1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
"""\
Generic (shallow and deep) copying operations
=============================================
Interface summary:
import copy
x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y
For module specific errors, copy.error is raised.
The difference between shallow and deep copying is only relevant for
compound objects (objects that contain other objects, like lists or
class instances).
- A shallow copy constructs a new compound object and then (to the
extent possible) inserts *the same objects* into in that the
original contains.
- A deep copy constructs a new compound object and then, recursively,
inserts *copies* into it of the objects found in the original.
Two problems often exist with deep copy operations that don't exist
with shallow copy operations:
a) recursive objects (compound objects that, directly or indirectly,
contain a reference to themselves) may cause a recursive loop
b) because deep copy copies *everything* it may copy too much, e.g.
administrative data structures that should be shared even between
copies
Python's deep copy operation avoids these problems by:
a) keeping a table of objects already copied during the current
copying pass
b) letting user-defined classes override the copying operation or the
set of components copied
This version does not copy types like module, class, function, method,
nor stack trace, stack frame, nor file, socket, window, nor array, nor
any similar types.
Classes can use the same interfaces to control copying that they use
to control pickling: they can define methods called __getinitargs__(),
__getstate__() and __setstate__(). See the __doc__ string of module
"pickle" for information on these methods.
"""
import types
error = 'copy.error'
Error = error # backward compatibility
def copy(x):
"""Shallow copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
try:
copierfunction = _copy_dispatch[type(x)]
except KeyError:
try:
copier = x.__copy__
except AttributeError:
raise error, \
"un(shallow)copyable object of type %s" % type(x)
y = copier()
else:
y = copierfunction(x)
return y
_copy_dispatch = d = {}
def _copy_atomic(x):
return x
d[types.NoneType] = _copy_atomic
d[types.IntType] = _copy_atomic
d[types.LongType] = _copy_atomic
d[types.FloatType] = _copy_atomic
d[types.StringType] = _copy_atomic
d[types.CodeType] = _copy_atomic
d[types.TypeType] = _copy_atomic
d[types.XRangeType] = _copy_atomic
d[types.ClassType] = _copy_atomic
def _copy_list(x):
return x[:]
d[types.ListType] = _copy_list
def _copy_tuple(x):
return x[:]
d[types.TupleType] = _copy_tuple
def _copy_dict(x):
return x.copy()
d[types.DictionaryType] = _copy_dict
def _copy_inst(x):
if hasattr(x, '__copy__'):
return x.__copy__()
if hasattr(x, '__getinitargs__'):
args = x.__getinitargs__()
else:
args = ()
y = apply(x.__class__, args)
if hasattr(x, '__getstate__'):
state = x.__getstate__()
else:
state = x.__dict__
if hasattr(y, '__setstate__'):
y.__setstate__(state)
else:
for key in state.keys():
setattr(y, key, state[key])
return y
d[types.InstanceType] = _copy_inst
del d
def deepcopy(x, memo = None):
"""Deep copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
if memo is None:
memo = {}
d = id(x)
if memo.has_key(d):
return memo[d]
try:
copierfunction = _deepcopy_dispatch[type(x)]
except KeyError:
try:
copier = x.__deepcopy__
except AttributeError:
raise error, \
"un-deep-copyable object of type %s" % type(x)
y = copier(memo)
else:
y = copierfunction(x, memo)
memo[d] = y
return y
_deepcopy_dispatch = d = {}
def _deepcopy_atomic(x, memo):
return x
d[types.NoneType] = _deepcopy_atomic
d[types.IntType] = _deepcopy_atomic
d[types.LongType] = _deepcopy_atomic
d[types.FloatType] = _deepcopy_atomic
d[types.StringType] = _deepcopy_atomic
d[types.CodeType] = _deepcopy_atomic
d[types.TypeType] = _deepcopy_atomic
d[types.XRangeType] = _deepcopy_atomic
def _deepcopy_list(x, memo):
y = []
memo[id(x)] = y
for a in x:
y.append(deepcopy(a, memo))
return y
d[types.ListType] = _deepcopy_list
def _deepcopy_tuple(x, memo):
y = []
for a in x:
y.append(deepcopy(a, memo))
d = id(x)
try:
return memo[d]
except KeyError:
pass
for i in range(len(x)):
if x[i] is not y[i]:
y = tuple(y)
break
else:
y = x
memo[d] = y
return y
d[types.TupleType] = _deepcopy_tuple
def _deepcopy_dict(x, memo):
y = {}
memo[id(x)] = y
for key in x.keys():
y[deepcopy(key, memo)] = deepcopy(x[key], memo)
return y
d[types.DictionaryType] = _deepcopy_dict
def _keep_alive(x, memo):
"""Keeps a reference to the object x in the memo.
Because we remember objects by their id, we have
to assure that possibly temporary objects are kept
alive by referencing them.
We store a reference at the id of the memo, which should
normally not be used unless someone tries to deepcopy
the memo itself...
"""
try:
memo[id(memo)].append(x)
except KeyError:
# aha, this is the first one :-)
memo[id(memo)]=[x]
def _deepcopy_inst(x, memo):
if hasattr(x, '__deepcopy__'):
return x.__deepcopy__()
if hasattr(x, '__getinitargs__'):
args = x.__getinitargs__()
_keep_alive(args, memo)
args = deepcopy(args, memo)
else:
args = ()
y = apply(x.__class__, args)
memo[id(x)] = y
if hasattr(x, '__getstate__'):
state = x.__getstate__()
_keep_alive(state, memo)
else:
state = x.__dict__
state = deepcopy(state, memo)
if hasattr(y, '__setstate__'):
y.__setstate__(state)
else:
for key in state.keys():
setattr(y, key, state[key])
return y
d[types.InstanceType] = _deepcopy_inst
del d
del types
def _test():
l = [None, 1, 2L, 3.14, 'xyzzy', (1, 2L), [3.14, 'abc'],
{'abc': 'ABC'}, (), [], {}]
l1 = copy(l)
print l1==l
l1 = map(copy, l)
print l1==l
l1 = deepcopy(l)
print l1==l
class C:
def __init__(self, arg=None):
self.a = 1
self.arg = arg
if __name__ == '__main__':
import sys
file = sys.argv[0]
else:
file = __file__
self.fp = open(file)
self.fp.close()
def __getstate__(self):
return {'a': self.a, 'arg': self.arg}
def __setstate__(self, state):
for key in state.keys():
setattr(self, key, state[key])
def __deepcopy__(self, memo = None):
new = self.__class__(deepcopy(self.arg, memo))
new.a = self.a
return new
c = C('argument sketch')
l.append(c)
l2 = copy(l)
print l == l2
print l
print l2
l2 = deepcopy(l)
print l == l2
print l
print l2
l.append({l[1]: l, 'xyz': l[2]})
l3 = copy(l)
import repr
print map(repr.repr, l)
print map(repr.repr, l1)
print map(repr.repr, l2)
print map(repr.repr, l3)
l3 = deepcopy(l)
import repr
print map(repr.repr, l)
print map(repr.repr, l1)
print map(repr.repr, l2)
print map(repr.repr, l3)
if __name__ == '__main__':
_test()
|