            pool->nextpool = next;
            pool->prevpool = next;
            next->nextpool = pool;
            next->prevpool = pool;
            pool->ref.count = 1;
            if (pool->szidx == size) {
                /* Luckily, this pool last contained blocks
                 * of the same size class, so its header
                 * and free list are already initialized.
                 */
                bp = pool->freeblock;
                pool->freeblock = *(block **)bp;
                UNLOCK();
                return (void *)bp;
            }
            /*
             * Initialize the pool header, set up the free list to
             * contain just the second block, and return the first
             * block.
             */
            pool->szidx = size;
            size = INDEX2SIZE(size);
            bp = (block *)pool + POOL_OVERHEAD;
            pool->nextoffset = POOL_OVERHEAD + (size << 1);
            pool->maxnextoffset = POOL_SIZE - size;
            pool->freeblock = bp + size;
            *(block **)(pool->freeblock) = NULL;
            UNLOCK();
            return (void *)bp;
        }

        /* Carve off a new pool. */
        assert(usable_arenas->nfreepools > 0);
        assert(usable_arenas->freepools == NULL);
        pool = (poolp)usable_arenas->pool_address;
        assert((block*)pool <= (block*)usable_arenas->address +
                               ARENA_SIZE - POOL_SIZE);
        pool->arenaindex = usable_arenas - arenas;
        assert(&arenas[pool->arenaindex] == usable_arenas);
        pool->szidx = DUMMY_SIZE_IDX;
        usable_arenas->pool_address += POOL_SIZE;
        --usable_arenas->nfreepools;

        if (usable_arenas->nfreepools == 0) {
            assert(usable_arenas->nextarena == NULL ||
                   usable_arenas->nextarena->prevarena ==
                   usable_arenas);
            /* Unlink the arena:  it is completely allocated. */
            usable_arenas = usable_arenas->nextarena;
            if (usable_arenas != NULL) {
                usable_arenas->prevarena = NULL;
                assert(usable_arenas->address != 0);
            }
        }

        goto init_pool;
    }

    /* The small block allocator ends here. */

redirect:
    /* Redirect the original request to the underlying (libc) allocator.
     * We jump here on bigger requests, on error in the code above (as a
     * last chance to serve the request) or when the max memory limit
     * has been reached.
     */
    if (nbytes == 0)
        nbytes = 1;
    return (void *)malloc(nbytes);
}

/* free */

#undef PyObject_Free
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
void
PyObject_Free(void *p)
{
    poolp pool;
    block *lastfree;
    poolp next, prev;
    uint size;
#ifndef Py_USING_MEMORY_DEBUGGER
    uint arenaindex_temp;
#endif

    if (p == NULL)      /* free(NULL) has no effect */
        return;

#ifdef WITH_VALGRIND
    if (UNLIKELY(running_on_valgrind > 0))
        goto redirect;
#endif

    pool = POOL_ADDR(p);
    if (Py_ADDRESS_IN_RANGE(p, pool)) {
        /* We allocated this address. */
        LOCK();
        /* Link p to the start of the pool's freeblock list.  Since
         * the pool had at least the p block outstanding, the pool
         * wasn't empty (so it's already in a usedpools[] list, or
         * was full and is in no list -- it's not in the freeblocks
         * list in any case).
         */
        assert(pool->ref.count > 0);            /* else it was empty */
        *(block **)p = lastfree = pool->freeblock;
        pool->freeblock = (block *)p;
        if (lastfree) {
            struct arena_object* ao;
            uint nf;  /* ao->nfreepools */

            /* freeblock wasn't NULL, so the pool wasn't full,
             * and the pool is in a usedpools[] list.
             */
            if (--pool->ref.count != 0) {
                /* pool isn't empty:  leave it in usedpools */
                UNLOCK();
                return;
            }
            /* Pool is now empty:  unlink from usedpools, and
             * link to the front of freepools.  This ensures that
             * previously freed pools will be allocated later
             * (being not referenced, they are perhaps paged out).
             */
            next = pool->nextpool;
            prev = pool->prevpool;
            next->prevpool = prev;
            prev->nextpool = next;

            /* Link the pool to freepools.  This is a singly-linked
             * list, and pool->prevpool isn't used there.
             */
            ao = &arenas[pool->arenaindex];
            pool->nextpool = ao->freepools;
            ao->freepools = pool;
            nf = ++ao->nfreepools;

            /* All the rest is arena management.  We just freed
             * a pool, and there are 4 cases for arena mgmt:
             * 1. If all the pools are free, return the arena to
             *    the system free().
             * 2. If this is the only free pool in the arena,
             *    add the arena back to the `usable_arenas` list.
             * 3. If the "next" arena has a smaller count of free
             *    pools, we have to "slide this arena right" to
             *    restore that usable_arenas is sorted in order of
             *    nfreepools.
             * 4. Else there's nothing more to do.
             */
            if (nf == ao->ntotalpools) {
                /* Case 1.  First unlink ao from usable_arenas.
                 */
                assert(ao->prevarena == NULL ||
                       ao->prevarena->address != 0);
                assert(ao ->nextarena == NULL ||
                       ao->nextarena->address != 0);

                /* Fix the pointer in the prevarena, or the
                 * usable_arenas pointer.
                 */
                if (ao->prevarena == NULL) {
                    usable_arenas = ao->nextarena;
                    assert(usable_arenas == NULL ||
                           usable_arenas->address != 0);
                }
                else {
                    assert(ao->prevarena->nextarena == ao);
                    ao->prevarena->nextarena =
                        ao->nextarena;
                }
                /* Fix the pointer in the nextarena. */
                if (ao->nextarena != NULL) {
                    assert(ao->nextarena->prevarena == ao);
                    ao->nextarena->prevarena =
                        ao->prevarena;
                }
                /* Record that this arena_object slot is
                 * available to be reused.
                 */
                ao->nextarena = unused_arena_objects;
                unused_arena_objects = ao;

                /* Free the entire arena. */
#ifdef ARENAS_USE_MMAP
                munmap((void *)ao->address, ARENA_SIZE);
#else
                free((void *)ao->address);
#endif
                ao->address = 0;                        /* mark unassociated */
                --narenas_currently_allocated;

                UNLOCK();
                return;
            }
            if (nf == 1) {
                /* Case 2.  Put ao at the head of
                 * usable_arenas.  Note that because
                 * ao->nfreepools was 0 before, ao isn't
                 * currently on the usable_arenas list.
                 */
                ao->nextarena = usable_arenas;
                ao->prevarena = NULL;
                if (usable_arenas)
                    usable_arenas->prevarena = ao;
                usable_arenas = ao;
                assert(usable_arenas->address != 0);

                UNLOCK();
                return;
            }
            /* If this arena is now out of order, we need to keep
             * the list sorted.  The list is kept sorted so that
             * the "most full" arenas are used first, which allows
             * the nearly empty arenas to be completely freed.  In
             * a few un-scientific tests, it seems like this
             * approach allowed a lot more memory to be freed.
             */
            if (ao->nextarena == NULL ||
                         nf <= ao->nextarena->nfreepools) {
                /* Case 4.  Nothing to do. */
                UNLOCK();
                return;
            }
            /* Case 3:  We have to move the arena towards the end
             * of the list, because it has more free pools than
             * the arena to its right.
             * First unlink ao from usable_arenas.
             */
            if (ao->prevarena != NULL) {
                /* ao isn't at the head of the list */
                assert(ao->prevarena->nextarena == ao);
                ao->prevarena->nextarena = ao->nextarena;
            }
            else {
                /* ao is at the head of the list */
                assert(usable_arenas == ao);
                usable_arenas = ao->nextarena;
            }
            ao->nextarena->prevarena = ao->prevarena;

            /* Locate the new insertion point by iterating over
             * the list, using our nextarena pointer.
             */
            while (ao->nextarena != NULL &&
                            nf > ao->nextarena->nfreepools) {
                ao->prevarena = ao->nextarena;
                ao->nextarena = ao->nextarena->nextarena;
            }

            /* Insert ao at this point. */
            assert(ao->nextarena == NULL ||
                ao->prevarena == ao->nextarena->prevarena);
            assert(ao->prevarena->nextarena == ao->nextarena);

            ao->prevarena->nextarena = ao;
            if (ao->nextarena != NULL)
                ao->nextarena->prevarena = ao;

            /* Verify that the swaps worked. */
            assert(ao->nextarena == NULL ||
                      nf <= ao->nextarena->nfreepools);
            assert(ao->prevarena == NULL ||
                      nf > ao->prevarena->nfreepools);
            assert(ao->nextarena == NULL ||
                ao->nextarena->prevarena == ao);
            assert((usable_arenas == ao &&
                ao->prevarena == NULL) ||
                ao->prevarena->nextarena == ao);

            UNLOCK();
            return;
        }
        /* Pool was full, so doesn't currently live in any list:
         * link it to the front of the appropriate usedpools[] list.
         * This mimics LRU pool usage for new allocations and
         * targets optimal filling when several pools contain
         * blocks of the same size class.
         */
        --pool->ref.count;
        assert(pool->ref.count > 0);            /* else the pool is empty */
        size = pool->szidx;
        next = usedpools[size + size];
        prev = next->prevpool;
        /* insert pool before next:   prev <-> pool <-> next */
        pool->nextpool = next;
        pool->prevpool = prev;
        next->prevpool = pool;
        prev->nextpool = pool;
        UNLOCK();
        return;
    }

#ifdef WITH_VALGRIND
redirect:
#endif
    /* We didn't allocate this address. */
    free(p);
}

/* realloc.  If p is NULL, this acts like malloc(nbytes).  Else if nbytes==0,
 * then as the Python docs promise, we do not treat this like free(p), and
 * return a non-NULL result.
 */

#undef PyObject_Realloc
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
void *
PyObject_Realloc(void *p, size_t nbytes)
{
    void *bp;
    poolp pool;
    size_t size;
#ifndef Py_USING_MEMORY_DEBUGGER
    uint arenaindex_temp;
#endif

    if (p == NULL)
        return PyObject_Malloc(nbytes);

    /*
     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
     * Most python internals blindly use a signed Py_ssize_t to track
     * things without checking for overflows or negatives.
     * As size_t is unsigned, checking for nbytes < 0 is not required.
     */
    if (nbytes > PY_SSIZE_T_MAX)
        return NULL;

#ifdef WITH_VALGRIND
    /* Treat running_on_valgrind == -1 the same as 0 */
    if (UNLIKELY(running_on_valgrind > 0))
        goto redirect;
#endif

    pool = POOL_ADDR(p);
    if (Py_ADDRESS_IN_RANGE(p, pool)) {
        /* We're in charge of this block */
        size = INDEX2SIZE(pool->szidx);
        if (nbytes <= size) {
            /* The block is staying the same or shrinking.  If
             * it's shrinking, there's a tradeoff:  it costs
             * cycles to copy the block to a smaller size class,
             * but it wastes memory not to copy it.  The
             * compromise here is to copy on shrink only if at
             * least 25% of size can be shaved off.
             */
            if (4 * nbytes > 3 * size) {
                /* It's the same,
                 * or shrinking and new/old > 3/4.
                 */
                return p;
            }
            size = nbytes;
        }
        bp = PyObject_Malloc(nbytes);
        if (bp != NULL) {
            memcpy(bp, p, size);
            PyObject_Free(p);
        }
        return bp;
    }
#ifdef WITH_VALGRIND
 redirect:
#endif
    /* We're not managing this block.  If nbytes <=
     * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
     * block.  However, if we do, we need to copy the valid data from
     * the C-managed block to one of our blocks, and there's no portable
     * way to know how much of the memory space starting at p is valid.
     * As bug 1185883 pointed out the hard way, it's possible that the
     * C-managed block is "at the end" of allocated VM space, so that
     * a memory fault can occur if we try to copy nbytes bytes starting
     * at p.  Instead we punt:  let C continue to manage this block.
     */
    if (nbytes)
        return realloc(p, nbytes);
    /* C doesn't define the result of realloc(p, 0) (it may or may not
     * return NULL then), but Python's docs promise that nbytes==0 never
     * returns NULL.  We don't pass 0 to realloc(), to avoid that endcase
     * to begin with.  Even then, we can't be sure that realloc() won't
     * return NULL.
     */
    bp = realloc(p, 1);
    return bp ? bp : p;
}

#else   /* ! WITH_PYMALLOC */

/*==========================================================================*/
/* pymalloc not enabled:  Redirect the entry points to malloc.  These will
 * only be used by extensions that are compiled with pymalloc enabled. */

void *
PyObject_Malloc(size_t n)
{
    return PyMem_MALLOC(n);
}

void *
PyObject_Realloc(void *p, size_t n)
{
    return PyMem_REALLOC(p, n);
}

void
PyObject_Free(void *p)
{
    PyMem_FREE(p);
}
#endif /* WITH_PYMALLOC */

#ifdef PYMALLOC_DEBUG
/*==========================================================================*/
/* A x-platform debugging allocator.  This doesn't manage memory directly,
 * it wraps a real allocator, adding extra debugging info to the memory blocks.
 */

/* Special bytes broadcast into debug memory blocks at appropriate times.
 * Strings of these are unlikely to be valid addresses, floats, ints or
 * 7-bit ASCII.
 */
#undef CLEANBYTE
#undef DEADBYTE
#undef FORBIDDENBYTE
#define CLEANBYTE      0xCB    /* clean (newly allocated) memory */
#define DEADBYTE       0xDB    /* dead (newly freed) memory */
#define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */

/* We tag each block with an API ID in order to tag API violations */
#define _PYMALLOC_MEM_ID 'm'   /* the PyMem_Malloc() API */
#define _PYMALLOC_OBJ_ID 'o'   /* The PyObject_Malloc() API */

static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */

/* serialno is always incremented via calling this routine.  The point is
 * to supply a single place to set a breakpoint.
 */
static void
bumpserialno(void)
{
    ++serialno;
}

#define SST SIZEOF_SIZE_T

/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
static size_t
read_size_t(const void *p)
{
    const uchar *q = (const uchar *)p;
    size_t result = *q++;
    int i;

    for (i = SST; --i > 0; ++q)
        result = (result << 8) | *q;
    return result;
}

/* Write n as a big-endian size_t, MSB at address p, LSB at
 * p + sizeof(size_t) - 1.
 */
static void
write_size_t(void *p, size_t n)
{
    uchar *q = (uchar *)p + SST - 1;
    int i;

    for (i = SST; --i >= 0; --q) {
        *q = (uchar)(n & 0xff);
        n >>= 8;
    }
}

#ifdef Py_DEBUG
/* Is target in the list?  The list is traversed via the nextpool pointers.
 * The list may be NULL-terminated, or circular.  Return 1 if target is in
 * list, else 0.
 */
static int
pool_is_in_list(const poolp target, poolp list)
{
    poolp origlist = list;
    assert(target != NULL);
    if (list == NULL)
        return 0;
    do {
        if (target == list)
            return 1;
        list = list->nextpool;
    } while (list != NULL && list != origlist);
    return 0;
}

#else
#define pool_is_in_list(X, Y) 1

#endif  /* Py_DEBUG */

/* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and
   fills them with useful stuff, here calling the underlying malloc's result p:

p[0: S]
    Number of bytes originally asked for.  This is a size_t, big-endian (easier
    to read in a memory dump).
p[S: 2*S]
    Copies of FORBIDDENBYTE.  Used to catch under- writes and reads.
p[2*S: 2*S+n]
    The requested memory, filled with copies of CLEANBYTE.
    Used to catch reference to uninitialized memory.
    &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
    handled the request itself.
p[2*S+n: 2*S+n+S]
    Copies of FORBIDDENBYTE.  Used to catch over- writes and reads.
p[2*S+n+S: 2*S+n+2*S]
    A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
    and _PyObject_DebugRealloc.
    This is a big-endian size_t.
    If "bad memory" is detected later, the serial number gives an
    excellent way to set a breakpoint on the next run, to capture the
    instant at which this block was passed out.
*/

/* debug replacements for the PyMem_* memory API */
void *
_PyMem_DebugMalloc(size_t nbytes)
{
    return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
}
void *
_PyMem_DebugRealloc(void *p, size_t nbytes)
{
    return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
}
void
_PyMem_DebugFree(void *p)
{
    _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
}

/* debug replacements for the PyObject_* memory API */
void *
_PyObject_DebugMalloc(size_t nbytes)
{
    return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
}
void *
_PyObject_DebugRealloc(void *p, size_t nbytes)
{
    return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
}
void
_PyObject_DebugFree(void *p)
{
    _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
}
void
_PyObject_DebugCheckAddress(const void *p)
{
    _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
}


/* generic debug memory api, with an "id" to identify the API in use */
void *
_PyObject_DebugMallocApi(char id, size_t nbytes)
{
    uchar *p;           /* base address of malloc'ed block */
    uchar *tail;        /* p + 2*SST + nbytes == pointer to tail pad bytes */
    size_t total;       /* nbytes + 4*SST */

    bumpserialno();
    total = nbytes + 4*SST;
    if (total < nbytes)
        /* overflow:  can't represent total as a size_t */
        return NULL;

    p = (uchar *)PyObject_Malloc(total);
    if (p == NULL)
        return NULL;

    /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
    write_size_t(p, nbytes);
    p[SST] = (uchar)id;
    memset(p + SST + 1 , FORBIDDENBYTE, SST-1);

    if (nbytes > 0)
        memset(p + 2*SST, CLEANBYTE, nbytes);

    /* at tail, write pad (SST bytes) and serialno (SST bytes) */
    tail = p + 2*SST + nbytes;
    memset(tail, FORBIDDENBYTE, SST);
    write_size_t(tail + SST, serialno);

    return p + 2*SST;
}

/* The debug free first checks the 2*SST bytes on each end for sanity (in
   particular, that the FORBIDDENBYTEs with the api ID are still intact).
   Then fills the original bytes with DEADBYTE.
   Then calls the underlying free.
*/
void
_PyObject_DebugFreeApi(char api, void *p)
{
    uchar *q = (uchar *)p - 2*SST;  /* address returned from malloc */
    size_t nbytes;

    if (p == NULL)
        return;
    _PyObject_DebugCheckAddressApi(api, p);
    nbytes = read_size_t(q);
    nbytes += 4*SST;
    if (nbytes > 0)
        memset(q, DEADBYTE, nbytes);
    PyObject_Free(q);
}

void *
_PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
{
    uchar *q = (uchar *)p;
    uchar *tail;
    size_t total;       /* nbytes + 4*SST */
    size_t original_nbytes;
    int i;

    if (p == NULL)
        return _PyObject_DebugMallocApi(api, nbytes);

    _PyObject_DebugCheckAddressApi(api, p);
    bumpserialno();
    original_nbytes = read_size_t(q - 2*SST);
    total = nbytes + 4*SST;
    if (total < nbytes)
        /* overflow:  can't represent total as a size_t */
        return NULL;

    if (nbytes <= original_nbytes) {
        /* shrinking:  mark old extra memory dead */
        memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
    }

    /* Resize and add decorations. We may get a new pointer here, in which
     * case we didn't get the chance to mark the old memory with DEADBYTE,
     * but we live with that.
     */
    q = (uchar *)PyObject_Realloc(q - 2*SST, total);
    if (q == NULL) {
        if (nbytes <= original_nbytes) {
            /* bpo-31626: the memset() above expects that realloc never fails
               on shrinking a memory block. */
            Py_FatalError("Shrinking reallocation failed");
        }
        return NULL;
    }

    write_size_t(q, nbytes);
    assert(q[SST] == (uchar)api);
    for (i = 1; i < SST; ++i)
        assert(q[SST + i] == FORBIDDENBYTE);
    q += 2*SST;
    tail = q + nbytes;
    memset(tail, FORBIDDENBYTE, SST);
    write_size_t(tail + SST, serialno);

    if (nbytes > original_nbytes) {
        /* growing:  mark new extra memory clean */
        memset(q + original_nbytes, CLEANBYTE,
               nbytes - original_nbytes);
    }

    return q;
}

/* Check the forbidden bytes on both ends of the memory allocated for p.
 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
 * and call Py_FatalError to kill the program.
 * The API id, is also checked.
 */
 void
_PyObject_DebugCheckAddressApi(char api, const void *p)
{
    const uchar *q = (const uchar *)p;
    char msgbuf[64];
    char *msg;
    size_t nbytes;
    const uchar *tail;
    int i;
    char id;

    if (p == NULL) {
        msg = "didn't expect a NULL pointer";
        goto error;
    }

    /* Check the API id */
    id = (char)q[-SST];
    if (id != api) {
        msg = msgbuf;
        snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
        msgbuf[sizeof(msgbuf)-1] = 0;
        goto error;
    }

    /* Check the stuff at the start of p first:  if there's underwrite
     * corruption, the number-of-bytes field may be nuts, and checking
     * the tail could lead to a segfault then.
     */
    for (i = SST-1; i >= 1; --i) {
        if (*(q-i) != FORBIDDENBYTE) {
            msg = "bad leading pad byte";
            goto error;
        }
    }

    nbytes = read_size_t(q - 2*SST);
    tail = q + nbytes;
    for (i = 0; i < SST; ++i) {
        if (tail[i] != FORBIDDENBYTE) {
            msg = "bad trailing pad byte";
            goto error;
        }
    }

    return;

error:
    _PyObject_DebugDumpAddress(p);
    Py_FatalError(msg);
}

/* Display info to stderr about the memory block at p. */
void
_PyObject_DebugDumpAddress(const void *p)
{
    const uchar *q = (const uchar *)p;
    const uchar *tail;
    size_t nbytes, serial;
    int i;
    int ok;
    char id;

    fprintf(stderr, "Debug memory block at address p=%p:", p);
    if (p == NULL) {
        fprintf(stderr, "\n");
        return;
    }
    id = (char)q[-SST];
    fprintf(stderr, " API '%c'\n", id);

    nbytes = read_size_t(q - 2*SST);
    fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "
                    "requested\n", nbytes);

    /* In case this is nuts, check the leading pad bytes first. */
    fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
    ok = 1;
    for (i = 1; i <= SST-1; ++i) {
        if (*(q-i) != FORBIDDENBYTE) {
            ok = 0;
            break;
        }
    }
    if (ok)
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
    else {
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
            FORBIDDENBYTE);
        for (i = SST-1; i >= 1; --i) {
            const uchar byte = *(q-i);
            fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
            if (byte != FORBIDDENBYTE)
                fputs(" *** OUCH", stderr);
            fputc('\n', stderr);
        }

        fputs("    Because memory is corrupted at the start, the "
              "count of bytes requested\n"
              "       may be bogus, and checking the trailing pad "
              "bytes may segfault.\n", stderr);
    }

    tail = q + nbytes;
    fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail);
    ok = 1;
    for (i = 0; i < SST; ++i) {
        if (tail[i] != FORBIDDENBYTE) {
            ok = 0;
            break;
        }
    }
    if (ok)
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
    else {
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
                FORBIDDENBYTE);
        for (i = 0; i < SST; ++i) {
            const uchar byte = tail[i];
            fprintf(stderr, "        at tail+%d: 0x%02x",
                    i, byte);
            if (byte != FORBIDDENBYTE)
                fputs(" *** OUCH", stderr);
            fputc('\n', stderr);
        }
    }

    serial = read_size_t(tail + SST);
    fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T
                    "u to debug malloc/realloc.\n", serial);

    if (nbytes > 0) {
        i = 0;
        fputs("    Data at p:", stderr);
        /* print up to 8 bytes at the start */
        while (q < tail && i < 8) {
            fprintf(stderr, " %02x", *q);
            ++i;
            ++q;
        }
        /* and up to 8 at the end */
        if (q < tail) {
            if (tail - q > 8) {
                fputs(" ...", stderr);
                q = tail - 8;
            }
            while (q < tail) {
                fprintf(stderr, " %02x", *q);
                ++q;
            }
        }
        fputc('\n', stderr);
    }
}

static size_t
printone(const char* msg, size_t value)
{
    int i, k;
    char buf[100];
    size_t origvalue = value;

    fputs(msg, stderr);
    for (i = (int)strlen(msg); i < 35; ++i)
        fputc(' ', stderr);
    fputc('=', stderr);

    /* Write the value with commas. */
    i = 22;
    buf[i--] = '\0';
    buf[i--] = '\n';
    k = 3;
    do {
        size_t nextvalue = value / 10;
        unsigned int digit = (unsigned int)(value - nextvalue * 10);
        value = nextvalue;
        buf[i--] = (char)(digit + '0');
        --k;
        if (k == 0 && value && i >= 0) {
            k = 3;
            buf[i--] = ',';
        }
    } while (value && i >= 0);

    while (i >= 0)
        buf[i--] = ' ';
    fputs(buf, stderr);

    return origvalue;
}

/* Print summary info to stderr about the state of pymalloc's structures.
 * In Py_DEBUG mode, also perform some expensive internal consistency
 * checks.
 */
void
_PyObject_DebugMallocStats(void)
{
    uint i;
    const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
    /* # of pools, allocated blocks, and free blocks per class index */
    size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    /* total # of allocated bytes in used and full pools */
    size_t allocated_bytes = 0;
    /* total # of available bytes in used pools */
    size_t available_bytes = 0;
    /* # of free pools + pools not yet carved out of current arena */
    uint numfreepools = 0;
    /* # of bytes for arena alignment padding */
    size_t arena_alignment = 0;
    /* # of bytes in used and full pools used for pool_headers */
    size_t pool_header_bytes = 0;
    /* # of bytes in used and full pools wasted due to quantization,
     * i.e. the necessarily leftover space at the ends of used and
     * full pools.
     */
    size_t quantization = 0;
    /* # of arenas actually allocated. */
    size_t narenas = 0;
    /* running total -- should equal narenas * ARENA_SIZE */
    size_t total;
    char buf[128];

    fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
            SMALL_REQUEST_THRESHOLD, numclasses);

    for (i = 0; i < numclasses; ++i)
        numpools[i] = numblocks[i] = numfreeblocks[i] = 0;

    /* Because full pools aren't linked to from anything, it's easiest
     * to march over all the arenas.  If we're lucky, most of the memory
     * will be living in full pools -- would be a shame to miss them.
     */
    for (i = 0; i < maxarenas; ++i) {
        uint j;
        uptr base = arenas[i].address;

        /* Skip arenas which are not allocated. */
        if (arenas[i].address == (uptr)NULL)
            continue;
        narenas += 1;

        numfreepools += arenas[i].nfreepools;

        /* round up to pool alignment */
        if (base & (uptr)POOL_SIZE_MASK) {
            arena_alignment += POOL_SIZE;
            base &= ~(uptr)POOL_SIZE_MASK;
            base += POOL_SIZE;
        }

        /* visit every pool in the arena */
        assert(base <= (uptr) arenas[i].pool_address);
        for (j = 0;
                    base < (uptr) arenas[i].pool_address;
                    ++j, base += POOL_SIZE) {
            poolp p = (poolp)base;
            const uint sz = p->szidx;
            uint freeblocks;

            if (p->ref.count == 0) {
                /* currently unused */
                assert(pool_is_in_list(p, arenas[i].freepools));
                continue;
            }
            ++numpools[sz];
            numblocks[sz] += p->ref.count;
            freeblocks = NUMBLOCKS(sz) - p->ref.count;
            numfreeblocks[sz] += freeblocks;
#ifdef Py_DEBUG
            if (freeblocks > 0)
                assert(pool_is_in_list(p, usedpools[sz + sz]));
#endif
        }
    }
    assert(narenas == narenas_currently_allocated);

    fputc('\n', stderr);
    fputs("class   size   num pools   blocks in use  avail blocks\n"
          "-----   ----   ---------   -------------  ------------\n",
          stderr);

    for (i = 0; i < numclasses; ++i) {
        size_t p = numpools[i];
        size_t b = numblocks[i];
        size_t f = numfreeblocks[i];
        uint size = INDEX2SIZE(i);
        if (p == 0) {
            assert(b == 0 && f == 0);
            continue;
        }
        fprintf(stderr, "%5u %6u "
                        "%11" PY_FORMAT_SIZE_T "u "
                        "%15" PY_FORMAT_SIZE_T "u "
                        "%13" PY_FORMAT_SIZE_T "u\n",
                i, size, p, b, f);
        allocated_bytes += b * size;
        available_bytes += f * size;
        pool_header_bytes += p * POOL_OVERHEAD;
        quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
    }
    fputc('\n', stderr);
    (void)printone("# times object malloc called", serialno);

    (void)printone("# arenas allocated total", ntimes_arena_allocated);
    (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
    (void)printone("# arenas highwater mark", narenas_highwater);
    (void)printone("# arenas allocated current", narenas);

    PyOS_snprintf(buf, sizeof(buf),
        "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
        narenas, ARENA_SIZE);
    (void)printone(buf, narenas * ARENA_SIZE);

    fputc('\n', stderr);

    total = printone("# bytes in allocated blocks", allocated_bytes);
    total += printone("# bytes in available blocks", available_bytes);

    PyOS_snprintf(buf, sizeof(buf),
        "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
    total += printone(buf, (size_t)numfreepools * POOL_SIZE);

    total += printone("# bytes lost to pool headers", pool_header_bytes);
    total += printone("# bytes lost to quantization", quantization);
    total += printone("# bytes lost to arena alignment", arena_alignment);
    (void)printone("Total", total);
}

#endif  /* PYMALLOC_DEBUG */

#ifdef Py_USING_MEMORY_DEBUGGER
/* Make this function last so gcc won't inline it since the definition is
 * after the reference.
 */
int
Py_ADDRESS_IN_RANGE(void *P, poolp pool)
{
    uint arenaindex_temp = pool->arenaindex;

    return arenaindex_temp < maxarenas &&
           (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
           arenas[arenaindex_temp].address != 0;
}
#endif