summaryrefslogtreecommitdiff
path: root/Modules/cmathmodule.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/cmathmodule.c')
-rw-r--r--Modules/cmathmodule.c1019
1 files changed, 886 insertions, 133 deletions
diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c
index ec48ce8d72..8e3c31eabb 100644
--- a/Modules/cmathmodule.c
+++ b/Modules/cmathmodule.c
@@ -3,31 +3,172 @@
/* much code borrowed from mathmodule.c */
#include "Python.h"
+/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
+ float.h. We assume that FLT_RADIX is either 2 or 16. */
+#include <float.h>
-#ifndef M_PI
-#define M_PI (3.141592653589793239)
+#if (FLT_RADIX != 2 && FLT_RADIX != 16)
+#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
#endif
-/* First, the C functions that do the real work */
+#ifndef M_LN2
+#define M_LN2 (0.6931471805599453094) /* natural log of 2 */
+#endif
+
+#ifndef M_LN10
+#define M_LN10 (2.302585092994045684) /* natural log of 10 */
+#endif
-/* constants */
-static Py_complex c_one = {1., 0.};
-static Py_complex c_half = {0.5, 0.};
-static Py_complex c_i = {0., 1.};
-static Py_complex c_halfi = {0., 0.5};
+/*
+ CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
+ inverse trig and inverse hyperbolic trig functions. Its log is used in the
+ evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
+ overflow.
+ */
+
+#define CM_LARGE_DOUBLE (DBL_MAX/4.)
+#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
+#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
+#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
+
+/*
+ CM_SCALE_UP is an odd integer chosen such that multiplication by
+ 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
+ CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
+ square roots accurately when the real and imaginary parts of the argument
+ are subnormal.
+*/
+
+#if FLT_RADIX==2
+#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
+#elif FLT_RADIX==16
+#define CM_SCALE_UP (4*DBL_MANT_DIG+1)
+#endif
+#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
/* forward declarations */
-static Py_complex c_log(Py_complex);
-static Py_complex c_prodi(Py_complex);
+static Py_complex c_asinh(Py_complex);
+static Py_complex c_atanh(Py_complex);
+static Py_complex c_cosh(Py_complex);
+static Py_complex c_sinh(Py_complex);
static Py_complex c_sqrt(Py_complex);
+static Py_complex c_tanh(Py_complex);
static PyObject * math_error(void);
+/* Code to deal with special values (infinities, NaNs, etc.). */
+
+/* special_type takes a double and returns an integer code indicating
+ the type of the double as follows:
+*/
+
+enum special_types {
+ ST_NINF, /* 0, negative infinity */
+ ST_NEG, /* 1, negative finite number (nonzero) */
+ ST_NZERO, /* 2, -0. */
+ ST_PZERO, /* 3, +0. */
+ ST_POS, /* 4, positive finite number (nonzero) */
+ ST_PINF, /* 5, positive infinity */
+ ST_NAN, /* 6, Not a Number */
+};
+
+static enum special_types
+special_type(double d)
+{
+ if (Py_IS_FINITE(d)) {
+ if (d != 0) {
+ if (copysign(1., d) == 1.)
+ return ST_POS;
+ else
+ return ST_NEG;
+ }
+ else {
+ if (copysign(1., d) == 1.)
+ return ST_PZERO;
+ else
+ return ST_NZERO;
+ }
+ }
+ if (Py_IS_NAN(d))
+ return ST_NAN;
+ if (copysign(1., d) == 1.)
+ return ST_PINF;
+ else
+ return ST_NINF;
+}
+
+#define SPECIAL_VALUE(z, table) \
+ if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
+ errno = 0; \
+ return table[special_type((z).real)] \
+ [special_type((z).imag)]; \
+ }
+
+#define P Py_MATH_PI
+#define P14 0.25*Py_MATH_PI
+#define P12 0.5*Py_MATH_PI
+#define P34 0.75*Py_MATH_PI
+#ifdef MS_WINDOWS
+/* On Windows HUGE_VAL is an extern variable and not a constant. Since the
+ special value arrays need a constant we have to roll our own infinity
+ and nan. */
+# define INF (DBL_MAX*DBL_MAX)
+# define N (INF*0.)
+#else
+# define INF Py_HUGE_VAL
+# define N Py_NAN
+#endif /* MS_WINDOWS */
+#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
+
+/* First, the C functions that do the real work. Each of the c_*
+ functions computes and returns the C99 Annex G recommended result
+ and also sets errno as follows: errno = 0 if no floating-point
+ exception is associated with the result; errno = EDOM if C99 Annex
+ G recommends raising divide-by-zero or invalid for this result; and
+ errno = ERANGE where the overflow floating-point signal should be
+ raised.
+*/
+
+static Py_complex acos_special_values[7][7] = {
+ {{P34,INF},{P,INF}, {P,INF}, {P,-INF}, {P,-INF}, {P34,-INF},{N,INF}},
+ {{P12,INF},{U,U}, {U,U}, {U,U}, {U,U}, {P12,-INF},{N,N}},
+ {{P12,INF},{U,U}, {P12,0.},{P12,-0.},{U,U}, {P12,-INF},{P12,N}},
+ {{P12,INF},{U,U}, {P12,0.},{P12,-0.},{U,U}, {P12,-INF},{P12,N}},
+ {{P12,INF},{U,U}, {U,U}, {U,U}, {U,U}, {P12,-INF},{N,N}},
+ {{P14,INF},{0.,INF},{0.,INF},{0.,-INF},{0.,-INF},{P14,-INF},{N,INF}},
+ {{N,INF}, {N,N}, {N,N}, {N,N}, {N,N}, {N,-INF}, {N,N}}
+};
static Py_complex
-c_acos(Py_complex x)
+c_acos(Py_complex z)
{
- return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
- c_sqrt(c_diff(c_one,c_prod(x,x))))))));
+ Py_complex s1, s2, r;
+
+ SPECIAL_VALUE(z, acos_special_values);
+
+ if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+ /* avoid unnecessary overflow for large arguments */
+ r.real = atan2(fabs(z.imag), z.real);
+ /* split into cases to make sure that the branch cut has the
+ correct continuity on systems with unsigned zeros */
+ if (z.real < 0.) {
+ r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., z.imag);
+ } else {
+ r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., -z.imag);
+ }
+ } else {
+ s1.real = 1.-z.real;
+ s1.imag = -z.imag;
+ s1 = c_sqrt(s1);
+ s2.real = 1.+z.real;
+ s2.imag = z.imag;
+ s2 = c_sqrt(s2);
+ r.real = 2.*atan2(s1.real, s2.real);
+ r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_acos_doc,
@@ -36,14 +177,39 @@ PyDoc_STRVAR(c_acos_doc,
"Return the arc cosine of x.");
+static Py_complex acosh_special_values[7][7] = {
+ {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34},{INF,N}},
+ {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12},{N,N}},
+ {{INF,-P12},{U,U}, {0.,-P12},{0.,P12},{U,U}, {INF,P12},{N,N}},
+ {{INF,-P12},{U,U}, {0.,-P12},{0.,P12},{U,U}, {INF,P12},{N,N}},
+ {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12},{N,N}},
+ {{INF,-P14},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,P14},{INF,N}},
+ {{INF,N}, {N,N}, {N,N}, {N,N}, {N,N}, {INF,N}, {N,N}}
+};
+
static Py_complex
-c_acosh(Py_complex x)
+c_acosh(Py_complex z)
{
- Py_complex z;
- z = c_sqrt(c_half);
- z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
- c_sqrt(c_diff(x,c_one)))));
- return c_sum(z, z);
+ Py_complex s1, s2, r;
+
+ SPECIAL_VALUE(z, acosh_special_values);
+
+ if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+ /* avoid unnecessary overflow for large arguments */
+ r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
+ r.imag = atan2(z.imag, z.real);
+ } else {
+ s1.real = z.real - 1.;
+ s1.imag = z.imag;
+ s1 = c_sqrt(s1);
+ s2.real = z.real + 1.;
+ s2.imag = z.imag;
+ s2 = c_sqrt(s2);
+ r.real = asinh(s1.real*s2.real + s1.imag*s2.imag);
+ r.imag = 2.*atan2(s1.imag, s2.real);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_acosh_doc,
@@ -53,14 +219,16 @@ PyDoc_STRVAR(c_acosh_doc,
static Py_complex
-c_asin(Py_complex x)
+c_asin(Py_complex z)
{
- /* -i * log[(sqrt(1-x**2) + i*x] */
- const Py_complex squared = c_prod(x, x);
- const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
- return c_neg(c_prodi(c_log(
- c_sum(sqrt_1_minus_x_sq, c_prodi(x))
- ) ) );
+ /* asin(z) = -i asinh(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_asinh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
+ return r;
}
PyDoc_STRVAR(c_asin_doc,
@@ -69,14 +237,44 @@ PyDoc_STRVAR(c_asin_doc,
"Return the arc sine of x.");
+static Py_complex asinh_special_values[7][7] = {
+ {{-INF,-P14},{-INF,-0.},{-INF,-0.},{-INF,0.},{-INF,0.},{-INF,P14},{-INF,N}},
+ {{-INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {-INF,P12},{N,N}},
+ {{-INF,-P12},{U,U}, {-0.,-0.}, {-0.,0.}, {U,U}, {-INF,P12},{N,N}},
+ {{INF,-P12}, {U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,P12}, {N,N}},
+ {{INF,-P12}, {U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}},
+ {{INF,-P14}, {INF,-0.}, {INF,-0.}, {INF,0.}, {INF,0.}, {INF,P14}, {INF,N}},
+ {{INF,N}, {N,N}, {N,-0.}, {N,0.}, {N,N}, {INF,N}, {N,N}}
+};
+
static Py_complex
-c_asinh(Py_complex x)
+c_asinh(Py_complex z)
{
- Py_complex z;
- z = c_sqrt(c_half);
- z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
- c_sqrt(c_diff(x, c_i)))));
- return c_sum(z, z);
+ Py_complex s1, s2, r;
+
+ SPECIAL_VALUE(z, asinh_special_values);
+
+ if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+ if (z.imag >= 0.) {
+ r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., z.real);
+ } else {
+ r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., -z.real);
+ }
+ r.imag = atan2(z.imag, fabs(z.real));
+ } else {
+ s1.real = 1.+z.imag;
+ s1.imag = -z.real;
+ s1 = c_sqrt(s1);
+ s2.real = 1.-z.imag;
+ s2.imag = z.real;
+ s2 = c_sqrt(s2);
+ r.real = asinh(s1.real*s2.imag-s2.real*s1.imag);
+ r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_asinh_doc,
@@ -86,9 +284,37 @@ PyDoc_STRVAR(c_asinh_doc,
static Py_complex
-c_atan(Py_complex x)
+c_atan(Py_complex z)
{
- return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
+ /* atan(z) = -i atanh(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_atanh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
+ return r;
+}
+
+/* Windows screws up atan2 for inf and nan */
+static double
+c_atan2(Py_complex z)
+{
+ if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
+ return Py_NAN;
+ if (Py_IS_INFINITY(z.imag)) {
+ if (Py_IS_INFINITY(z.real)) {
+ if (copysign(1., z.real) == 1.)
+ /* atan2(+-inf, +inf) == +-pi/4 */
+ return copysign(0.25*Py_MATH_PI, z.imag);
+ else
+ /* atan2(+-inf, -inf) == +-pi*3/4 */
+ return copysign(0.75*Py_MATH_PI, z.imag);
+ }
+ /* atan2(+-inf, x) == +-pi/2 for finite x */
+ return copysign(0.5*Py_MATH_PI, z.imag);
+ }
+ return atan2(z.imag, z.real);
}
PyDoc_STRVAR(c_atan_doc,
@@ -97,10 +323,61 @@ PyDoc_STRVAR(c_atan_doc,
"Return the arc tangent of x.");
+static Py_complex atanh_special_values[7][7] = {
+ {{-0.,-P12},{-0.,-P12},{-0.,-P12},{-0.,P12},{-0.,P12},{-0.,P12},{-0.,N}},
+ {{-0.,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {-0.,P12},{N,N}},
+ {{-0.,-P12},{U,U}, {-0.,-0.}, {-0.,0.}, {U,U}, {-0.,P12},{-0.,N}},
+ {{0.,-P12}, {U,U}, {0.,-0.}, {0.,0.}, {U,U}, {0.,P12}, {0.,N}},
+ {{0.,-P12}, {U,U}, {U,U}, {U,U}, {U,U}, {0.,P12}, {N,N}},
+ {{0.,-P12}, {0.,-P12}, {0.,-P12}, {0.,P12}, {0.,P12}, {0.,P12}, {0.,N}},
+ {{0.,-P12}, {N,N}, {N,N}, {N,N}, {N,N}, {0.,P12}, {N,N}}
+};
+
static Py_complex
-c_atanh(Py_complex x)
+c_atanh(Py_complex z)
{
- return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
+ Py_complex r;
+ double ay, h;
+
+ SPECIAL_VALUE(z, atanh_special_values);
+
+ /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
+ if (z.real < 0.) {
+ return c_neg(c_atanh(c_neg(z)));
+ }
+
+ ay = fabs(z.imag);
+ if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
+ /*
+ if abs(z) is large then we use the approximation
+ atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
+ of z.imag)
+ */
+ h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
+ r.real = z.real/4./h/h;
+ /* the two negations in the next line cancel each other out
+ except when working with unsigned zeros: they're there to
+ ensure that the branch cut has the correct continuity on
+ systems that don't support signed zeros */
+ r.imag = -copysign(Py_MATH_PI/2., -z.imag);
+ errno = 0;
+ } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
+ /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
+ if (ay == 0.) {
+ r.real = INF;
+ r.imag = z.imag;
+ errno = EDOM;
+ } else {
+ r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
+ r.imag = copysign(atan2(2., -ay)/2, z.imag);
+ errno = 0;
+ }
+ } else {
+ r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
+ r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
+ errno = 0;
+ }
+ return r;
}
PyDoc_STRVAR(c_atanh_doc,
@@ -110,11 +387,13 @@ PyDoc_STRVAR(c_atanh_doc,
static Py_complex
-c_cos(Py_complex x)
+c_cos(Py_complex z)
{
+ /* cos(z) = cosh(iz) */
Py_complex r;
- r.real = cos(x.real)*cosh(x.imag);
- r.imag = -sin(x.real)*sinh(x.imag);
+ r.real = -z.imag;
+ r.imag = z.real;
+ r = c_cosh(r);
return r;
}
@@ -124,12 +403,64 @@ PyDoc_STRVAR(c_cos_doc,
"Return the cosine of x.");
+/* cosh(infinity + i*y) needs to be dealt with specially */
+static Py_complex cosh_special_values[7][7] = {
+ {{INF,N},{U,U},{INF,0.}, {INF,-0.},{U,U},{INF,N},{INF,N}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{N,0.}, {U,U},{1.,0.}, {1.,-0.}, {U,U},{N,0.}, {N,0.}},
+ {{N,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,0.}, {N,0.}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}},
+ {{N,N}, {N,N},{N,0.}, {N,0.}, {N,N},{N,N}, {N,N}}
+};
+
static Py_complex
-c_cosh(Py_complex x)
+c_cosh(Py_complex z)
{
Py_complex r;
- r.real = cos(x.imag)*cosh(x.real);
- r.imag = sin(x.imag)*sinh(x.real);
+ double x_minus_one;
+
+ /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
+ (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ else {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = -copysign(INF, sin(z.imag));
+ }
+ }
+ else {
+ r = cosh_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if y is +/- infinity and x is not
+ a NaN */
+ if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+ /* deal correctly with cases where cosh(z.real) overflows but
+ cosh(z) does not. */
+ x_minus_one = z.real - copysign(1., z.real);
+ r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+ r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+ } else {
+ r.real = cos(z.imag) * cosh(z.real);
+ r.imag = sin(z.imag) * sinh(z.real);
+ }
+ /* detect overflow, and set errno accordingly */
+ if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+ errno = ERANGE;
+ else
+ errno = 0;
return r;
}
@@ -139,13 +470,65 @@ PyDoc_STRVAR(c_cosh_doc,
"Return the hyperbolic cosine of x.");
+/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
+ finite y */
+static Py_complex exp_special_values[7][7] = {
+ {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{N,N}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N}, {N,N}},
+ {{N,N}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N}, {N,N}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{INF,N},{U,U},{INF,-0.},{INF,0.},{U,U},{INF,N},{INF,N}},
+ {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}}
+};
+
static Py_complex
-c_exp(Py_complex x)
+c_exp(Py_complex z)
{
Py_complex r;
- double l = exp(x.real);
- r.real = l*cos(x.imag);
- r.imag = l*sin(x.imag);
+ double l;
+
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+ && (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ else {
+ r.real = copysign(0., cos(z.imag));
+ r.imag = copysign(0., sin(z.imag));
+ }
+ }
+ else {
+ r = exp_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if y is +/- infinity and x is not
+ a NaN and not -infinity */
+ if (Py_IS_INFINITY(z.imag) &&
+ (Py_IS_FINITE(z.real) ||
+ (Py_IS_INFINITY(z.real) && z.real > 0)))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ if (z.real > CM_LOG_LARGE_DOUBLE) {
+ l = exp(z.real-1.);
+ r.real = l*cos(z.imag)*Py_MATH_E;
+ r.imag = l*sin(z.imag)*Py_MATH_E;
+ } else {
+ l = exp(z.real);
+ r.real = l*cos(z.imag);
+ r.imag = l*sin(z.imag);
+ }
+ /* detect overflow, and set errno accordingly */
+ if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+ errno = ERANGE;
+ else
+ errno = 0;
return r;
}
@@ -155,24 +538,97 @@ PyDoc_STRVAR(c_exp_doc,
"Return the exponential value e**x.");
+static Py_complex log_special_values[7][7] = {
+ {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34}, {INF,N}},
+ {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}},
+ {{INF,-P12},{U,U}, {-INF,-P}, {-INF,P}, {U,U}, {INF,P12}, {N,N}},
+ {{INF,-P12},{U,U}, {-INF,-0.},{-INF,0.},{U,U}, {INF,P12}, {N,N}},
+ {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}},
+ {{INF,-P14},{INF,-0.},{INF,-0.}, {INF,0.}, {INF,0.},{INF,P14}, {INF,N}},
+ {{INF,N}, {N,N}, {N,N}, {N,N}, {N,N}, {INF,N}, {N,N}}
+};
+
static Py_complex
-c_log(Py_complex x)
+c_log(Py_complex z)
{
+ /*
+ The usual formula for the real part is log(hypot(z.real, z.imag)).
+ There are four situations where this formula is potentially
+ problematic:
+
+ (1) the absolute value of z is subnormal. Then hypot is subnormal,
+ so has fewer than the usual number of bits of accuracy, hence may
+ have large relative error. This then gives a large absolute error
+ in the log. This can be solved by rescaling z by a suitable power
+ of 2.
+
+ (2) the absolute value of z is greater than DBL_MAX (e.g. when both
+ z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
+ Again, rescaling solves this.
+
+ (3) the absolute value of z is close to 1. In this case it's
+ difficult to achieve good accuracy, at least in part because a
+ change of 1ulp in the real or imaginary part of z can result in a
+ change of billions of ulps in the correctly rounded answer.
+
+ (4) z = 0. The simplest thing to do here is to call the
+ floating-point log with an argument of 0, and let its behaviour
+ (returning -infinity, signaling a floating-point exception, setting
+ errno, or whatever) determine that of c_log. So the usual formula
+ is fine here.
+
+ */
+
Py_complex r;
- double l = hypot(x.real,x.imag);
- r.imag = atan2(x.imag, x.real);
- r.real = log(l);
+ double ax, ay, am, an, h;
+
+ SPECIAL_VALUE(z, log_special_values);
+
+ ax = fabs(z.real);
+ ay = fabs(z.imag);
+
+ if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
+ r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
+ } else if (ax < DBL_MIN && ay < DBL_MIN) {
+ if (ax > 0. || ay > 0.) {
+ /* catch cases where hypot(ax, ay) is subnormal */
+ r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
+ ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
+ }
+ else {
+ /* log(+/-0. +/- 0i) */
+ r.real = -INF;
+ r.imag = atan2(z.imag, z.real);
+ errno = EDOM;
+ return r;
+ }
+ } else {
+ h = hypot(ax, ay);
+ if (0.71 <= h && h <= 1.73) {
+ am = ax > ay ? ax : ay; /* max(ax, ay) */
+ an = ax > ay ? ay : ax; /* min(ax, ay) */
+ r.real = log1p((am-1)*(am+1)+an*an)/2.;
+ } else {
+ r.real = log(h);
+ }
+ }
+ r.imag = atan2(z.imag, z.real);
+ errno = 0;
return r;
}
static Py_complex
-c_log10(Py_complex x)
+c_log10(Py_complex z)
{
Py_complex r;
- double l = hypot(x.real,x.imag);
- r.imag = atan2(x.imag, x.real)/log(10.);
- r.real = log10(l);
+ int errno_save;
+
+ r = c_log(z);
+ errno_save = errno; /* just in case the divisions affect errno */
+ r.real = r.real / M_LN10;
+ r.imag = r.imag / M_LN10;
+ errno = errno_save;
return r;
}
@@ -182,23 +638,16 @@ PyDoc_STRVAR(c_log10_doc,
"Return the base-10 logarithm of x.");
-/* internal function not available from Python */
-static Py_complex
-c_prodi(Py_complex x)
-{
- Py_complex r;
- r.real = -x.imag;
- r.imag = x.real;
- return r;
-}
-
-
static Py_complex
-c_sin(Py_complex x)
+c_sin(Py_complex z)
{
- Py_complex r;
- r.real = sin(x.real) * cosh(x.imag);
- r.imag = cos(x.real) * sinh(x.imag);
+ /* sin(z) = -i sin(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_sinh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
return r;
}
@@ -208,12 +657,63 @@ PyDoc_STRVAR(c_sin_doc,
"Return the sine of x.");
+/* sinh(infinity + i*y) needs to be dealt with specially */
+static Py_complex sinh_special_values[7][7] = {
+ {{INF,N},{U,U},{-INF,-0.},{-INF,0.},{U,U},{INF,N},{INF,N}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{0.,N}, {U,U},{-0.,-0.}, {-0.,0.}, {U,U},{0.,N}, {0.,N}},
+ {{0.,N}, {U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,N}, {0.,N}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{INF,N},{U,U},{INF,-0.}, {INF,0.}, {U,U},{INF,N},{INF,N}},
+ {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}}
+};
+
static Py_complex
-c_sinh(Py_complex x)
+c_sinh(Py_complex z)
{
Py_complex r;
- r.real = cos(x.imag) * sinh(x.real);
- r.imag = sin(x.imag) * cosh(x.real);
+ double x_minus_one;
+
+ /* special treatment for sinh(+/-inf + iy) if y is finite and
+ nonzero */
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+ && (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ else {
+ r.real = -copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ }
+ else {
+ r = sinh_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if y is +/- infinity and x is not
+ a NaN */
+ if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+ x_minus_one = z.real - copysign(1., z.real);
+ r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+ r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+ } else {
+ r.real = cos(z.imag) * sinh(z.real);
+ r.imag = sin(z.imag) * cosh(z.real);
+ }
+ /* detect overflow, and set errno accordingly */
+ if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+ errno = ERANGE;
+ else
+ errno = 0;
return r;
}
@@ -223,29 +723,80 @@ PyDoc_STRVAR(c_sinh_doc,
"Return the hyperbolic sine of x.");
+static Py_complex sqrt_special_values[7][7] = {
+ {{INF,-INF},{0.,-INF},{0.,-INF},{0.,INF},{0.,INF},{INF,INF},{N,INF}},
+ {{INF,-INF},{U,U}, {U,U}, {U,U}, {U,U}, {INF,INF},{N,N}},
+ {{INF,-INF},{U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,INF},{N,N}},
+ {{INF,-INF},{U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,INF},{N,N}},
+ {{INF,-INF},{U,U}, {U,U}, {U,U}, {U,U}, {INF,INF},{N,N}},
+ {{INF,-INF},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,INF},{INF,N}},
+ {{INF,-INF},{N,N}, {N,N}, {N,N}, {N,N}, {INF,INF},{N,N}}
+};
+
static Py_complex
-c_sqrt(Py_complex x)
+c_sqrt(Py_complex z)
{
+ /*
+ Method: use symmetries to reduce to the case when x = z.real and y
+ = z.imag are nonnegative. Then the real part of the result is
+ given by
+
+ s = sqrt((x + hypot(x, y))/2)
+
+ and the imaginary part is
+
+ d = (y/2)/s
+
+ If either x or y is very large then there's a risk of overflow in
+ computation of the expression x + hypot(x, y). We can avoid this
+ by rewriting the formula for s as:
+
+ s = 2*sqrt(x/8 + hypot(x/8, y/8))
+
+ This costs us two extra multiplications/divisions, but avoids the
+ overhead of checking for x and y large.
+
+ If both x and y are subnormal then hypot(x, y) may also be
+ subnormal, so will lack full precision. We solve this by rescaling
+ x and y by a sufficiently large power of 2 to ensure that x and y
+ are normal.
+ */
+
+
Py_complex r;
double s,d;
- if (x.real == 0. && x.imag == 0.)
- r = x;
- else {
- s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
- d = 0.5*x.imag/s;
- if (x.real > 0.) {
- r.real = s;
- r.imag = d;
- }
- else if (x.imag >= 0.) {
- r.real = d;
- r.imag = s;
- }
- else {
- r.real = -d;
- r.imag = -s;
- }
+ double ax, ay;
+
+ SPECIAL_VALUE(z, sqrt_special_values);
+
+ if (z.real == 0. && z.imag == 0.) {
+ r.real = 0.;
+ r.imag = z.imag;
+ return r;
+ }
+
+ ax = fabs(z.real);
+ ay = fabs(z.imag);
+
+ if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
+ /* here we catch cases where hypot(ax, ay) is subnormal */
+ ax = ldexp(ax, CM_SCALE_UP);
+ s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
+ CM_SCALE_DOWN);
+ } else {
+ ax /= 8.;
+ s = 2.*sqrt(ax + hypot(ax, ay/8.));
+ }
+ d = ay/(2.*s);
+
+ if (z.real >= 0.) {
+ r.real = s;
+ r.imag = copysign(d, z.imag);
+ } else {
+ r.real = d;
+ r.imag = copysign(s, z.imag);
}
+ errno = 0;
return r;
}
@@ -256,23 +807,15 @@ PyDoc_STRVAR(c_sqrt_doc,
static Py_complex
-c_tan(Py_complex x)
+c_tan(Py_complex z)
{
- Py_complex r;
- double sr,cr,shi,chi;
- double rs,is,rc,ic;
- double d;
- sr = sin(x.real);
- cr = cos(x.real);
- shi = sinh(x.imag);
- chi = cosh(x.imag);
- rs = sr * chi;
- is = cr * shi;
- rc = cr * chi;
- ic = -sr * shi;
- d = rc*rc + ic * ic;
- r.real = (rs*rc + is*ic) / d;
- r.imag = (is*rc - rs*ic) / d;
+ /* tan(z) = -i tanh(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_tanh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
return r;
}
@@ -282,24 +825,78 @@ PyDoc_STRVAR(c_tan_doc,
"Return the tangent of x.");
+/* tanh(infinity + i*y) needs to be dealt with specially */
+static Py_complex tanh_special_values[7][7] = {
+ {{-1.,0.},{U,U},{-1.,-0.},{-1.,0.},{U,U},{-1.,0.},{-1.,0.}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{N,N}, {U,U},{-0.,-0.},{-0.,0.},{U,U},{N,N}, {N,N}},
+ {{N,N}, {U,U},{0.,-0.}, {0.,0.}, {U,U},{N,N}, {N,N}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{1.,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{1.,0.}, {1.,0.}},
+ {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}}
+};
+
static Py_complex
-c_tanh(Py_complex x)
+c_tanh(Py_complex z)
{
+ /* Formula:
+
+ tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
+ (1+tan(y)^2 tanh(x)^2)
+
+ To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
+ as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
+ by 4 exp(-2*x) instead, to avoid possible overflow in the
+ computation of cosh(x).
+
+ */
+
Py_complex r;
- double si,ci,shr,chr;
- double rs,is,rc,ic;
- double d;
- si = sin(x.imag);
- ci = cos(x.imag);
- shr = sinh(x.real);
- chr = cosh(x.real);
- rs = ci * shr;
- is = si * chr;
- rc = ci * chr;
- ic = si * shr;
- d = rc*rc + ic*ic;
- r.real = (rs*rc + is*ic) / d;
- r.imag = (is*rc - rs*ic) / d;
+ double tx, ty, cx, txty, denom;
+
+ /* special treatment for tanh(+/-inf + iy) if y is finite and
+ nonzero */
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+ && (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = 1.0;
+ r.imag = copysign(0.,
+ 2.*sin(z.imag)*cos(z.imag));
+ }
+ else {
+ r.real = -1.0;
+ r.imag = copysign(0.,
+ 2.*sin(z.imag)*cos(z.imag));
+ }
+ }
+ else {
+ r = tanh_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if z.imag is +/-infinity and
+ z.real is finite */
+ if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ /* danger of overflow in 2.*z.imag !*/
+ if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+ r.real = copysign(1., z.real);
+ r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
+ } else {
+ tx = tanh(z.real);
+ ty = tan(z.imag);
+ cx = 1./cosh(z.real);
+ txty = tx*ty;
+ denom = 1. + txty*txty;
+ r.real = tx*(1.+ty*ty)/denom;
+ r.imag = ((ty/denom)*cx)*cx;
+ }
+ errno = 0;
return r;
}
@@ -308,6 +905,7 @@ PyDoc_STRVAR(c_tanh_doc,
"\n"
"Return the hyperbolic tangent of x.");
+
static PyObject *
cmath_log(PyObject *self, PyObject *args)
{
@@ -325,7 +923,6 @@ cmath_log(PyObject *self, PyObject *args)
PyFPE_END_PROTECT(x)
if (errno != 0)
return math_error();
- Py_ADJUST_ERANGE2(x.real, x.imag);
return PyComplex_FromCComplex(x);
}
@@ -351,18 +948,24 @@ math_error(void)
static PyObject *
math_1(PyObject *args, Py_complex (*func)(Py_complex))
{
- Py_complex x;
+ Py_complex x,r ;
if (!PyArg_ParseTuple(args, "D", &x))
return NULL;
errno = 0;
- PyFPE_START_PROTECT("complex function", return 0)
- x = (*func)(x);
- PyFPE_END_PROTECT(x)
- Py_ADJUST_ERANGE2(x.real, x.imag);
- if (errno != 0)
- return math_error();
- else
- return PyComplex_FromCComplex(x);
+ PyFPE_START_PROTECT("complex function", return 0);
+ r = (*func)(x);
+ PyFPE_END_PROTECT(r);
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+ return NULL;
+ }
+ else if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError, "math range error");
+ return NULL;
+ }
+ else {
+ return PyComplex_FromCComplex(r);
+ }
}
#define FUNC1(stubname, func) \
@@ -386,6 +989,151 @@ FUNC1(cmath_sqrt, c_sqrt)
FUNC1(cmath_tan, c_tan)
FUNC1(cmath_tanh, c_tanh)
+static PyObject *
+cmath_phase(PyObject *self, PyObject *args)
+{
+ Py_complex z;
+ double phi;
+ if (!PyArg_ParseTuple(args, "D:phase", &z))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("arg function", return 0)
+ phi = c_atan2(z);
+ PyFPE_END_PROTECT(r)
+ if (errno != 0)
+ return math_error();
+ else
+ return PyFloat_FromDouble(phi);
+}
+
+PyDoc_STRVAR(cmath_phase_doc,
+"phase(z) -> float\n\n\
+Return argument, also known as the phase angle, of a complex.");
+
+static PyObject *
+cmath_polar(PyObject *self, PyObject *args)
+{
+ Py_complex z;
+ double r, phi;
+ if (!PyArg_ParseTuple(args, "D:polar", &z))
+ return NULL;
+ PyFPE_START_PROTECT("polar function", return 0)
+ phi = c_atan2(z); /* should not cause any exception */
+ r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
+ PyFPE_END_PROTECT(r)
+ if (errno != 0)
+ return math_error();
+ else
+ return Py_BuildValue("dd", r, phi);
+}
+
+PyDoc_STRVAR(cmath_polar_doc,
+"polar(z) -> r: float, phi: float\n\n\
+Convert a complex from rectangular coordinates to polar coordinates. r is\n\
+the distance from 0 and phi the phase angle.");
+
+/*
+ rect() isn't covered by the C99 standard, but it's not too hard to
+ figure out 'spirit of C99' rules for special value handing:
+
+ rect(x, t) should behave like exp(log(x) + it) for positive-signed x
+ rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
+ rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
+ gives nan +- i0 with the sign of the imaginary part unspecified.
+
+*/
+
+static Py_complex rect_special_values[7][7] = {
+ {{INF,N},{U,U},{-INF,0.},{-INF,-0.},{U,U},{INF,N},{INF,N}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{0.,0.},{U,U},{-0.,0.}, {-0.,-0.}, {U,U},{0.,0.},{0.,0.}},
+ {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}},
+ {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}},
+ {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}},
+ {{N,N}, {N,N},{N,0.}, {N,0.}, {N,N},{N,N}, {N,N}}
+};
+
+static PyObject *
+cmath_rect(PyObject *self, PyObject *args)
+{
+ Py_complex z;
+ double r, phi;
+ if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("rect function", return 0)
+
+ /* deal with special values */
+ if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
+ /* if r is +/-infinity and phi is finite but nonzero then
+ result is (+-INF +-INF i), but we need to compute cos(phi)
+ and sin(phi) to figure out the signs. */
+ if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
+ && (phi != 0.))) {
+ if (r > 0) {
+ z.real = copysign(INF, cos(phi));
+ z.imag = copysign(INF, sin(phi));
+ }
+ else {
+ z.real = -copysign(INF, cos(phi));
+ z.imag = -copysign(INF, sin(phi));
+ }
+ }
+ else {
+ z = rect_special_values[special_type(r)]
+ [special_type(phi)];
+ }
+ /* need to set errno = EDOM if r is a nonzero number and phi
+ is infinite */
+ if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
+ errno = EDOM;
+ else
+ errno = 0;
+ }
+ else {
+ z.real = r * cos(phi);
+ z.imag = r * sin(phi);
+ errno = 0;
+ }
+
+ PyFPE_END_PROTECT(z)
+ if (errno != 0)
+ return math_error();
+ else
+ return PyComplex_FromCComplex(z);
+}
+
+PyDoc_STRVAR(cmath_rect_doc,
+"rect(r, phi) -> z: complex\n\n\
+Convert from polar coordinates to rectangular coordinates.");
+
+static PyObject *
+cmath_isnan(PyObject *self, PyObject *args)
+{
+ Py_complex z;
+ if (!PyArg_ParseTuple(args, "D:isnan", &z))
+ return NULL;
+ return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
+}
+
+PyDoc_STRVAR(cmath_isnan_doc,
+"isnan(z) -> bool\n\
+Checks if the real or imaginary part of z not a number (NaN)");
+
+static PyObject *
+cmath_isinf(PyObject *self, PyObject *args)
+{
+ Py_complex z;
+ if (!PyArg_ParseTuple(args, "D:isnan", &z))
+ return NULL;
+ return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
+ Py_IS_INFINITY(z.imag));
+}
+
+PyDoc_STRVAR(cmath_isinf_doc,
+"isinf(z) -> bool\n\
+Checks if the real or imaginary part of z is infinite.");
+
PyDoc_STRVAR(module_doc,
"This module is always available. It provides access to mathematical\n"
@@ -401,8 +1149,13 @@ static PyMethodDef cmath_methods[] = {
{"cos", cmath_cos, METH_VARARGS, c_cos_doc},
{"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
{"exp", cmath_exp, METH_VARARGS, c_exp_doc},
+ {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
+ {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
{"log", cmath_log, METH_VARARGS, cmath_log_doc},
{"log10", cmath_log10, METH_VARARGS, c_log10_doc},
+ {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
+ {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
+ {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
{"sin", cmath_sin, METH_VARARGS, c_sin_doc},
{"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
{"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
@@ -421,6 +1174,6 @@ initcmath(void)
return;
PyModule_AddObject(m, "pi",
- PyFloat_FromDouble(atan(1.0) * 4.0));
- PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
+ PyFloat_FromDouble(Py_MATH_PI));
+ PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
}