summaryrefslogtreecommitdiff
path: root/Doc/library/enum.rst
blob: cf9942dbb51e6ecd4c83dcf22b97c87ccbec6348 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
:mod:`enum` --- Support for enumerations
========================================

.. module:: enum
   :synopsis: Implementation of an enumeration class.

.. moduleauthor:: Ethan Furman <ethan@stoneleaf.us>
.. sectionauthor:: Barry Warsaw <barry@python.org>
.. sectionauthor:: Eli Bendersky <eliben@gmail.com>
.. sectionauthor:: Ethan Furman <ethan@stoneleaf.us>

.. versionadded:: 3.4

**Source code:** :source:`Lib/enum.py`

----------------

An enumeration is a set of symbolic names (members) bound to unique,
constant values.  Within an enumeration, the members can be compared
by identity, and the enumeration itself can be iterated over.


Module Contents
---------------

This module defines four enumeration classes that can be used to define unique
sets of names and values: :class:`Enum`, :class:`IntEnum`, :class:`Flag`, and
:class:`IntFlag`.  It also defines one decorator, :func:`unique`, and one
helper, :class:`auto`.

.. class:: Enum

    Base class for creating enumerated constants.  See section
    `Functional API`_ for an alternate construction syntax.

.. class:: IntEnum

    Base class for creating enumerated constants that are also
    subclasses of :class:`int`.

.. class:: IntFlag

    Base class for creating enumerated constants that can be combined using
    the bitwise operators without losing their :class:`IntFlag` membership.
    :class:`IntFlag` members are also subclasses of :class:`int`.

.. class:: Flag

    Base class for creating enumerated constants that can be combined using
    the bitwise operations without losing their :class:`Flag` membership.

.. function:: unique

    Enum class decorator that ensures only one name is bound to any one value.

.. class:: auto

    Instances are replaced with an appropriate value for Enum members.  By default, the initial value starts at 1.

.. versionadded:: 3.6  ``Flag``, ``IntFlag``, ``auto``


Creating an Enum
----------------

Enumerations are created using the :keyword:`class` syntax, which makes them
easy to read and write.  An alternative creation method is described in
`Functional API`_.  To define an enumeration, subclass :class:`Enum` as
follows::

    >>> from enum import Enum
    >>> class Color(Enum):
    ...     RED = 1
    ...     GREEN = 2
    ...     BLUE = 3
    ...

.. note:: Enum member values

    Member values can be anything: :class:`int`, :class:`str`, etc..  If
    the exact value is unimportant you may use :class:`auto` instances and an
    appropriate value will be chosen for you.  Care must be taken if you mix
    :class:`auto` with other values.

.. note:: Nomenclature

  - The class :class:`Color` is an *enumeration* (or *enum*)
  - The attributes :attr:`Color.RED`, :attr:`Color.GREEN`, etc., are
    *enumeration members* (or *enum members*) and are functionally constants.
  - The enum members have *names* and *values* (the name of
    :attr:`Color.RED` is ``RED``, the value of :attr:`Color.BLUE` is
    ``3``, etc.)

.. note::

    Even though we use the :keyword:`class` syntax to create Enums, Enums
    are not normal Python classes.  See `How are Enums different?`_ for
    more details.

Enumeration members have human readable string representations::

    >>> print(Color.RED)
    Color.RED

...while their ``repr`` has more information::

    >>> print(repr(Color.RED))
    <Color.RED: 1>

The *type* of an enumeration member is the enumeration it belongs to::

    >>> type(Color.RED)
    <enum 'Color'>
    >>> isinstance(Color.GREEN, Color)
    True
    >>>

Enum members also have a property that contains just their item name::

    >>> print(Color.RED.name)
    RED

Enumerations support iteration, in definition order::

    >>> class Shake(Enum):
    ...     VANILLA = 7
    ...     CHOCOLATE = 4
    ...     COOKIES = 9
    ...     MINT = 3
    ...
    >>> for shake in Shake:
    ...     print(shake)
    ...
    Shake.VANILLA
    Shake.CHOCOLATE
    Shake.COOKIES
    Shake.MINT

Enumeration members are hashable, so they can be used in dictionaries and sets::

    >>> apples = {}
    >>> apples[Color.RED] = 'red delicious'
    >>> apples[Color.GREEN] = 'granny smith'
    >>> apples == {Color.RED: 'red delicious', Color.GREEN: 'granny smith'}
    True


Programmatic access to enumeration members and their attributes
---------------------------------------------------------------

Sometimes it's useful to access members in enumerations programmatically (i.e.
situations where ``Color.RED`` won't do because the exact color is not known
at program-writing time).  ``Enum`` allows such access::

    >>> Color(1)
    <Color.RED: 1>
    >>> Color(3)
    <Color.BLUE: 3>

If you want to access enum members by *name*, use item access::

    >>> Color['RED']
    <Color.RED: 1>
    >>> Color['GREEN']
    <Color.GREEN: 2>

If you have an enum member and need its :attr:`name` or :attr:`value`::

    >>> member = Color.RED
    >>> member.name
    'RED'
    >>> member.value
    1


Duplicating enum members and values
-----------------------------------

Having two enum members with the same name is invalid::

    >>> class Shape(Enum):
    ...     SQUARE = 2
    ...     SQUARE = 3
    ...
    Traceback (most recent call last):
    ...
    TypeError: Attempted to reuse key: 'SQUARE'

However, two enum members are allowed to have the same value.  Given two members
A and B with the same value (and A defined first), B is an alias to A.  By-value
lookup of the value of A and B will return A.  By-name lookup of B will also
return A::

    >>> class Shape(Enum):
    ...     SQUARE = 2
    ...     DIAMOND = 1
    ...     CIRCLE = 3
    ...     ALIAS_FOR_SQUARE = 2
    ...
    >>> Shape.SQUARE
    <Shape.SQUARE: 2>
    >>> Shape.ALIAS_FOR_SQUARE
    <Shape.SQUARE: 2>
    >>> Shape(2)
    <Shape.SQUARE: 2>

.. note::

    Attempting to create a member with the same name as an already
    defined attribute (another member, a method, etc.) or attempting to create
    an attribute with the same name as a member is not allowed.


Ensuring unique enumeration values
----------------------------------

By default, enumerations allow multiple names as aliases for the same value.
When this behavior isn't desired, the following decorator can be used to
ensure each value is used only once in the enumeration:

.. decorator:: unique

A :keyword:`class` decorator specifically for enumerations.  It searches an
enumeration's :attr:`__members__` gathering any aliases it finds; if any are
found :exc:`ValueError` is raised with the details::

    >>> from enum import Enum, unique
    >>> @unique
    ... class Mistake(Enum):
    ...     ONE = 1
    ...     TWO = 2
    ...     THREE = 3
    ...     FOUR = 3
    ...
    Traceback (most recent call last):
    ...
    ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE


Using automatic values
----------------------

If the exact value is unimportant you can use :class:`auto`::

    >>> from enum import Enum, auto
    >>> class Color(Enum):
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...
    >>> list(Color)
    [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

The values are chosen by :func:`_generate_next_value_`, which can be
overridden::

    >>> class AutoName(Enum):
    ...     def _generate_next_value_(name, start, count, last_values):
    ...         return name
    ...
    >>> class Ordinal(AutoName):
    ...     NORTH = auto()
    ...     SOUTH = auto()
    ...     EAST = auto()
    ...     WEST = auto()
    ...
    >>> list(Ordinal)
    [<Ordinal.NORTH: 'NORTH'>, <Ordinal.SOUTH: 'SOUTH'>, <Ordinal.EAST: 'EAST'>, <Ordinal.WEST: 'WEST'>]

.. note::

    The goal of the default :meth:`_generate_next_value_` methods is to provide
    the next :class:`int` in sequence with the last :class:`int` provided, but
    the way it does this is an implementation detail and may change.

Iteration
---------

Iterating over the members of an enum does not provide the aliases::

    >>> list(Shape)
    [<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>]

The special attribute ``__members__`` is an ordered dictionary mapping names
to members.  It includes all names defined in the enumeration, including the
aliases::

    >>> for name, member in Shape.__members__.items():
    ...     name, member
    ...
    ('SQUARE', <Shape.SQUARE: 2>)
    ('DIAMOND', <Shape.DIAMOND: 1>)
    ('CIRCLE', <Shape.CIRCLE: 3>)
    ('ALIAS_FOR_SQUARE', <Shape.SQUARE: 2>)

The ``__members__`` attribute can be used for detailed programmatic access to
the enumeration members.  For example, finding all the aliases::

    >>> [name for name, member in Shape.__members__.items() if member.name != name]
    ['ALIAS_FOR_SQUARE']


Comparisons
-----------

Enumeration members are compared by identity::

    >>> Color.RED is Color.RED
    True
    >>> Color.RED is Color.BLUE
    False
    >>> Color.RED is not Color.BLUE
    True

Ordered comparisons between enumeration values are *not* supported.  Enum
members are not integers (but see `IntEnum`_ below)::

    >>> Color.RED < Color.BLUE
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: '<' not supported between instances of 'Color' and 'Color'

Equality comparisons are defined though::

    >>> Color.BLUE == Color.RED
    False
    >>> Color.BLUE != Color.RED
    True
    >>> Color.BLUE == Color.BLUE
    True

Comparisons against non-enumeration values will always compare not equal
(again, :class:`IntEnum` was explicitly designed to behave differently, see
below)::

    >>> Color.BLUE == 2
    False


Allowed members and attributes of enumerations
----------------------------------------------

The examples above use integers for enumeration values.  Using integers is
short and handy (and provided by default by the `Functional API`_), but not
strictly enforced.  In the vast majority of use-cases, one doesn't care what
the actual value of an enumeration is.  But if the value *is* important,
enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as
usual.  If we have this enumeration::

    >>> class Mood(Enum):
    ...     FUNKY = 1
    ...     HAPPY = 3
    ...
    ...     def describe(self):
    ...         # self is the member here
    ...         return self.name, self.value
    ...
    ...     def __str__(self):
    ...         return 'my custom str! {0}'.format(self.value)
    ...
    ...     @classmethod
    ...     def favorite_mood(cls):
    ...         # cls here is the enumeration
    ...         return cls.HAPPY
    ...

Then::

    >>> Mood.favorite_mood()
    <Mood.HAPPY: 3>
    >>> Mood.HAPPY.describe()
    ('HAPPY', 3)
    >>> str(Mood.FUNKY)
    'my custom str! 1'

The rules for what is allowed are as follows: names that start and end with
a single underscore are reserved by enum and cannot be used; all other
attributes defined within an enumeration will become members of this
enumeration, with the exception of special methods (:meth:`__str__`,
:meth:`__add__`, etc.), descriptors (methods are also descriptors), and
variable names listed in :attr:`_ignore_`.

Note:  if your enumeration defines :meth:`__new__` and/or :meth:`__init__` then
whatever value(s) were given to the enum member will be passed into those
methods.  See `Planet`_ for an example.


Restricted Enum subclassing
---------------------------

A new :class:`Enum` class must have one base Enum class, up to one concrete
data type, and as many :class:`object`-based mixin classes as needed.  The
order of these base classes is::

    class EnumName([mix-in, ...,] [data-type,] base-enum):
        pass

Also, subclassing an enumeration is allowed only if the enumeration does not define
any members.  So this is forbidden::

    >>> class MoreColor(Color):
    ...     PINK = 17
    ...
    Traceback (most recent call last):
    ...
    TypeError: Cannot extend enumerations

But this is allowed::

    >>> class Foo(Enum):
    ...     def some_behavior(self):
    ...         pass
    ...
    >>> class Bar(Foo):
    ...     HAPPY = 1
    ...     SAD = 2
    ...

Allowing subclassing of enums that define members would lead to a violation of
some important invariants of types and instances.  On the other hand, it makes
sense to allow sharing some common behavior between a group of enumerations.
(See `OrderedEnum`_ for an example.)


Pickling
--------

Enumerations can be pickled and unpickled::

    >>> from test.test_enum import Fruit
    >>> from pickle import dumps, loads
    >>> Fruit.TOMATO is loads(dumps(Fruit.TOMATO))
    True

The usual restrictions for pickling apply: picklable enums must be defined in
the top level of a module, since unpickling requires them to be importable
from that module.

.. note::

    With pickle protocol version 4 it is possible to easily pickle enums
    nested in other classes.

It is possible to modify how Enum members are pickled/unpickled by defining
:meth:`__reduce_ex__` in the enumeration class.


Functional API
--------------

The :class:`Enum` class is callable, providing the following functional API::

    >>> Animal = Enum('Animal', 'ANT BEE CAT DOG')
    >>> Animal
    <enum 'Animal'>
    >>> Animal.ANT
    <Animal.ANT: 1>
    >>> Animal.ANT.value
    1
    >>> list(Animal)
    [<Animal.ANT: 1>, <Animal.BEE: 2>, <Animal.CAT: 3>, <Animal.DOG: 4>]

The semantics of this API resemble :class:`~collections.namedtuple`. The first
argument of the call to :class:`Enum` is the name of the enumeration.

The second argument is the *source* of enumeration member names.  It can be a
whitespace-separated string of names, a sequence of names, a sequence of
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
values.  The last two options enable assigning arbitrary values to
enumerations; the others auto-assign increasing integers starting with 1 (use
the ``start`` parameter to specify a different starting value).  A
new class derived from :class:`Enum` is returned.  In other words, the above
assignment to :class:`Animal` is equivalent to::

    >>> class Animal(Enum):
    ...     ANT = 1
    ...     BEE = 2
    ...     CAT = 3
    ...     DOG = 4
    ...

The reason for defaulting to ``1`` as the starting number and not ``0`` is
that ``0`` is ``False`` in a boolean sense, but enum members all evaluate
to ``True``.

Pickling enums created with the functional API can be tricky as frame stack
implementation details are used to try and figure out which module the
enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython).
The solution is to specify the module name explicitly as follows::

    >>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__name__)

.. warning::

    If ``module`` is not supplied, and Enum cannot determine what it is,
    the new Enum members will not be unpicklable; to keep errors closer to
    the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on
:attr:`~definition.__qualname__` being set to the location where pickle will be able
to find the class.  For example, if the class was made available in class
SomeData in the global scope::

    >>> Animal = Enum('Animal', 'ANT BEE CAT DOG', qualname='SomeData.Animal')

The complete signature is::

    Enum(value='NewEnumName', names=<...>, *, module='...', qualname='...', type=<mixed-in class>, start=1)

:value: What the new Enum class will record as its name.

:names: The Enum members.  This can be a whitespace or comma separated string
  (values will start at 1 unless otherwise specified)::

    'RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE'

  or an iterator of names::

    ['RED', 'GREEN', 'BLUE']

  or an iterator of (name, value) pairs::

    [('CYAN', 4), ('MAGENTA', 5), ('YELLOW', 6)]

  or a mapping::

    {'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42}

:module: name of module where new Enum class can be found.

:qualname: where in module new Enum class can be found.

:type: type to mix in to new Enum class.

:start: number to start counting at if only names are passed in.

.. versionchanged:: 3.5
   The *start* parameter was added.


Derived Enumerations
--------------------

IntEnum
^^^^^^^

The first variation of :class:`Enum` that is provided is also a subclass of
:class:`int`.  Members of an :class:`IntEnum` can be compared to integers;
by extension, integer enumerations of different types can also be compared
to each other::

    >>> from enum import IntEnum
    >>> class Shape(IntEnum):
    ...     CIRCLE = 1
    ...     SQUARE = 2
    ...
    >>> class Request(IntEnum):
    ...     POST = 1
    ...     GET = 2
    ...
    >>> Shape == 1
    False
    >>> Shape.CIRCLE == 1
    True
    >>> Shape.CIRCLE == Request.POST
    True

However, they still can't be compared to standard :class:`Enum` enumerations::

    >>> class Shape(IntEnum):
    ...     CIRCLE = 1
    ...     SQUARE = 2
    ...
    >>> class Color(Enum):
    ...     RED = 1
    ...     GREEN = 2
    ...
    >>> Shape.CIRCLE == Color.RED
    False

:class:`IntEnum` values behave like integers in other ways you'd expect::

    >>> int(Shape.CIRCLE)
    1
    >>> ['a', 'b', 'c'][Shape.CIRCLE]
    'b'
    >>> [i for i in range(Shape.SQUARE)]
    [0, 1]


IntFlag
^^^^^^^

The next variation of :class:`Enum` provided, :class:`IntFlag`, is also based
on :class:`int`.  The difference being :class:`IntFlag` members can be combined
using the bitwise operators (&, \|, ^, ~) and the result is still an
:class:`IntFlag` member.  However, as the name implies, :class:`IntFlag`
members also subclass :class:`int` and can be used wherever an :class:`int` is
used.  Any operation on an :class:`IntFlag` member besides the bit-wise
operations will lose the :class:`IntFlag` membership.

.. versionadded:: 3.6

Sample :class:`IntFlag` class::

    >>> from enum import IntFlag
    >>> class Perm(IntFlag):
    ...     R = 4
    ...     W = 2
    ...     X = 1
    ...
    >>> Perm.R | Perm.W
    <Perm.R|W: 6>
    >>> Perm.R + Perm.W
    6
    >>> RW = Perm.R | Perm.W
    >>> Perm.R in RW
    True

It is also possible to name the combinations::

    >>> class Perm(IntFlag):
    ...     R = 4
    ...     W = 2
    ...     X = 1
    ...     RWX = 7
    >>> Perm.RWX
    <Perm.RWX: 7>
    >>> ~Perm.RWX
    <Perm.-8: -8>

Another important difference between :class:`IntFlag` and :class:`Enum` is that
if no flags are set (the value is 0), its boolean evaluation is :data:`False`::

    >>> Perm.R & Perm.X
    <Perm.0: 0>
    >>> bool(Perm.R & Perm.X)
    False

Because :class:`IntFlag` members are also subclasses of :class:`int` they can
be combined with them::

    >>> Perm.X | 8
    <Perm.8|X: 9>


Flag
^^^^

The last variation is :class:`Flag`.  Like :class:`IntFlag`, :class:`Flag`
members can be combined using the bitwise operators (&, \|, ^, ~).  Unlike
:class:`IntFlag`, they cannot be combined with, nor compared against, any
other :class:`Flag` enumeration, nor :class:`int`.  While it is possible to
specify the values directly it is recommended to use :class:`auto` as the
value and let :class:`Flag` select an appropriate value.

.. versionadded:: 3.6

Like :class:`IntFlag`, if a combination of :class:`Flag` members results in no
flags being set, the boolean evaluation is :data:`False`::

    >>> from enum import Flag, auto
    >>> class Color(Flag):
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...
    >>> Color.RED & Color.GREEN
    <Color.0: 0>
    >>> bool(Color.RED & Color.GREEN)
    False

Individual flags should have values that are powers of two (1, 2, 4, 8, ...),
while combinations of flags won't::

    >>> class Color(Flag):
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...     WHITE = RED | BLUE | GREEN
    ...
    >>> Color.WHITE
    <Color.WHITE: 7>

Giving a name to the "no flags set" condition does not change its boolean
value::

    >>> class Color(Flag):
    ...     BLACK = 0
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...
    >>> Color.BLACK
    <Color.BLACK: 0>
    >>> bool(Color.BLACK)
    False

.. note::

    For the majority of new code, :class:`Enum` and :class:`Flag` are strongly
    recommended, since :class:`IntEnum` and :class:`IntFlag` break some
    semantic promises of an enumeration (by being comparable to integers, and
    thus by transitivity to other unrelated enumerations).  :class:`IntEnum`
    and :class:`IntFlag` should be used only in cases where :class:`Enum` and
    :class:`Flag` will not do; for example, when integer constants are replaced
    with enumerations, or for interoperability with other systems.


Others
^^^^^^

While :class:`IntEnum` is part of the :mod:`enum` module, it would be very
simple to implement independently::

    class IntEnum(int, Enum):
        pass

This demonstrates how similar derived enumerations can be defined; for example
a :class:`StrEnum` that mixes in :class:`str` instead of :class:`int`.

Some rules:

1. When subclassing :class:`Enum`, mix-in types must appear before
   :class:`Enum` itself in the sequence of bases, as in the :class:`IntEnum`
   example above.
2. While :class:`Enum` can have members of any type, once you mix in an
   additional type, all the members must have values of that type, e.g.
   :class:`int` above.  This restriction does not apply to mix-ins which only
   add methods and don't specify another data type such as :class:`int` or
   :class:`str`.
3. When another data type is mixed in, the :attr:`value` attribute is *not the
   same* as the enum member itself, although it is equivalent and will compare
   equal.
4. %-style formatting:  `%s` and `%r` call the :class:`Enum` class's
   :meth:`__str__` and :meth:`__repr__` respectively; other codes (such as
   `%i` or `%h` for IntEnum) treat the enum member as its mixed-in type.
5. :ref:`Formatted string literals <f-strings>`, :meth:`str.format`,
   and :func:`format` will use the mixed-in
   type's :meth:`__format__`.  If the :class:`Enum` class's :func:`str` or
   :func:`repr` is desired, use the `!s` or `!r` format codes.


Interesting examples
--------------------

While :class:`Enum`, :class:`IntEnum`, :class:`IntFlag`, and :class:`Flag` are
expected to cover the majority of use-cases, they cannot cover them all.  Here
are recipes for some different types of enumerations that can be used directly,
or as examples for creating one's own.


Omitting values
^^^^^^^^^^^^^^^

In many use-cases one doesn't care what the actual value of an enumeration
is. There are several ways to define this type of simple enumeration:

- use instances of :class:`auto` for the value
- use instances of :class:`object` as the value
- use a descriptive string as the value
- use a tuple as the value and a custom :meth:`__new__` to replace the
  tuple with an :class:`int` value

Using any of these methods signifies to the user that these values are not
important, and also enables one to add, remove, or reorder members without
having to renumber the remaining members.

Whichever method you choose, you should provide a :meth:`repr` that also hides
the (unimportant) value::

    >>> class NoValue(Enum):
    ...     def __repr__(self):
    ...         return '<%s.%s>' % (self.__class__.__name__, self.name)
    ...


Using :class:`auto`
"""""""""""""""""""

Using :class:`auto` would look like::

    >>> class Color(NoValue):
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...
    >>> Color.GREEN
    <Color.GREEN>


Using :class:`object`
"""""""""""""""""""""

Using :class:`object` would look like::

    >>> class Color(NoValue):
    ...     RED = object()
    ...     GREEN = object()
    ...     BLUE = object()
    ...
    >>> Color.GREEN
    <Color.GREEN>


Using a descriptive string
""""""""""""""""""""""""""

Using a string as the value would look like::

    >>> class Color(NoValue):
    ...     RED = 'stop'
    ...     GREEN = 'go'
    ...     BLUE = 'too fast!'
    ...
    >>> Color.GREEN
    <Color.GREEN>
    >>> Color.GREEN.value
    'go'


Using a custom :meth:`__new__`
""""""""""""""""""""""""""""""

Using an auto-numbering :meth:`__new__` would look like::

    >>> class AutoNumber(NoValue):
    ...     def __new__(cls):
    ...         value = len(cls.__members__) + 1
    ...         obj = object.__new__(cls)
    ...         obj._value_ = value
    ...         return obj
    ...
    >>> class Color(AutoNumber):
    ...     RED = ()
    ...     GREEN = ()
    ...     BLUE = ()
    ...
    >>> Color.GREEN
    <Color.GREEN>
    >>> Color.GREEN.value
    2


.. note::

    The :meth:`__new__` method, if defined, is used during creation of the Enum
    members; it is then replaced by Enum's :meth:`__new__` which is used after
    class creation for lookup of existing members.


OrderedEnum
^^^^^^^^^^^

An ordered enumeration that is not based on :class:`IntEnum` and so maintains
the normal :class:`Enum` invariants (such as not being comparable to other
enumerations)::

    >>> class OrderedEnum(Enum):
    ...     def __ge__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value >= other.value
    ...         return NotImplemented
    ...     def __gt__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value > other.value
    ...         return NotImplemented
    ...     def __le__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value <= other.value
    ...         return NotImplemented
    ...     def __lt__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value < other.value
    ...         return NotImplemented
    ...
    >>> class Grade(OrderedEnum):
    ...     A = 5
    ...     B = 4
    ...     C = 3
    ...     D = 2
    ...     F = 1
    ...
    >>> Grade.C < Grade.A
    True


DuplicateFreeEnum
^^^^^^^^^^^^^^^^^

Raises an error if a duplicate member name is found instead of creating an
alias::

    >>> class DuplicateFreeEnum(Enum):
    ...     def __init__(self, *args):
    ...         cls = self.__class__
    ...         if any(self.value == e.value for e in cls):
    ...             a = self.name
    ...             e = cls(self.value).name
    ...             raise ValueError(
    ...                 "aliases not allowed in DuplicateFreeEnum:  %r --> %r"
    ...                 % (a, e))
    ...
    >>> class Color(DuplicateFreeEnum):
    ...     RED = 1
    ...     GREEN = 2
    ...     BLUE = 3
    ...     GRENE = 2
    ...
    Traceback (most recent call last):
    ...
    ValueError: aliases not allowed in DuplicateFreeEnum:  'GRENE' --> 'GREEN'

.. note::

    This is a useful example for subclassing Enum to add or change other
    behaviors as well as disallowing aliases.  If the only desired change is
    disallowing aliases, the :func:`unique` decorator can be used instead.


Planet
^^^^^^

If :meth:`__new__` or :meth:`__init__` is defined the value of the enum member
will be passed to those methods::

    >>> class Planet(Enum):
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     VENUS   = (4.869e+24, 6.0518e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...     MARS    = (6.421e+23, 3.3972e6)
    ...     JUPITER = (1.9e+27,   7.1492e7)
    ...     SATURN  = (5.688e+26, 6.0268e7)
    ...     URANUS  = (8.686e+25, 2.5559e7)
    ...     NEPTUNE = (1.024e+26, 2.4746e7)
    ...     def __init__(self, mass, radius):
    ...         self.mass = mass       # in kilograms
    ...         self.radius = radius   # in meters
    ...     @property
    ...     def surface_gravity(self):
    ...         # universal gravitational constant  (m3 kg-1 s-2)
    ...         G = 6.67300E-11
    ...         return G * self.mass / (self.radius * self.radius)
    ...
    >>> Planet.EARTH.value
    (5.976e+24, 6378140.0)
    >>> Planet.EARTH.surface_gravity
    9.802652743337129


TimePeriod
^^^^^^^^^^

An example to show the :attr:`_ignore_` attribute in use::

    >>> from datetime import timedelta
    >>> class Period(timedelta, Enum):
    ...     "different lengths of time"
    ...     _ignore_ = 'Period i'
    ...     Period = vars()
    ...     for i in range(367):
    ...         Period['day_%d' % i] = i
    ...
    >>> list(Period)[:2]
    [<Period.day_0: datetime.timedelta(0)>, <Period.day_1: datetime.timedelta(days=1)>]
    >>> list(Period)[-2:]
    [<Period.day_365: datetime.timedelta(days=365)>, <Period.day_366: datetime.timedelta(days=366)>]


How are Enums different?
------------------------

Enums have a custom metaclass that affects many aspects of both derived Enum
classes and their instances (members).


Enum Classes
^^^^^^^^^^^^

The :class:`EnumMeta` metaclass is responsible for providing the
:meth:`__contains__`, :meth:`__dir__`, :meth:`__iter__` and other methods that
allow one to do things with an :class:`Enum` class that fail on a typical
class, such as `list(Color)` or `some_enum_var in Color`.  :class:`EnumMeta` is
responsible for ensuring that various other methods on the final :class:`Enum`
class are correct (such as :meth:`__new__`, :meth:`__getnewargs__`,
:meth:`__str__` and :meth:`__repr__`).


Enum Members (aka instances)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The most interesting thing about Enum members is that they are singletons.
:class:`EnumMeta` creates them all while it is creating the :class:`Enum`
class itself, and then puts a custom :meth:`__new__` in place to ensure
that no new ones are ever instantiated by returning only the existing
member instances.


Finer Points
^^^^^^^^^^^^

Supported ``__dunder__`` names
""""""""""""""""""""""""""""""

:attr:`__members__` is an :class:`OrderedDict` of ``member_name``:``member``
items.  It is only available on the class.

:meth:`__new__`, if specified, must create and return the enum members; it is
also a very good idea to set the member's :attr:`_value_` appropriately.  Once
all the members are created it is no longer used.


Supported ``_sunder_`` names
""""""""""""""""""""""""""""

- ``_name_`` -- name of the member
- ``_value_`` -- value of the member; can be set / modified in ``__new__``

- ``_missing_`` -- a lookup function used when a value is not found; may be
  overridden
- ``_ignore_`` -- a list of names, either as a :func:`list` or a :func:`str`,
  that will not be transformed into members, and will be removed from the final
  class
- ``_order_`` -- used in Python 2/3 code to ensure member order is consistent
  (class attribute, removed during class creation)
- ``_generate_next_value_`` -- used by the `Functional API`_ and by
  :class:`auto` to get an appropriate value for an enum member; may be
  overridden

.. versionadded:: 3.6 ``_missing_``, ``_order_``, ``_generate_next_value_``
.. versionadded:: 3.7 ``_ignore_``

To help keep Python 2 / Python 3 code in sync an :attr:`_order_` attribute can
be provided.  It will be checked against the actual order of the enumeration
and raise an error if the two do not match::

    >>> class Color(Enum):
    ...     _order_ = 'RED GREEN BLUE'
    ...     RED = 1
    ...     BLUE = 3
    ...     GREEN = 2
    ...
    Traceback (most recent call last):
    ...
    TypeError: member order does not match _order_

.. note::

    In Python 2 code the :attr:`_order_` attribute is necessary as definition
    order is lost before it can be recorded.

``Enum`` member type
""""""""""""""""""""

:class:`Enum` members are instances of their :class:`Enum` class, and are
normally accessed as ``EnumClass.member``.  Under certain circumstances they
can also be accessed as ``EnumClass.member.member``, but you should never do
this as that lookup may fail or, worse, return something besides the
:class:`Enum` member you are looking for (this is another good reason to use
all-uppercase names for members)::

    >>> class FieldTypes(Enum):
    ...     name = 0
    ...     value = 1
    ...     size = 2
    ...
    >>> FieldTypes.value.size
    <FieldTypes.size: 2>
    >>> FieldTypes.size.value
    2

.. versionchanged:: 3.5


Boolean value of ``Enum`` classes and members
"""""""""""""""""""""""""""""""""""""""""""""

:class:`Enum` members that are mixed with non-:class:`Enum` types (such as
:class:`int`, :class:`str`, etc.) are evaluated according to the mixed-in
type's rules; otherwise, all members evaluate as :data:`True`.  To make your
own Enum's boolean evaluation depend on the member's value add the following to
your class::

    def __bool__(self):
        return bool(self.value)

:class:`Enum` classes always evaluate as :data:`True`.


``Enum`` classes with methods
"""""""""""""""""""""""""""""

If you give your :class:`Enum` subclass extra methods, like the `Planet`_
class above, those methods will show up in a :func:`dir` of the member,
but not of the class::

    >>> dir(Planet)
    ['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '__class__', '__doc__', '__members__', '__module__']
    >>> dir(Planet.EARTH)
    ['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']


Combining members of ``Flag``
"""""""""""""""""""""""""""""

If a combination of Flag members is not named, the :func:`repr` will include
all named flags and all named combinations of flags that are in the value::

    >>> class Color(Flag):
    ...     RED = auto()
    ...     GREEN = auto()
    ...     BLUE = auto()
    ...     MAGENTA = RED | BLUE
    ...     YELLOW = RED | GREEN
    ...     CYAN = GREEN | BLUE
    ...
    >>> Color(3)  # named combination
    <Color.YELLOW: 3>
    >>> Color(7)      # not named combination
    <Color.CYAN|MAGENTA|BLUE|YELLOW|GREEN|RED: 7>