summaryrefslogtreecommitdiff
path: root/Python/hamt.c
diff options
context:
space:
mode:
authorYury Selivanov <yury@magic.io>2018-01-22 19:11:18 -0500
committerGitHub <noreply@github.com>2018-01-22 19:11:18 -0500
commitf23746a934177c48eff754411aba54c31d6be2f0 (patch)
tree4b32964b53fa87701f71c71937792f2489b7bbb4 /Python/hamt.c
parent9089a265918754d95e105a7c4c409ac9352c87bb (diff)
downloadcpython-git-f23746a934177c48eff754411aba54c31d6be2f0.tar.gz
bpo-32436: Implement PEP 567 (#5027)
Diffstat (limited to 'Python/hamt.c')
-rw-r--r--Python/hamt.c2982
1 files changed, 2982 insertions, 0 deletions
diff --git a/Python/hamt.c b/Python/hamt.c
new file mode 100644
index 0000000000..8ba5082026
--- /dev/null
+++ b/Python/hamt.c
@@ -0,0 +1,2982 @@
+#include "Python.h"
+
+#include "structmember.h"
+#include "internal/pystate.h"
+#include "internal/hamt.h"
+
+/* popcnt support in Visual Studio */
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+
+/*
+This file provides an implemention of an immutable mapping using the
+Hash Array Mapped Trie (or HAMT) datastructure.
+
+This design allows to have:
+
+1. Efficient copy: immutable mappings can be copied by reference,
+ making it an O(1) operation.
+
+2. Efficient mutations: due to structural sharing, only a portion of
+ the trie needs to be copied when the collection is mutated. The
+ cost of set/delete operations is O(log N).
+
+3. Efficient lookups: O(log N).
+
+(where N is number of key/value items in the immutable mapping.)
+
+
+HAMT
+====
+
+The core idea of HAMT is that the shape of the trie is encoded into the
+hashes of keys.
+
+Say we want to store a K/V pair in our mapping. First, we calculate the
+hash of K, let's say it's 19830128, or in binary:
+
+ 0b1001011101001010101110000 = 19830128
+
+Now let's partition this bit representation of the hash into blocks of
+5 bits each:
+
+ 0b00_00000_10010_11101_00101_01011_10000 = 19830128
+ (6) (5) (4) (3) (2) (1)
+
+Each block of 5 bits represents a number betwen 0 and 31. So if we have
+a tree that consists of nodes, each of which is an array of 32 pointers,
+those 5-bit blocks will encode a position on a single tree level.
+
+For example, storing the key K with hash 19830128, results in the following
+tree structure:
+
+ (array of 32 pointers)
+ +---+ -- +----+----+----+ -- +----+
+ root node | 0 | .. | 15 | 16 | 17 | .. | 31 | 0b10000 = 16 (1)
+ (level 1) +---+ -- +----+----+----+ -- +----+
+ |
+ +---+ -- +----+----+----+ -- +----+
+ a 2nd level node | 0 | .. | 10 | 11 | 12 | .. | 31 | 0b01011 = 11 (2)
+ +---+ -- +----+----+----+ -- +----+
+ |
+ +---+ -- +----+----+----+ -- +----+
+ a 3rd level node | 0 | .. | 04 | 05 | 06 | .. | 31 | 0b01011 = 5 (3)
+ +---+ -- +----+----+----+ -- +----+
+ |
+ +---+ -- +----+----+----+----+
+ a 4th level node | 0 | .. | 04 | 29 | 30 | 31 | 0b11101 = 29 (4)
+ +---+ -- +----+----+----+----+
+ |
+ +---+ -- +----+----+----+ -- +----+
+ a 5th level node | 0 | .. | 17 | 18 | 19 | .. | 31 | 0b10010 = 18 (5)
+ +---+ -- +----+----+----+ -- +----+
+ |
+ +--------------+
+ |
+ +---+ -- +----+----+----+ -- +----+
+ a 6th level node | 0 | .. | 15 | 16 | 17 | .. | 31 | 0b00000 = 0 (6)
+ +---+ -- +----+----+----+ -- +----+
+ |
+ V -- our value (or collision)
+
+To rehash: for a K/V pair, the hash of K encodes where in the tree V will
+be stored.
+
+To optimize memory footprint and handle hash collisions, our implementation
+uses three different types of nodes:
+
+ * A Bitmap node;
+ * An Array node;
+ * A Collision node.
+
+Because we implement an immutable dictionary, our nodes are also
+immutable. Therefore, when we need to modify a node, we copy it, and
+do that modification to the copy.
+
+
+Array Nodes
+-----------
+
+These nodes are very simple. Essentially they are arrays of 32 pointers
+we used to illustrate the high-level idea in the previous section.
+
+We use Array nodes only when we need to store more than 16 pointers
+in a single node.
+
+Array nodes do not store key objects or value objects. They are used
+only as an indirection level - their pointers point to other nodes in
+the tree.
+
+
+Bitmap Node
+-----------
+
+Allocating a new 32-pointers array for every node of our tree would be
+very expensive. Unless we store millions of keys, most of tree nodes would
+be very sparse.
+
+When we have less than 16 elements in a node, we don't want to use the
+Array node, that would mean that we waste a lot of memory. Instead,
+we can use bitmap compression and can have just as many pointers
+as we need!
+
+Bitmap nodes consist of two fields:
+
+1. An array of pointers. If a Bitmap node holds N elements, the
+ array will be of N pointers.
+
+2. A 32bit integer -- a bitmap field. If an N-th bit is set in the
+ bitmap, it means that the node has an N-th element.
+
+For example, say we need to store a 3 elements sparse array:
+
+ +---+ -- +---+ -- +----+ -- +----+
+ | 0 | .. | 4 | .. | 11 | .. | 17 |
+ +---+ -- +---+ -- +----+ -- +----+
+ | | |
+ o1 o2 o3
+
+We allocate a three-pointer Bitmap node. Its bitmap field will be
+then set to:
+
+ 0b_00100_00010_00000_10000 == (1 << 17) | (1 << 11) | (1 << 4)
+
+To check if our Bitmap node has an I-th element we can do:
+
+ bitmap & (1 << I)
+
+
+And here's a formula to calculate a position in our pointer array
+which would correspond to an I-th element:
+
+ popcount(bitmap & ((1 << I) - 1))
+
+
+Let's break it down:
+
+ * `popcount` is a function that returns a number of bits set to 1;
+
+ * `((1 << I) - 1)` is a mask to filter the bitmask to contain bits
+ set to the *right* of our bit.
+
+
+So for our 17, 11, and 4 indexes:
+
+ * bitmap & ((1 << 17) - 1) == 0b100000010000 => 2 bits are set => index is 2.
+
+ * bitmap & ((1 << 11) - 1) == 0b10000 => 1 bit is set => index is 1.
+
+ * bitmap & ((1 << 4) - 1) == 0b0 => 0 bits are set => index is 0.
+
+
+To conclude: Bitmap nodes are just like Array nodes -- they can store
+a number of pointers, but use bitmap compression to eliminate unused
+pointers.
+
+
+Bitmap nodes have two pointers for each item:
+
+ +----+----+----+----+ -- +----+----+
+ | k1 | v1 | k2 | v2 | .. | kN | vN |
+ +----+----+----+----+ -- +----+----+
+
+When kI == NULL, vI points to another tree level.
+
+When kI != NULL, the actual key object is stored in kI, and its
+value is stored in vI.
+
+
+Collision Nodes
+---------------
+
+Collision nodes are simple arrays of pointers -- two pointers per
+key/value. When there's a hash collision, say for k1/v1 and k2/v2
+we have `hash(k1)==hash(k2)`. Then our collision node will be:
+
+ +----+----+----+----+
+ | k1 | v1 | k2 | v2 |
+ +----+----+----+----+
+
+
+Tree Structure
+--------------
+
+All nodes are PyObjects.
+
+The `PyHamtObject` object has a pointer to the root node (h_root),
+and has a length field (h_count).
+
+High-level functions accept a PyHamtObject object and dispatch to
+lower-level functions depending on what kind of node h_root points to.
+
+
+Operations
+==========
+
+There are three fundamental operations on an immutable dictionary:
+
+1. "o.assoc(k, v)" will return a new immutable dictionary, that will be
+ a copy of "o", but with the "k/v" item set.
+
+ Functions in this file:
+
+ hamt_node_assoc, hamt_node_bitmap_assoc,
+ hamt_node_array_assoc, hamt_node_collision_assoc
+
+ `hamt_node_assoc` function accepts a node object, and calls
+ other functions depending on its actual type.
+
+2. "o.find(k)" will lookup key "k" in "o".
+
+ Functions:
+
+ hamt_node_find, hamt_node_bitmap_find,
+ hamt_node_array_find, hamt_node_collision_find
+
+3. "o.without(k)" will return a new immutable dictionary, that will be
+ a copy of "o", buth without the "k" key.
+
+ Functions:
+
+ hamt_node_without, hamt_node_bitmap_without,
+ hamt_node_array_without, hamt_node_collision_without
+
+
+Further Reading
+===============
+
+1. http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice.html
+
+2. http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii.html
+
+3. Clojure's PersistentHashMap implementation:
+ https://github.com/clojure/clojure/blob/master/src/jvm/clojure/lang/PersistentHashMap.java
+
+
+Debug
+=====
+
+The HAMT datatype is accessible for testing purposes under the
+`_testcapi` module:
+
+ >>> from _testcapi import hamt
+ >>> h = hamt()
+ >>> h2 = h.set('a', 2)
+ >>> h3 = h2.set('b', 3)
+ >>> list(h3)
+ ['a', 'b']
+
+When CPython is built in debug mode, a '__dump__()' method is available
+to introspect the tree:
+
+ >>> print(h3.__dump__())
+ HAMT(len=2):
+ BitmapNode(size=4 count=2 bitmap=0b110 id=0x10eb9d9e8):
+ 'a': 2
+ 'b': 3
+*/
+
+
+#define IS_ARRAY_NODE(node) (Py_TYPE(node) == &_PyHamt_ArrayNode_Type)
+#define IS_BITMAP_NODE(node) (Py_TYPE(node) == &_PyHamt_BitmapNode_Type)
+#define IS_COLLISION_NODE(node) (Py_TYPE(node) == &_PyHamt_CollisionNode_Type)
+
+
+/* Return type for 'find' (lookup a key) functions.
+
+ * F_ERROR - an error occurred;
+ * F_NOT_FOUND - the key was not found;
+ * F_FOUND - the key was found.
+*/
+typedef enum {F_ERROR, F_NOT_FOUND, F_FOUND} hamt_find_t;
+
+
+/* Return type for 'without' (delete a key) functions.
+
+ * W_ERROR - an error occurred;
+ * W_NOT_FOUND - the key was not found: there's nothing to delete;
+ * W_EMPTY - the key was found: the node/tree would be empty
+ if the key is deleted;
+ * W_NEWNODE - the key was found: a new node/tree is returned
+ without that key.
+*/
+typedef enum {W_ERROR, W_NOT_FOUND, W_EMPTY, W_NEWNODE} hamt_without_t;
+
+
+/* Low-level iterator protocol type.
+
+ * I_ITEM - a new item has been yielded;
+ * I_END - the whole tree was visited (similar to StopIteration).
+*/
+typedef enum {I_ITEM, I_END} hamt_iter_t;
+
+
+#define HAMT_ARRAY_NODE_SIZE 32
+
+
+typedef struct {
+ PyObject_HEAD
+ PyHamtNode *a_array[HAMT_ARRAY_NODE_SIZE];
+ Py_ssize_t a_count;
+} PyHamtNode_Array;
+
+
+typedef struct {
+ PyObject_VAR_HEAD
+ uint32_t b_bitmap;
+ PyObject *b_array[1];
+} PyHamtNode_Bitmap;
+
+
+typedef struct {
+ PyObject_VAR_HEAD
+ int32_t c_hash;
+ PyObject *c_array[1];
+} PyHamtNode_Collision;
+
+
+static PyHamtNode_Bitmap *_empty_bitmap_node;
+static PyHamtObject *_empty_hamt;
+
+
+static PyHamtObject *
+hamt_alloc(void);
+
+static PyHamtNode *
+hamt_node_assoc(PyHamtNode *node,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject *val, int* added_leaf);
+
+static hamt_without_t
+hamt_node_without(PyHamtNode *node,
+ uint32_t shift, int32_t hash,
+ PyObject *key,
+ PyHamtNode **new_node);
+
+static hamt_find_t
+hamt_node_find(PyHamtNode *node,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject **val);
+
+#ifdef Py_DEBUG
+static int
+hamt_node_dump(PyHamtNode *node,
+ _PyUnicodeWriter *writer, int level);
+#endif
+
+static PyHamtNode *
+hamt_node_array_new(Py_ssize_t);
+
+static PyHamtNode *
+hamt_node_collision_new(int32_t hash, Py_ssize_t size);
+
+static inline Py_ssize_t
+hamt_node_collision_count(PyHamtNode_Collision *node);
+
+
+#ifdef Py_DEBUG
+static void
+_hamt_node_array_validate(void *o)
+{
+ assert(IS_ARRAY_NODE(o));
+ PyHamtNode_Array *node = (PyHamtNode_Array*)(o);
+ Py_ssize_t i = 0, count = 0;
+ for (; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ if (node->a_array[i] != NULL) {
+ count++;
+ }
+ }
+ assert(count == node->a_count);
+}
+
+#define VALIDATE_ARRAY_NODE(NODE) \
+ do { _hamt_node_array_validate(NODE); } while (0);
+#else
+#define VALIDATE_ARRAY_NODE(NODE)
+#endif
+
+
+/* Returns -1 on error */
+static inline int32_t
+hamt_hash(PyObject *o)
+{
+ Py_hash_t hash = PyObject_Hash(o);
+
+#if SIZEOF_PY_HASH_T <= 4
+ return hash;
+#else
+ if (hash == -1) {
+ /* exception */
+ return -1;
+ }
+
+ /* While it's suboptimal to reduce Python's 64 bit hash to
+ 32 bits via XOR, it seems that the resulting hash function
+ is good enough (this is also how Long type is hashed in Java.)
+ Storing 10, 100, 1000 Python strings results in a relatively
+ shallow and uniform tree structure.
+
+ Please don't change this hashing algorithm, as there are many
+ tests that test some exact tree shape to cover all code paths.
+ */
+ int32_t xored = (int32_t)(hash & 0xffffffffl) ^ (int32_t)(hash >> 32);
+ return xored == -1 ? -2 : xored;
+#endif
+}
+
+static inline uint32_t
+hamt_mask(int32_t hash, uint32_t shift)
+{
+ return (((uint32_t)hash >> shift) & 0x01f);
+}
+
+static inline uint32_t
+hamt_bitpos(int32_t hash, uint32_t shift)
+{
+ return (uint32_t)1 << hamt_mask(hash, shift);
+}
+
+static inline uint32_t
+hamt_bitcount(uint32_t i)
+{
+#if defined(__GNUC__) && (__GNUC__ > 4)
+ return (uint32_t)__builtin_popcountl(i);
+#elif defined(__clang__) && (__clang_major__ > 3)
+ return (uint32_t)__builtin_popcountl(i);
+#elif defined(_MSC_VER)
+ return (uint32_t)__popcnt(i);
+#else
+ /* https://graphics.stanford.edu/~seander/bithacks.html */
+ i = i - ((i >> 1) & 0x55555555);
+ i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
+ return ((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
+#endif
+}
+
+static inline uint32_t
+hamt_bitindex(uint32_t bitmap, uint32_t bit)
+{
+ return hamt_bitcount(bitmap & (bit - 1));
+}
+
+
+/////////////////////////////////// Dump Helpers
+#ifdef Py_DEBUG
+
+static int
+_hamt_dump_ident(_PyUnicodeWriter *writer, int level)
+{
+ /* Write `' ' * level` to the `writer` */
+ PyObject *str = NULL;
+ PyObject *num = NULL;
+ PyObject *res = NULL;
+ int ret = -1;
+
+ str = PyUnicode_FromString(" ");
+ if (str == NULL) {
+ goto error;
+ }
+
+ num = PyLong_FromLong((long)level);
+ if (num == NULL) {
+ goto error;
+ }
+
+ res = PyNumber_Multiply(str, num);
+ if (res == NULL) {
+ goto error;
+ }
+
+ ret = _PyUnicodeWriter_WriteStr(writer, res);
+
+error:
+ Py_XDECREF(res);
+ Py_XDECREF(str);
+ Py_XDECREF(num);
+ return ret;
+}
+
+static int
+_hamt_dump_format(_PyUnicodeWriter *writer, const char *format, ...)
+{
+ /* A convenient helper combining _PyUnicodeWriter_WriteStr and
+ PyUnicode_FromFormatV.
+ */
+ PyObject* msg;
+ int ret;
+
+ va_list vargs;
+#ifdef HAVE_STDARG_PROTOTYPES
+ va_start(vargs, format);
+#else
+ va_start(vargs);
+#endif
+ msg = PyUnicode_FromFormatV(format, vargs);
+ va_end(vargs);
+
+ if (msg == NULL) {
+ return -1;
+ }
+
+ ret = _PyUnicodeWriter_WriteStr(writer, msg);
+ Py_DECREF(msg);
+ return ret;
+}
+
+#endif /* Py_DEBUG */
+/////////////////////////////////// Bitmap Node
+
+
+static PyHamtNode *
+hamt_node_bitmap_new(Py_ssize_t size)
+{
+ /* Create a new bitmap node of size 'size' */
+
+ PyHamtNode_Bitmap *node;
+ Py_ssize_t i;
+
+ assert(size >= 0);
+ assert(size % 2 == 0);
+
+ if (size == 0 && _empty_bitmap_node != NULL) {
+ Py_INCREF(_empty_bitmap_node);
+ return (PyHamtNode *)_empty_bitmap_node;
+ }
+
+ /* No freelist; allocate a new bitmap node */
+ node = PyObject_GC_NewVar(
+ PyHamtNode_Bitmap, &_PyHamt_BitmapNode_Type, size);
+ if (node == NULL) {
+ return NULL;
+ }
+
+ Py_SIZE(node) = size;
+
+ for (i = 0; i < size; i++) {
+ node->b_array[i] = NULL;
+ }
+
+ node->b_bitmap = 0;
+
+ _PyObject_GC_TRACK(node);
+
+ if (size == 0 && _empty_bitmap_node == NULL) {
+ /* Since bitmap nodes are immutable, we can cache the instance
+ for size=0 and reuse it whenever we need an empty bitmap node.
+ */
+ _empty_bitmap_node = node;
+ Py_INCREF(_empty_bitmap_node);
+ }
+
+ return (PyHamtNode *)node;
+}
+
+static inline Py_ssize_t
+hamt_node_bitmap_count(PyHamtNode_Bitmap *node)
+{
+ return Py_SIZE(node) / 2;
+}
+
+static PyHamtNode_Bitmap *
+hamt_node_bitmap_clone(PyHamtNode_Bitmap *node)
+{
+ /* Clone a bitmap node; return a new one with the same child notes. */
+
+ PyHamtNode_Bitmap *clone;
+ Py_ssize_t i;
+
+ clone = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(Py_SIZE(node));
+ if (clone == NULL) {
+ return NULL;
+ }
+
+ for (i = 0; i < Py_SIZE(node); i++) {
+ Py_XINCREF(node->b_array[i]);
+ clone->b_array[i] = node->b_array[i];
+ }
+
+ clone->b_bitmap = node->b_bitmap;
+ return clone;
+}
+
+static PyHamtNode_Bitmap *
+hamt_node_bitmap_clone_without(PyHamtNode_Bitmap *o, uint32_t bit)
+{
+ assert(bit & o->b_bitmap);
+ assert(hamt_node_bitmap_count(o) > 1);
+
+ PyHamtNode_Bitmap *new = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(
+ Py_SIZE(o) - 2);
+ if (new == NULL) {
+ return NULL;
+ }
+
+ uint32_t idx = hamt_bitindex(o->b_bitmap, bit);
+ uint32_t key_idx = 2 * idx;
+ uint32_t val_idx = key_idx + 1;
+ uint32_t i;
+
+ for (i = 0; i < key_idx; i++) {
+ Py_XINCREF(o->b_array[i]);
+ new->b_array[i] = o->b_array[i];
+ }
+
+ for (i = val_idx + 1; i < Py_SIZE(o); i++) {
+ Py_XINCREF(o->b_array[i]);
+ new->b_array[i - 2] = o->b_array[i];
+ }
+
+ new->b_bitmap = o->b_bitmap & ~bit;
+ return new;
+}
+
+static PyHamtNode *
+hamt_node_new_bitmap_or_collision(uint32_t shift,
+ PyObject *key1, PyObject *val1,
+ int32_t key2_hash,
+ PyObject *key2, PyObject *val2)
+{
+ /* Helper method. Creates a new node for key1/val and key2/val2
+ pairs.
+
+ If key1 hash is equal to the hash of key2, a Collision node
+ will be created. If they are not equal, a Bitmap node is
+ created.
+ */
+
+ int32_t key1_hash = hamt_hash(key1);
+ if (key1_hash == -1) {
+ return NULL;
+ }
+
+ if (key1_hash == key2_hash) {
+ PyHamtNode_Collision *n;
+ n = (PyHamtNode_Collision *)hamt_node_collision_new(key1_hash, 4);
+ if (n == NULL) {
+ return NULL;
+ }
+
+ Py_INCREF(key1);
+ n->c_array[0] = key1;
+ Py_INCREF(val1);
+ n->c_array[1] = val1;
+
+ Py_INCREF(key2);
+ n->c_array[2] = key2;
+ Py_INCREF(val2);
+ n->c_array[3] = val2;
+
+ return (PyHamtNode *)n;
+ }
+ else {
+ int added_leaf = 0;
+ PyHamtNode *n = hamt_node_bitmap_new(0);
+ if (n == NULL) {
+ return NULL;
+ }
+
+ PyHamtNode *n2 = hamt_node_assoc(
+ n, shift, key1_hash, key1, val1, &added_leaf);
+ Py_DECREF(n);
+ if (n2 == NULL) {
+ return NULL;
+ }
+
+ n = hamt_node_assoc(n2, shift, key2_hash, key2, val2, &added_leaf);
+ Py_DECREF(n2);
+ if (n == NULL) {
+ return NULL;
+ }
+
+ return n;
+ }
+}
+
+static PyHamtNode *
+hamt_node_bitmap_assoc(PyHamtNode_Bitmap *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject *val, int* added_leaf)
+{
+ /* assoc operation for bitmap nodes.
+
+ Return: a new node, or self if key/val already is in the
+ collection.
+
+ 'added_leaf' is later used in '_PyHamt_Assoc' to determine if
+ `hamt.set(key, val)` increased the size of the collection.
+ */
+
+ uint32_t bit = hamt_bitpos(hash, shift);
+ uint32_t idx = hamt_bitindex(self->b_bitmap, bit);
+
+ /* Bitmap node layout:
+
+ +------+------+------+------+ --- +------+------+
+ | key1 | val1 | key2 | val2 | ... | keyN | valN |
+ +------+------+------+------+ --- +------+------+
+ where `N < Py_SIZE(node)`.
+
+ The `node->b_bitmap` field is a bitmap. For a given
+ `(shift, hash)` pair we can determine:
+
+ - If this node has the corresponding key/val slots.
+ - The index of key/val slots.
+ */
+
+ if (self->b_bitmap & bit) {
+ /* The key is set in this node */
+
+ uint32_t key_idx = 2 * idx;
+ uint32_t val_idx = key_idx + 1;
+
+ assert(val_idx < Py_SIZE(self));
+
+ PyObject *key_or_null = self->b_array[key_idx];
+ PyObject *val_or_node = self->b_array[val_idx];
+
+ if (key_or_null == NULL) {
+ /* key is NULL. This means that we have a few keys
+ that have the same (hash, shift) pair. */
+
+ assert(val_or_node != NULL);
+
+ PyHamtNode *sub_node = hamt_node_assoc(
+ (PyHamtNode *)val_or_node,
+ shift + 5, hash, key, val, added_leaf);
+ if (sub_node == NULL) {
+ return NULL;
+ }
+
+ if (val_or_node == (PyObject *)sub_node) {
+ Py_DECREF(sub_node);
+ Py_INCREF(self);
+ return (PyHamtNode *)self;
+ }
+
+ PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
+ if (ret == NULL) {
+ return NULL;
+ }
+ Py_SETREF(ret->b_array[val_idx], (PyObject*)sub_node);
+ return (PyHamtNode *)ret;
+ }
+
+ assert(key != NULL);
+ /* key is not NULL. This means that we have only one other
+ key in this collection that matches our hash for this shift. */
+
+ int comp_err = PyObject_RichCompareBool(key, key_or_null, Py_EQ);
+ if (comp_err < 0) { /* exception in __eq__ */
+ return NULL;
+ }
+ if (comp_err == 1) { /* key == key_or_null */
+ if (val == val_or_node) {
+ /* we already have the same key/val pair; return self. */
+ Py_INCREF(self);
+ return (PyHamtNode *)self;
+ }
+
+ /* We're setting a new value for the key we had before.
+ Make a new bitmap node with a replaced value, and return it. */
+ PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
+ if (ret == NULL) {
+ return NULL;
+ }
+ Py_INCREF(val);
+ Py_SETREF(ret->b_array[val_idx], val);
+ return (PyHamtNode *)ret;
+ }
+
+ /* It's a new key, and it has the same index as *one* another key.
+ We have a collision. We need to create a new node which will
+ combine the existing key and the key we're adding.
+
+ `hamt_node_new_bitmap_or_collision` will either create a new
+ Collision node if the keys have identical hashes, or
+ a new Bitmap node.
+ */
+ PyHamtNode *sub_node = hamt_node_new_bitmap_or_collision(
+ shift + 5,
+ key_or_null, val_or_node, /* existing key/val */
+ hash,
+ key, val /* new key/val */
+ );
+ if (sub_node == NULL) {
+ return NULL;
+ }
+
+ PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
+ if (ret == NULL) {
+ Py_DECREF(sub_node);
+ return NULL;
+ }
+ Py_SETREF(ret->b_array[key_idx], NULL);
+ Py_SETREF(ret->b_array[val_idx], (PyObject *)sub_node);
+
+ *added_leaf = 1;
+ return (PyHamtNode *)ret;
+ }
+ else {
+ /* There was no key before with the same (shift,hash). */
+
+ uint32_t n = hamt_bitcount(self->b_bitmap);
+
+ if (n >= 16) {
+ /* When we have a situation where we want to store more
+ than 16 nodes at one level of the tree, we no longer
+ want to use the Bitmap node with bitmap encoding.
+
+ Instead we start using an Array node, which has
+ simpler (faster) implementation at the expense of
+ having prealocated 32 pointers for its keys/values
+ pairs.
+
+ Small hamt objects (<30 keys) usually don't have any
+ Array nodes at all. Betwen ~30 and ~400 keys hamt
+ objects usually have one Array node, and usually it's
+ a root node.
+ */
+
+ uint32_t jdx = hamt_mask(hash, shift);
+ /* 'jdx' is the index of where the new key should be added
+ in the new Array node we're about to create. */
+
+ PyHamtNode *empty = NULL;
+ PyHamtNode_Array *new_node = NULL;
+ PyHamtNode *res = NULL;
+
+ /* Create a new Array node. */
+ new_node = (PyHamtNode_Array *)hamt_node_array_new(n + 1);
+ if (new_node == NULL) {
+ goto fin;
+ }
+
+ /* Create an empty bitmap node for the next
+ hamt_node_assoc call. */
+ empty = hamt_node_bitmap_new(0);
+ if (empty == NULL) {
+ goto fin;
+ }
+
+ /* Make a new bitmap node for the key/val we're adding.
+ Set that bitmap node to new-array-node[jdx]. */
+ new_node->a_array[jdx] = hamt_node_assoc(
+ empty, shift + 5, hash, key, val, added_leaf);
+ if (new_node->a_array[jdx] == NULL) {
+ goto fin;
+ }
+
+ /* Copy existing key/value pairs from the current Bitmap
+ node to the new Array node we've just created. */
+ Py_ssize_t i, j;
+ for (i = 0, j = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ if (((self->b_bitmap >> i) & 1) != 0) {
+ /* Ensure we don't accidentally override `jdx` element
+ we set few lines above.
+ */
+ assert(new_node->a_array[i] == NULL);
+
+ if (self->b_array[j] == NULL) {
+ new_node->a_array[i] =
+ (PyHamtNode *)self->b_array[j + 1];
+ Py_INCREF(new_node->a_array[i]);
+ }
+ else {
+ int32_t rehash = hamt_hash(self->b_array[j]);
+ if (rehash == -1) {
+ goto fin;
+ }
+
+ new_node->a_array[i] = hamt_node_assoc(
+ empty, shift + 5,
+ rehash,
+ self->b_array[j],
+ self->b_array[j + 1],
+ added_leaf);
+
+ if (new_node->a_array[i] == NULL) {
+ goto fin;
+ }
+ }
+ j += 2;
+ }
+ }
+
+ VALIDATE_ARRAY_NODE(new_node)
+
+ /* That's it! */
+ res = (PyHamtNode *)new_node;
+
+ fin:
+ Py_XDECREF(empty);
+ if (res == NULL) {
+ Py_XDECREF(new_node);
+ }
+ return res;
+ }
+ else {
+ /* We have less than 16 keys at this level; let's just
+ create a new bitmap node out of this node with the
+ new key/val pair added. */
+
+ uint32_t key_idx = 2 * idx;
+ uint32_t val_idx = key_idx + 1;
+ Py_ssize_t i;
+
+ *added_leaf = 1;
+
+ /* Allocate new Bitmap node which can have one more key/val
+ pair in addition to what we have already. */
+ PyHamtNode_Bitmap *new_node =
+ (PyHamtNode_Bitmap *)hamt_node_bitmap_new(2 * (n + 1));
+ if (new_node == NULL) {
+ return NULL;
+ }
+
+ /* Copy all keys/values that will be before the new key/value
+ we are adding. */
+ for (i = 0; i < key_idx; i++) {
+ Py_XINCREF(self->b_array[i]);
+ new_node->b_array[i] = self->b_array[i];
+ }
+
+ /* Set the new key/value to the new Bitmap node. */
+ Py_INCREF(key);
+ new_node->b_array[key_idx] = key;
+ Py_INCREF(val);
+ new_node->b_array[val_idx] = val;
+
+ /* Copy all keys/values that will be after the new key/value
+ we are adding. */
+ for (i = key_idx; i < Py_SIZE(self); i++) {
+ Py_XINCREF(self->b_array[i]);
+ new_node->b_array[i + 2] = self->b_array[i];
+ }
+
+ new_node->b_bitmap = self->b_bitmap | bit;
+ return (PyHamtNode *)new_node;
+ }
+ }
+}
+
+static hamt_without_t
+hamt_node_bitmap_without(PyHamtNode_Bitmap *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key,
+ PyHamtNode **new_node)
+{
+ uint32_t bit = hamt_bitpos(hash, shift);
+ if ((self->b_bitmap & bit) == 0) {
+ return W_NOT_FOUND;
+ }
+
+ uint32_t idx = hamt_bitindex(self->b_bitmap, bit);
+
+ uint32_t key_idx = 2 * idx;
+ uint32_t val_idx = key_idx + 1;
+
+ PyObject *key_or_null = self->b_array[key_idx];
+ PyObject *val_or_node = self->b_array[val_idx];
+
+ if (key_or_null == NULL) {
+ /* key == NULL means that 'value' is another tree node. */
+
+ PyHamtNode *sub_node = NULL;
+
+ hamt_without_t res = hamt_node_without(
+ (PyHamtNode *)val_or_node,
+ shift + 5, hash, key, &sub_node);
+
+ switch (res) {
+ case W_EMPTY:
+ /* It's impossible for us to receive a W_EMPTY here:
+
+ - Array nodes are converted to Bitmap nodes when
+ we delete 16th item from them;
+
+ - Collision nodes are converted to Bitmap when
+ there is one item in them;
+
+ - Bitmap node's without() inlines single-item
+ sub-nodes.
+
+ So in no situation we can have a single-item
+ Bitmap child of another Bitmap node.
+ */
+ Py_UNREACHABLE();
+
+ case W_NEWNODE: {
+ assert(sub_node != NULL);
+
+ if (IS_BITMAP_NODE(sub_node)) {
+ PyHamtNode_Bitmap *sub_tree = (PyHamtNode_Bitmap *)sub_node;
+ if (hamt_node_bitmap_count(sub_tree) == 1 &&
+ sub_tree->b_array[0] != NULL)
+ {
+ /* A bitmap node with one key/value pair. Just
+ merge it into this node.
+
+ Note that we don't inline Bitmap nodes that
+ have a NULL key -- those nodes point to another
+ tree level, and we cannot simply move tree levels
+ up or down.
+ */
+
+ PyHamtNode_Bitmap *clone = hamt_node_bitmap_clone(self);
+ if (clone == NULL) {
+ Py_DECREF(sub_node);
+ return W_ERROR;
+ }
+
+ PyObject *key = sub_tree->b_array[0];
+ PyObject *val = sub_tree->b_array[1];
+
+ Py_INCREF(key);
+ Py_XSETREF(clone->b_array[key_idx], key);
+ Py_INCREF(val);
+ Py_SETREF(clone->b_array[val_idx], val);
+
+ Py_DECREF(sub_tree);
+
+ *new_node = (PyHamtNode *)clone;
+ return W_NEWNODE;
+ }
+ }
+
+#ifdef Py_DEBUG
+ /* Ensure that Collision.without implementation
+ converts to Bitmap nodes itself.
+ */
+ if (IS_COLLISION_NODE(sub_node)) {
+ assert(hamt_node_collision_count(
+ (PyHamtNode_Collision*)sub_node) > 1);
+ }
+#endif
+
+ PyHamtNode_Bitmap *clone = hamt_node_bitmap_clone(self);
+ Py_SETREF(clone->b_array[val_idx],
+ (PyObject *)sub_node); /* borrow */
+
+ *new_node = (PyHamtNode *)clone;
+ return W_NEWNODE;
+ }
+
+ case W_ERROR:
+ case W_NOT_FOUND:
+ assert(sub_node == NULL);
+ return res;
+
+ default:
+ Py_UNREACHABLE();
+ }
+ }
+ else {
+ /* We have a regular key/value pair */
+
+ int cmp = PyObject_RichCompareBool(key_or_null, key, Py_EQ);
+ if (cmp < 0) {
+ return W_ERROR;
+ }
+ if (cmp == 0) {
+ return W_NOT_FOUND;
+ }
+
+ if (hamt_node_bitmap_count(self) == 1) {
+ return W_EMPTY;
+ }
+
+ *new_node = (PyHamtNode *)
+ hamt_node_bitmap_clone_without(self, bit);
+ if (*new_node == NULL) {
+ return W_ERROR;
+ }
+
+ return W_NEWNODE;
+ }
+}
+
+static hamt_find_t
+hamt_node_bitmap_find(PyHamtNode_Bitmap *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject **val)
+{
+ /* Lookup a key in a Bitmap node. */
+
+ uint32_t bit = hamt_bitpos(hash, shift);
+ uint32_t idx;
+ uint32_t key_idx;
+ uint32_t val_idx;
+ PyObject *key_or_null;
+ PyObject *val_or_node;
+ int comp_err;
+
+ if ((self->b_bitmap & bit) == 0) {
+ return F_NOT_FOUND;
+ }
+
+ idx = hamt_bitindex(self->b_bitmap, bit);
+ assert(idx >= 0);
+ key_idx = idx * 2;
+ val_idx = key_idx + 1;
+
+ assert(val_idx < Py_SIZE(self));
+
+ key_or_null = self->b_array[key_idx];
+ val_or_node = self->b_array[val_idx];
+
+ if (key_or_null == NULL) {
+ /* There are a few keys that have the same hash at the current shift
+ that match our key. Dispatch the lookup further down the tree. */
+ assert(val_or_node != NULL);
+ return hamt_node_find((PyHamtNode *)val_or_node,
+ shift + 5, hash, key, val);
+ }
+
+ /* We have only one key -- a potential match. Let's compare if the
+ key we are looking at is equal to the key we are looking for. */
+ assert(key != NULL);
+ comp_err = PyObject_RichCompareBool(key, key_or_null, Py_EQ);
+ if (comp_err < 0) { /* exception in __eq__ */
+ return F_ERROR;
+ }
+ if (comp_err == 1) { /* key == key_or_null */
+ *val = val_or_node;
+ return F_FOUND;
+ }
+
+ return F_NOT_FOUND;
+}
+
+static int
+hamt_node_bitmap_traverse(PyHamtNode_Bitmap *self, visitproc visit, void *arg)
+{
+ /* Bitmap's tp_traverse */
+
+ Py_ssize_t i;
+
+ for (i = Py_SIZE(self); --i >= 0; ) {
+ Py_VISIT(self->b_array[i]);
+ }
+
+ return 0;
+}
+
+static void
+hamt_node_bitmap_dealloc(PyHamtNode_Bitmap *self)
+{
+ /* Bitmap's tp_dealloc */
+
+ Py_ssize_t len = Py_SIZE(self);
+ Py_ssize_t i;
+
+ PyObject_GC_UnTrack(self);
+ Py_TRASHCAN_SAFE_BEGIN(self)
+
+ if (len > 0) {
+ i = len;
+ while (--i >= 0) {
+ Py_XDECREF(self->b_array[i]);
+ }
+ }
+
+ Py_TYPE(self)->tp_free((PyObject *)self);
+ Py_TRASHCAN_SAFE_END(self)
+}
+
+#ifdef Py_DEBUG
+static int
+hamt_node_bitmap_dump(PyHamtNode_Bitmap *node,
+ _PyUnicodeWriter *writer, int level)
+{
+ /* Debug build: __dump__() method implementation for Bitmap nodes. */
+
+ Py_ssize_t i;
+ PyObject *tmp1;
+ PyObject *tmp2;
+
+ if (_hamt_dump_ident(writer, level + 1)) {
+ goto error;
+ }
+
+ if (_hamt_dump_format(writer, "BitmapNode(size=%zd count=%zd ",
+ Py_SIZE(node), Py_SIZE(node) / 2))
+ {
+ goto error;
+ }
+
+ tmp1 = PyLong_FromUnsignedLong(node->b_bitmap);
+ if (tmp1 == NULL) {
+ goto error;
+ }
+ tmp2 = _PyLong_Format(tmp1, 2);
+ Py_DECREF(tmp1);
+ if (tmp2 == NULL) {
+ goto error;
+ }
+ if (_hamt_dump_format(writer, "bitmap=%S id=%p):\n", tmp2, node)) {
+ Py_DECREF(tmp2);
+ goto error;
+ }
+ Py_DECREF(tmp2);
+
+ for (i = 0; i < Py_SIZE(node); i += 2) {
+ PyObject *key_or_null = node->b_array[i];
+ PyObject *val_or_node = node->b_array[i + 1];
+
+ if (_hamt_dump_ident(writer, level + 2)) {
+ goto error;
+ }
+
+ if (key_or_null == NULL) {
+ if (_hamt_dump_format(writer, "NULL:\n")) {
+ goto error;
+ }
+
+ if (hamt_node_dump((PyHamtNode *)val_or_node,
+ writer, level + 2))
+ {
+ goto error;
+ }
+ }
+ else {
+ if (_hamt_dump_format(writer, "%R: %R", key_or_null,
+ val_or_node))
+ {
+ goto error;
+ }
+ }
+
+ if (_hamt_dump_format(writer, "\n")) {
+ goto error;
+ }
+ }
+
+ return 0;
+error:
+ return -1;
+}
+#endif /* Py_DEBUG */
+
+
+/////////////////////////////////// Collision Node
+
+
+static PyHamtNode *
+hamt_node_collision_new(int32_t hash, Py_ssize_t size)
+{
+ /* Create a new Collision node. */
+
+ PyHamtNode_Collision *node;
+ Py_ssize_t i;
+
+ assert(size >= 4);
+ assert(size % 2 == 0);
+
+ node = PyObject_GC_NewVar(
+ PyHamtNode_Collision, &_PyHamt_CollisionNode_Type, size);
+ if (node == NULL) {
+ return NULL;
+ }
+
+ for (i = 0; i < size; i++) {
+ node->c_array[i] = NULL;
+ }
+
+ Py_SIZE(node) = size;
+ node->c_hash = hash;
+
+ _PyObject_GC_TRACK(node);
+
+ return (PyHamtNode *)node;
+}
+
+static hamt_find_t
+hamt_node_collision_find_index(PyHamtNode_Collision *self, PyObject *key,
+ Py_ssize_t *idx)
+{
+ /* Lookup `key` in the Collision node `self`. Set the index of the
+ found key to 'idx'. */
+
+ Py_ssize_t i;
+ PyObject *el;
+
+ for (i = 0; i < Py_SIZE(self); i += 2) {
+ el = self->c_array[i];
+
+ assert(el != NULL);
+ int cmp = PyObject_RichCompareBool(key, el, Py_EQ);
+ if (cmp < 0) {
+ return F_ERROR;
+ }
+ if (cmp == 1) {
+ *idx = i;
+ return F_FOUND;
+ }
+ }
+
+ return F_NOT_FOUND;
+}
+
+static PyHamtNode *
+hamt_node_collision_assoc(PyHamtNode_Collision *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject *val, int* added_leaf)
+{
+ /* Set a new key to this level (currently a Collision node)
+ of the tree. */
+
+ if (hash == self->c_hash) {
+ /* The hash of the 'key' we are adding matches the hash of
+ other keys in this Collision node. */
+
+ Py_ssize_t key_idx = -1;
+ hamt_find_t found;
+ PyHamtNode_Collision *new_node;
+ Py_ssize_t i;
+
+ /* Let's try to lookup the new 'key', maybe we already have it. */
+ found = hamt_node_collision_find_index(self, key, &key_idx);
+ switch (found) {
+ case F_ERROR:
+ /* Exception. */
+ return NULL;
+
+ case F_NOT_FOUND:
+ /* This is a totally new key. Clone the current node,
+ add a new key/value to the cloned node. */
+
+ new_node = (PyHamtNode_Collision *)hamt_node_collision_new(
+ self->c_hash, Py_SIZE(self) + 2);
+ if (new_node == NULL) {
+ return NULL;
+ }
+
+ for (i = 0; i < Py_SIZE(self); i++) {
+ Py_INCREF(self->c_array[i]);
+ new_node->c_array[i] = self->c_array[i];
+ }
+
+ Py_INCREF(key);
+ new_node->c_array[i] = key;
+ Py_INCREF(val);
+ new_node->c_array[i + 1] = val;
+
+ *added_leaf = 1;
+ return (PyHamtNode *)new_node;
+
+ case F_FOUND:
+ /* There's a key which is equal to the key we are adding. */
+
+ assert(key_idx >= 0);
+ assert(key_idx < Py_SIZE(self));
+ Py_ssize_t val_idx = key_idx + 1;
+
+ if (self->c_array[val_idx] == val) {
+ /* We're setting a key/value pair that's already set. */
+ Py_INCREF(self);
+ return (PyHamtNode *)self;
+ }
+
+ /* We need to replace old value for the key
+ with a new value. Create a new Collision node.*/
+ new_node = (PyHamtNode_Collision *)hamt_node_collision_new(
+ self->c_hash, Py_SIZE(self));
+ if (new_node == NULL) {
+ return NULL;
+ }
+
+ /* Copy all elements of the old node to the new one. */
+ for (i = 0; i < Py_SIZE(self); i++) {
+ Py_INCREF(self->c_array[i]);
+ new_node->c_array[i] = self->c_array[i];
+ }
+
+ /* Replace the old value with the new value for the our key. */
+ Py_DECREF(new_node->c_array[val_idx]);
+ Py_INCREF(val);
+ new_node->c_array[val_idx] = val;
+
+ return (PyHamtNode *)new_node;
+
+ default:
+ Py_UNREACHABLE();
+ }
+ }
+ else {
+ /* The hash of the new key is different from the hash that
+ all keys of this Collision node have.
+
+ Create a Bitmap node inplace with two children:
+ key/value pair that we're adding, and the Collision node
+ we're replacing on this tree level.
+ */
+
+ PyHamtNode_Bitmap *new_node;
+ PyHamtNode *assoc_res;
+
+ new_node = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(2);
+ if (new_node == NULL) {
+ return NULL;
+ }
+ new_node->b_bitmap = hamt_bitpos(self->c_hash, shift);
+ Py_INCREF(self);
+ new_node->b_array[1] = (PyObject*) self;
+
+ assoc_res = hamt_node_bitmap_assoc(
+ new_node, shift, hash, key, val, added_leaf);
+ Py_DECREF(new_node);
+ return assoc_res;
+ }
+}
+
+static inline Py_ssize_t
+hamt_node_collision_count(PyHamtNode_Collision *node)
+{
+ return Py_SIZE(node) / 2;
+}
+
+static hamt_without_t
+hamt_node_collision_without(PyHamtNode_Collision *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key,
+ PyHamtNode **new_node)
+{
+ if (hash != self->c_hash) {
+ return W_NOT_FOUND;
+ }
+
+ Py_ssize_t key_idx = -1;
+ hamt_find_t found = hamt_node_collision_find_index(self, key, &key_idx);
+
+ switch (found) {
+ case F_ERROR:
+ return W_ERROR;
+
+ case F_NOT_FOUND:
+ return W_NOT_FOUND;
+
+ case F_FOUND:
+ assert(key_idx >= 0);
+ assert(key_idx < Py_SIZE(self));
+
+ Py_ssize_t new_count = hamt_node_collision_count(self) - 1;
+
+ if (new_count == 0) {
+ /* The node has only one key/value pair and it's for the
+ key we're trying to delete. So a new node will be empty
+ after the removal.
+ */
+ return W_EMPTY;
+ }
+
+ if (new_count == 1) {
+ /* The node has two keys, and after deletion the
+ new Collision node would have one. Collision nodes
+ with one key shouldn't exist, co convert it to a
+ Bitmap node.
+ */
+ PyHamtNode_Bitmap *node = (PyHamtNode_Bitmap *)
+ hamt_node_bitmap_new(2);
+ if (node == NULL) {
+ return W_ERROR;
+ }
+
+ if (key_idx == 0) {
+ Py_INCREF(self->c_array[2]);
+ node->b_array[0] = self->c_array[2];
+ Py_INCREF(self->c_array[3]);
+ node->b_array[1] = self->c_array[3];
+ }
+ else {
+ assert(key_idx == 2);
+ Py_INCREF(self->c_array[0]);
+ node->b_array[0] = self->c_array[0];
+ Py_INCREF(self->c_array[1]);
+ node->b_array[1] = self->c_array[1];
+ }
+
+ node->b_bitmap = hamt_bitpos(hash, shift);
+
+ *new_node = (PyHamtNode *)node;
+ return W_NEWNODE;
+ }
+
+ /* Allocate a new Collision node with capacity for one
+ less key/value pair */
+ PyHamtNode_Collision *new = (PyHamtNode_Collision *)
+ hamt_node_collision_new(
+ self->c_hash, Py_SIZE(self) - 2);
+
+ /* Copy all other keys from `self` to `new` */
+ Py_ssize_t i;
+ for (i = 0; i < key_idx; i++) {
+ Py_INCREF(self->c_array[i]);
+ new->c_array[i] = self->c_array[i];
+ }
+ for (i = key_idx + 2; i < Py_SIZE(self); i++) {
+ Py_INCREF(self->c_array[i]);
+ new->c_array[i - 2] = self->c_array[i];
+ }
+
+ *new_node = (PyHamtNode*)new;
+ return W_NEWNODE;
+
+ default:
+ Py_UNREACHABLE();
+ }
+}
+
+static hamt_find_t
+hamt_node_collision_find(PyHamtNode_Collision *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject **val)
+{
+ /* Lookup `key` in the Collision node `self`. Set the value
+ for the found key to 'val'. */
+
+ Py_ssize_t idx = -1;
+ hamt_find_t res;
+
+ res = hamt_node_collision_find_index(self, key, &idx);
+ if (res == F_ERROR || res == F_NOT_FOUND) {
+ return res;
+ }
+
+ assert(idx >= 0);
+ assert(idx + 1 < Py_SIZE(self));
+
+ *val = self->c_array[idx + 1];
+ assert(*val != NULL);
+
+ return F_FOUND;
+}
+
+
+static int
+hamt_node_collision_traverse(PyHamtNode_Collision *self,
+ visitproc visit, void *arg)
+{
+ /* Collision's tp_traverse */
+
+ Py_ssize_t i;
+
+ for (i = Py_SIZE(self); --i >= 0; ) {
+ Py_VISIT(self->c_array[i]);
+ }
+
+ return 0;
+}
+
+static void
+hamt_node_collision_dealloc(PyHamtNode_Collision *self)
+{
+ /* Collision's tp_dealloc */
+
+ Py_ssize_t len = Py_SIZE(self);
+
+ PyObject_GC_UnTrack(self);
+ Py_TRASHCAN_SAFE_BEGIN(self)
+
+ if (len > 0) {
+
+ while (--len >= 0) {
+ Py_XDECREF(self->c_array[len]);
+ }
+ }
+
+ Py_TYPE(self)->tp_free((PyObject *)self);
+ Py_TRASHCAN_SAFE_END(self)
+}
+
+#ifdef Py_DEBUG
+static int
+hamt_node_collision_dump(PyHamtNode_Collision *node,
+ _PyUnicodeWriter *writer, int level)
+{
+ /* Debug build: __dump__() method implementation for Collision nodes. */
+
+ Py_ssize_t i;
+
+ if (_hamt_dump_ident(writer, level + 1)) {
+ goto error;
+ }
+
+ if (_hamt_dump_format(writer, "CollisionNode(size=%zd id=%p):\n",
+ Py_SIZE(node), node))
+ {
+ goto error;
+ }
+
+ for (i = 0; i < Py_SIZE(node); i += 2) {
+ PyObject *key = node->c_array[i];
+ PyObject *val = node->c_array[i + 1];
+
+ if (_hamt_dump_ident(writer, level + 2)) {
+ goto error;
+ }
+
+ if (_hamt_dump_format(writer, "%R: %R\n", key, val)) {
+ goto error;
+ }
+ }
+
+ return 0;
+error:
+ return -1;
+}
+#endif /* Py_DEBUG */
+
+
+/////////////////////////////////// Array Node
+
+
+static PyHamtNode *
+hamt_node_array_new(Py_ssize_t count)
+{
+ Py_ssize_t i;
+
+ PyHamtNode_Array *node = PyObject_GC_New(
+ PyHamtNode_Array, &_PyHamt_ArrayNode_Type);
+ if (node == NULL) {
+ return NULL;
+ }
+
+ for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ node->a_array[i] = NULL;
+ }
+
+ node->a_count = count;
+
+ _PyObject_GC_TRACK(node);
+ return (PyHamtNode *)node;
+}
+
+static PyHamtNode_Array *
+hamt_node_array_clone(PyHamtNode_Array *node)
+{
+ PyHamtNode_Array *clone;
+ Py_ssize_t i;
+
+ VALIDATE_ARRAY_NODE(node)
+
+ /* Create a new Array node. */
+ clone = (PyHamtNode_Array *)hamt_node_array_new(node->a_count);
+ if (clone == NULL) {
+ return NULL;
+ }
+
+ /* Copy all elements from the current Array node to the new one. */
+ for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ Py_XINCREF(node->a_array[i]);
+ clone->a_array[i] = node->a_array[i];
+ }
+
+ VALIDATE_ARRAY_NODE(clone)
+ return clone;
+}
+
+static PyHamtNode *
+hamt_node_array_assoc(PyHamtNode_Array *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject *val, int* added_leaf)
+{
+ /* Set a new key to this level (currently a Collision node)
+ of the tree.
+
+ Array nodes don't store values, they can only point to
+ other nodes. They are simple arrays of 32 BaseNode pointers/
+ */
+
+ uint32_t idx = hamt_mask(hash, shift);
+ PyHamtNode *node = self->a_array[idx];
+ PyHamtNode *child_node;
+ PyHamtNode_Array *new_node;
+ Py_ssize_t i;
+
+ if (node == NULL) {
+ /* There's no child node for the given hash. Create a new
+ Bitmap node for this key. */
+
+ PyHamtNode_Bitmap *empty = NULL;
+
+ /* Get an empty Bitmap node to work with. */
+ empty = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(0);
+ if (empty == NULL) {
+ return NULL;
+ }
+
+ /* Set key/val to the newly created empty Bitmap, thus
+ creating a new Bitmap node with our key/value pair. */
+ child_node = hamt_node_bitmap_assoc(
+ empty,
+ shift + 5, hash, key, val, added_leaf);
+ Py_DECREF(empty);
+ if (child_node == NULL) {
+ return NULL;
+ }
+
+ /* Create a new Array node. */
+ new_node = (PyHamtNode_Array *)hamt_node_array_new(self->a_count + 1);
+ if (new_node == NULL) {
+ Py_DECREF(child_node);
+ return NULL;
+ }
+
+ /* Copy all elements from the current Array node to the
+ new one. */
+ for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ Py_XINCREF(self->a_array[i]);
+ new_node->a_array[i] = self->a_array[i];
+ }
+
+ assert(new_node->a_array[idx] == NULL);
+ new_node->a_array[idx] = child_node; /* borrow */
+ VALIDATE_ARRAY_NODE(new_node)
+ }
+ else {
+ /* There's a child node for the given hash.
+ Set the key to it./ */
+ child_node = hamt_node_assoc(
+ node, shift + 5, hash, key, val, added_leaf);
+ if (child_node == (PyHamtNode *)self) {
+ Py_DECREF(child_node);
+ return (PyHamtNode *)self;
+ }
+
+ new_node = hamt_node_array_clone(self);
+ if (new_node == NULL) {
+ Py_DECREF(child_node);
+ return NULL;
+ }
+
+ Py_SETREF(new_node->a_array[idx], child_node); /* borrow */
+ VALIDATE_ARRAY_NODE(new_node)
+ }
+
+ return (PyHamtNode *)new_node;
+}
+
+static hamt_without_t
+hamt_node_array_without(PyHamtNode_Array *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key,
+ PyHamtNode **new_node)
+{
+ uint32_t idx = hamt_mask(hash, shift);
+ PyHamtNode *node = self->a_array[idx];
+
+ if (node == NULL) {
+ return W_NOT_FOUND;
+ }
+
+ PyHamtNode *sub_node = NULL;
+ hamt_without_t res = hamt_node_without(
+ (PyHamtNode *)node,
+ shift + 5, hash, key, &sub_node);
+
+ switch (res) {
+ case W_NOT_FOUND:
+ case W_ERROR:
+ assert(sub_node == NULL);
+ return res;
+
+ case W_NEWNODE: {
+ /* We need to replace a node at the `idx` index.
+ Clone this node and replace.
+ */
+ assert(sub_node != NULL);
+
+ PyHamtNode_Array *clone = hamt_node_array_clone(self);
+ if (clone == NULL) {
+ Py_DECREF(sub_node);
+ return W_ERROR;
+ }
+
+ Py_SETREF(clone->a_array[idx], sub_node); /* borrow */
+ *new_node = (PyHamtNode*)clone; /* borrow */
+ return W_NEWNODE;
+ }
+
+ case W_EMPTY: {
+ assert(sub_node == NULL);
+ /* We need to remove a node at the `idx` index.
+ Calculate the size of the replacement Array node.
+ */
+ Py_ssize_t new_count = self->a_count - 1;
+
+ if (new_count == 0) {
+ return W_EMPTY;
+ }
+
+ if (new_count >= 16) {
+ /* We convert Bitmap nodes to Array nodes, when a
+ Bitmap node needs to store more than 15 key/value
+ pairs. So we will create a new Array node if we
+ the number of key/values after deletion is still
+ greater than 15.
+ */
+
+ PyHamtNode_Array *new = hamt_node_array_clone(self);
+ if (new == NULL) {
+ return W_ERROR;
+ }
+ new->a_count = new_count;
+ Py_CLEAR(new->a_array[idx]);
+
+ *new_node = (PyHamtNode*)new; /* borrow */
+ return W_NEWNODE;
+ }
+
+ /* New Array node would have less than 16 key/value
+ pairs. We need to create a replacement Bitmap node. */
+
+ Py_ssize_t bitmap_size = new_count * 2;
+ uint32_t bitmap = 0;
+
+ PyHamtNode_Bitmap *new = (PyHamtNode_Bitmap *)
+ hamt_node_bitmap_new(bitmap_size);
+ if (new == NULL) {
+ return W_ERROR;
+ }
+
+ Py_ssize_t new_i = 0;
+ for (uint32_t i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ if (i == idx) {
+ /* Skip the node we are deleting. */
+ continue;
+ }
+
+ PyHamtNode *node = self->a_array[i];
+ if (node == NULL) {
+ /* Skip any missing nodes. */
+ continue;
+ }
+
+ bitmap |= 1 << i;
+
+ if (IS_BITMAP_NODE(node)) {
+ PyHamtNode_Bitmap *child = (PyHamtNode_Bitmap *)node;
+
+ if (hamt_node_bitmap_count(child) == 1 &&
+ child->b_array[0] != NULL)
+ {
+ /* node is a Bitmap with one key/value pair, just
+ merge it into the new Bitmap node we're building.
+
+ Note that we don't inline Bitmap nodes that
+ have a NULL key -- those nodes point to another
+ tree level, and we cannot simply move tree levels
+ up or down.
+ */
+ PyObject *key = child->b_array[0];
+ PyObject *val = child->b_array[1];
+
+ Py_INCREF(key);
+ new->b_array[new_i] = key;
+ Py_INCREF(val);
+ new->b_array[new_i + 1] = val;
+ }
+ else {
+ new->b_array[new_i] = NULL;
+ Py_INCREF(node);
+ new->b_array[new_i + 1] = (PyObject*)node;
+ }
+ }
+ else {
+
+#ifdef Py_DEBUG
+ if (IS_COLLISION_NODE(node)) {
+ Py_ssize_t child_count = hamt_node_collision_count(
+ (PyHamtNode_Collision*)node);
+ assert(child_count > 1);
+ }
+ else if (IS_ARRAY_NODE(node)) {
+ assert(((PyHamtNode_Array*)node)->a_count >= 16);
+ }
+#endif
+
+ /* Just copy the node into our new Bitmap */
+ new->b_array[new_i] = NULL;
+ Py_INCREF(node);
+ new->b_array[new_i + 1] = (PyObject*)node;
+ }
+
+ new_i += 2;
+ }
+
+ new->b_bitmap = bitmap;
+ *new_node = (PyHamtNode*)new; /* borrow */
+ return W_NEWNODE;
+ }
+
+ default:
+ Py_UNREACHABLE();
+ }
+}
+
+static hamt_find_t
+hamt_node_array_find(PyHamtNode_Array *self,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject **val)
+{
+ /* Lookup `key` in the Array node `self`. Set the value
+ for the found key to 'val'. */
+
+ uint32_t idx = hamt_mask(hash, shift);
+ PyHamtNode *node;
+
+ node = self->a_array[idx];
+ if (node == NULL) {
+ return F_NOT_FOUND;
+ }
+
+ /* Dispatch to the generic hamt_node_find */
+ return hamt_node_find(node, shift + 5, hash, key, val);
+}
+
+static int
+hamt_node_array_traverse(PyHamtNode_Array *self,
+ visitproc visit, void *arg)
+{
+ /* Array's tp_traverse */
+
+ Py_ssize_t i;
+
+ for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ Py_VISIT(self->a_array[i]);
+ }
+
+ return 0;
+}
+
+static void
+hamt_node_array_dealloc(PyHamtNode_Array *self)
+{
+ /* Array's tp_dealloc */
+
+ Py_ssize_t i;
+
+ PyObject_GC_UnTrack(self);
+ Py_TRASHCAN_SAFE_BEGIN(self)
+
+ for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ Py_XDECREF(self->a_array[i]);
+ }
+
+ Py_TYPE(self)->tp_free((PyObject *)self);
+ Py_TRASHCAN_SAFE_END(self)
+}
+
+#ifdef Py_DEBUG
+static int
+hamt_node_array_dump(PyHamtNode_Array *node,
+ _PyUnicodeWriter *writer, int level)
+{
+ /* Debug build: __dump__() method implementation for Array nodes. */
+
+ Py_ssize_t i;
+
+ if (_hamt_dump_ident(writer, level + 1)) {
+ goto error;
+ }
+
+ if (_hamt_dump_format(writer, "ArrayNode(id=%p):\n", node)) {
+ goto error;
+ }
+
+ for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ if (node->a_array[i] == NULL) {
+ continue;
+ }
+
+ if (_hamt_dump_ident(writer, level + 2)) {
+ goto error;
+ }
+
+ if (_hamt_dump_format(writer, "%d::\n", i)) {
+ goto error;
+ }
+
+ if (hamt_node_dump(node->a_array[i], writer, level + 1)) {
+ goto error;
+ }
+
+ if (_hamt_dump_format(writer, "\n")) {
+ goto error;
+ }
+ }
+
+ return 0;
+error:
+ return -1;
+}
+#endif /* Py_DEBUG */
+
+
+/////////////////////////////////// Node Dispatch
+
+
+static PyHamtNode *
+hamt_node_assoc(PyHamtNode *node,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject *val, int* added_leaf)
+{
+ /* Set key/value to the 'node' starting with the given shift/hash.
+ Return a new node, or the same node if key/value already
+ set.
+
+ added_leaf will be set to 1 if key/value wasn't in the
+ tree before.
+
+ This method automatically dispatches to the suitable
+ hamt_node_{nodetype}_assoc method.
+ */
+
+ if (IS_BITMAP_NODE(node)) {
+ return hamt_node_bitmap_assoc(
+ (PyHamtNode_Bitmap *)node,
+ shift, hash, key, val, added_leaf);
+ }
+ else if (IS_ARRAY_NODE(node)) {
+ return hamt_node_array_assoc(
+ (PyHamtNode_Array *)node,
+ shift, hash, key, val, added_leaf);
+ }
+ else {
+ assert(IS_COLLISION_NODE(node));
+ return hamt_node_collision_assoc(
+ (PyHamtNode_Collision *)node,
+ shift, hash, key, val, added_leaf);
+ }
+}
+
+static hamt_without_t
+hamt_node_without(PyHamtNode *node,
+ uint32_t shift, int32_t hash,
+ PyObject *key,
+ PyHamtNode **new_node)
+{
+ if (IS_BITMAP_NODE(node)) {
+ return hamt_node_bitmap_without(
+ (PyHamtNode_Bitmap *)node,
+ shift, hash, key,
+ new_node);
+ }
+ else if (IS_ARRAY_NODE(node)) {
+ return hamt_node_array_without(
+ (PyHamtNode_Array *)node,
+ shift, hash, key,
+ new_node);
+ }
+ else {
+ assert(IS_COLLISION_NODE(node));
+ return hamt_node_collision_without(
+ (PyHamtNode_Collision *)node,
+ shift, hash, key,
+ new_node);
+ }
+}
+
+static hamt_find_t
+hamt_node_find(PyHamtNode *node,
+ uint32_t shift, int32_t hash,
+ PyObject *key, PyObject **val)
+{
+ /* Find the key in the node starting with the given shift/hash.
+
+ If a value is found, the result will be set to F_FOUND, and
+ *val will point to the found value object.
+
+ If a value wasn't found, the result will be set to F_NOT_FOUND.
+
+ If an exception occurs during the call, the result will be F_ERROR.
+
+ This method automatically dispatches to the suitable
+ hamt_node_{nodetype}_find method.
+ */
+
+ if (IS_BITMAP_NODE(node)) {
+ return hamt_node_bitmap_find(
+ (PyHamtNode_Bitmap *)node,
+ shift, hash, key, val);
+
+ }
+ else if (IS_ARRAY_NODE(node)) {
+ return hamt_node_array_find(
+ (PyHamtNode_Array *)node,
+ shift, hash, key, val);
+ }
+ else {
+ assert(IS_COLLISION_NODE(node));
+ return hamt_node_collision_find(
+ (PyHamtNode_Collision *)node,
+ shift, hash, key, val);
+ }
+}
+
+#ifdef Py_DEBUG
+static int
+hamt_node_dump(PyHamtNode *node,
+ _PyUnicodeWriter *writer, int level)
+{
+ /* Debug build: __dump__() method implementation for a node.
+
+ This method automatically dispatches to the suitable
+ hamt_node_{nodetype})_dump method.
+ */
+
+ if (IS_BITMAP_NODE(node)) {
+ return hamt_node_bitmap_dump(
+ (PyHamtNode_Bitmap *)node, writer, level);
+ }
+ else if (IS_ARRAY_NODE(node)) {
+ return hamt_node_array_dump(
+ (PyHamtNode_Array *)node, writer, level);
+ }
+ else {
+ assert(IS_COLLISION_NODE(node));
+ return hamt_node_collision_dump(
+ (PyHamtNode_Collision *)node, writer, level);
+ }
+}
+#endif /* Py_DEBUG */
+
+
+/////////////////////////////////// Iterators: Machinery
+
+
+static hamt_iter_t
+hamt_iterator_next(PyHamtIteratorState *iter, PyObject **key, PyObject **val);
+
+
+static void
+hamt_iterator_init(PyHamtIteratorState *iter, PyHamtNode *root)
+{
+ for (uint32_t i = 0; i < _Py_HAMT_MAX_TREE_DEPTH; i++) {
+ iter->i_nodes[i] = NULL;
+ iter->i_pos[i] = 0;
+ }
+
+ iter->i_level = 0;
+
+ /* Note: we don't incref/decref nodes in i_nodes. */
+ iter->i_nodes[0] = root;
+}
+
+static hamt_iter_t
+hamt_iterator_bitmap_next(PyHamtIteratorState *iter,
+ PyObject **key, PyObject **val)
+{
+ int8_t level = iter->i_level;
+
+ PyHamtNode_Bitmap *node = (PyHamtNode_Bitmap *)(iter->i_nodes[level]);
+ Py_ssize_t pos = iter->i_pos[level];
+
+ if (pos + 1 >= Py_SIZE(node)) {
+#ifdef Py_DEBUG
+ assert(iter->i_level >= 0);
+ iter->i_nodes[iter->i_level] = NULL;
+#endif
+ iter->i_level--;
+ return hamt_iterator_next(iter, key, val);
+ }
+
+ if (node->b_array[pos] == NULL) {
+ iter->i_pos[level] = pos + 2;
+
+ int8_t next_level = level + 1;
+ assert(next_level < _Py_HAMT_MAX_TREE_DEPTH);
+ iter->i_level = next_level;
+ iter->i_pos[next_level] = 0;
+ iter->i_nodes[next_level] = (PyHamtNode *)
+ node->b_array[pos + 1];
+
+ return hamt_iterator_next(iter, key, val);
+ }
+
+ *key = node->b_array[pos];
+ *val = node->b_array[pos + 1];
+ iter->i_pos[level] = pos + 2;
+ return I_ITEM;
+}
+
+static hamt_iter_t
+hamt_iterator_collision_next(PyHamtIteratorState *iter,
+ PyObject **key, PyObject **val)
+{
+ int8_t level = iter->i_level;
+
+ PyHamtNode_Collision *node = (PyHamtNode_Collision *)(iter->i_nodes[level]);
+ Py_ssize_t pos = iter->i_pos[level];
+
+ if (pos + 1 >= Py_SIZE(node)) {
+#ifdef Py_DEBUG
+ assert(iter->i_level >= 0);
+ iter->i_nodes[iter->i_level] = NULL;
+#endif
+ iter->i_level--;
+ return hamt_iterator_next(iter, key, val);
+ }
+
+ *key = node->c_array[pos];
+ *val = node->c_array[pos + 1];
+ iter->i_pos[level] = pos + 2;
+ return I_ITEM;
+}
+
+static hamt_iter_t
+hamt_iterator_array_next(PyHamtIteratorState *iter,
+ PyObject **key, PyObject **val)
+{
+ int8_t level = iter->i_level;
+
+ PyHamtNode_Array *node = (PyHamtNode_Array *)(iter->i_nodes[level]);
+ Py_ssize_t pos = iter->i_pos[level];
+
+ if (pos >= HAMT_ARRAY_NODE_SIZE) {
+#ifdef Py_DEBUG
+ assert(iter->i_level >= 0);
+ iter->i_nodes[iter->i_level] = NULL;
+#endif
+ iter->i_level--;
+ return hamt_iterator_next(iter, key, val);
+ }
+
+ for (Py_ssize_t i = pos; i < HAMT_ARRAY_NODE_SIZE; i++) {
+ if (node->a_array[i] != NULL) {
+ iter->i_pos[level] = i + 1;
+
+ int8_t next_level = level + 1;
+ assert(next_level < _Py_HAMT_MAX_TREE_DEPTH);
+ iter->i_pos[next_level] = 0;
+ iter->i_nodes[next_level] = node->a_array[i];
+ iter->i_level = next_level;
+
+ return hamt_iterator_next(iter, key, val);
+ }
+ }
+
+#ifdef Py_DEBUG
+ assert(iter->i_level >= 0);
+ iter->i_nodes[iter->i_level] = NULL;
+#endif
+
+ iter->i_level--;
+ return hamt_iterator_next(iter, key, val);
+}
+
+static hamt_iter_t
+hamt_iterator_next(PyHamtIteratorState *iter, PyObject **key, PyObject **val)
+{
+ if (iter->i_level < 0) {
+ return I_END;
+ }
+
+ assert(iter->i_level < _Py_HAMT_MAX_TREE_DEPTH);
+
+ PyHamtNode *current = iter->i_nodes[iter->i_level];
+
+ if (IS_BITMAP_NODE(current)) {
+ return hamt_iterator_bitmap_next(iter, key, val);
+ }
+ else if (IS_ARRAY_NODE(current)) {
+ return hamt_iterator_array_next(iter, key, val);
+ }
+ else {
+ assert(IS_COLLISION_NODE(current));
+ return hamt_iterator_collision_next(iter, key, val);
+ }
+}
+
+
+/////////////////////////////////// HAMT high-level functions
+
+
+PyHamtObject *
+_PyHamt_Assoc(PyHamtObject *o, PyObject *key, PyObject *val)
+{
+ int32_t key_hash;
+ int added_leaf = 0;
+ PyHamtNode *new_root;
+ PyHamtObject *new_o;
+
+ key_hash = hamt_hash(key);
+ if (key_hash == -1) {
+ return NULL;
+ }
+
+ new_root = hamt_node_assoc(
+ (PyHamtNode *)(o->h_root),
+ 0, key_hash, key, val, &added_leaf);
+ if (new_root == NULL) {
+ return NULL;
+ }
+
+ if (new_root == o->h_root) {
+ Py_DECREF(new_root);
+ Py_INCREF(o);
+ return o;
+ }
+
+ new_o = hamt_alloc();
+ if (new_o == NULL) {
+ Py_DECREF(new_root);
+ return NULL;
+ }
+
+ new_o->h_root = new_root; /* borrow */
+ new_o->h_count = added_leaf ? o->h_count + 1 : o->h_count;
+
+ return new_o;
+}
+
+PyHamtObject *
+_PyHamt_Without(PyHamtObject *o, PyObject *key)
+{
+ int32_t key_hash = hamt_hash(key);
+ if (key_hash == -1) {
+ return NULL;
+ }
+
+ PyHamtNode *new_root;
+
+ hamt_without_t res = hamt_node_without(
+ (PyHamtNode *)(o->h_root),
+ 0, key_hash, key,
+ &new_root);
+
+ switch (res) {
+ case W_ERROR:
+ return NULL;
+ case W_EMPTY:
+ return _PyHamt_New();
+ case W_NOT_FOUND:
+ Py_INCREF(o);
+ return o;
+ case W_NEWNODE: {
+ PyHamtObject *new_o = hamt_alloc();
+ if (new_o == NULL) {
+ Py_DECREF(new_root);
+ return NULL;
+ }
+
+ new_o->h_root = new_root; /* borrow */
+ new_o->h_count = o->h_count - 1;
+ assert(new_o->h_count >= 0);
+ return new_o;
+ }
+ default:
+ Py_UNREACHABLE();
+ }
+}
+
+static hamt_find_t
+hamt_find(PyHamtObject *o, PyObject *key, PyObject **val)
+{
+ if (o->h_count == 0) {
+ return F_NOT_FOUND;
+ }
+
+ int32_t key_hash = hamt_hash(key);
+ if (key_hash == -1) {
+ return F_ERROR;
+ }
+
+ return hamt_node_find(o->h_root, 0, key_hash, key, val);
+}
+
+
+int
+_PyHamt_Find(PyHamtObject *o, PyObject *key, PyObject **val)
+{
+ hamt_find_t res = hamt_find(o, key, val);
+ switch (res) {
+ case F_ERROR:
+ return -1;
+ case F_NOT_FOUND:
+ return 0;
+ case F_FOUND:
+ return 1;
+ default:
+ Py_UNREACHABLE();
+ }
+}
+
+
+int
+_PyHamt_Eq(PyHamtObject *v, PyHamtObject *w)
+{
+ if (v == w) {
+ return 1;
+ }
+
+ if (v->h_count != w->h_count) {
+ return 0;
+ }
+
+ PyHamtIteratorState iter;
+ hamt_iter_t iter_res;
+ hamt_find_t find_res;
+ PyObject *v_key;
+ PyObject *v_val;
+ PyObject *w_val;
+
+ hamt_iterator_init(&iter, v->h_root);
+
+ do {
+ iter_res = hamt_iterator_next(&iter, &v_key, &v_val);
+ if (iter_res == I_ITEM) {
+ find_res = hamt_find(w, v_key, &w_val);
+ switch (find_res) {
+ case F_ERROR:
+ return -1;
+
+ case F_NOT_FOUND:
+ return 0;
+
+ case F_FOUND: {
+ int cmp = PyObject_RichCompareBool(v_val, w_val, Py_EQ);
+ if (cmp < 0) {
+ return -1;
+ }
+ if (cmp == 0) {
+ return 0;
+ }
+ }
+ }
+ }
+ } while (iter_res != I_END);
+
+ return 1;
+}
+
+Py_ssize_t
+_PyHamt_Len(PyHamtObject *o)
+{
+ return o->h_count;
+}
+
+static PyHamtObject *
+hamt_alloc(void)
+{
+ PyHamtObject *o;
+ o = PyObject_GC_New(PyHamtObject, &_PyHamt_Type);
+ if (o == NULL) {
+ return NULL;
+ }
+ o->h_weakreflist = NULL;
+ PyObject_GC_Track(o);
+ return o;
+}
+
+PyHamtObject *
+_PyHamt_New(void)
+{
+ if (_empty_hamt != NULL) {
+ /* HAMT is an immutable object so we can easily cache an
+ empty instance. */
+ Py_INCREF(_empty_hamt);
+ return _empty_hamt;
+ }
+
+ PyHamtObject *o = hamt_alloc();
+ if (o == NULL) {
+ return NULL;
+ }
+
+ o->h_root = hamt_node_bitmap_new(0);
+ if (o->h_root == NULL) {
+ Py_DECREF(o);
+ return NULL;
+ }
+
+ o->h_count = 0;
+
+ if (_empty_hamt == NULL) {
+ Py_INCREF(o);
+ _empty_hamt = o;
+ }
+
+ return o;
+}
+
+#ifdef Py_DEBUG
+static PyObject *
+hamt_dump(PyHamtObject *self)
+{
+ _PyUnicodeWriter writer;
+
+ _PyUnicodeWriter_Init(&writer);
+
+ if (_hamt_dump_format(&writer, "HAMT(len=%zd):\n", self->h_count)) {
+ goto error;
+ }
+
+ if (hamt_node_dump(self->h_root, &writer, 0)) {
+ goto error;
+ }
+
+ return _PyUnicodeWriter_Finish(&writer);
+
+error:
+ _PyUnicodeWriter_Dealloc(&writer);
+ return NULL;
+}
+#endif /* Py_DEBUG */
+
+
+/////////////////////////////////// Iterators: Shared Iterator Implementation
+
+
+static int
+hamt_baseiter_tp_clear(PyHamtIterator *it)
+{
+ Py_CLEAR(it->hi_obj);
+ return 0;
+}
+
+static void
+hamt_baseiter_tp_dealloc(PyHamtIterator *it)
+{
+ PyObject_GC_UnTrack(it);
+ (void)hamt_baseiter_tp_clear(it);
+ PyObject_GC_Del(it);
+}
+
+static int
+hamt_baseiter_tp_traverse(PyHamtIterator *it, visitproc visit, void *arg)
+{
+ Py_VISIT(it->hi_obj);
+ return 0;
+}
+
+static PyObject *
+hamt_baseiter_tp_iternext(PyHamtIterator *it)
+{
+ PyObject *key;
+ PyObject *val;
+ hamt_iter_t res = hamt_iterator_next(&it->hi_iter, &key, &val);
+
+ switch (res) {
+ case I_END:
+ PyErr_SetNone(PyExc_StopIteration);
+ return NULL;
+
+ case I_ITEM: {
+ return (*(it->hi_yield))(key, val);
+ }
+
+ default: {
+ Py_UNREACHABLE();
+ }
+ }
+}
+
+static Py_ssize_t
+hamt_baseiter_tp_len(PyHamtIterator *it)
+{
+ return it->hi_obj->h_count;
+}
+
+static PyMappingMethods PyHamtIterator_as_mapping = {
+ (lenfunc)hamt_baseiter_tp_len,
+};
+
+static PyObject *
+hamt_baseiter_new(PyTypeObject *type, binaryfunc yield, PyHamtObject *o)
+{
+ PyHamtIterator *it = PyObject_GC_New(PyHamtIterator, type);
+ if (it == NULL) {
+ return NULL;
+ }
+
+ Py_INCREF(o);
+ it->hi_obj = o;
+ it->hi_yield = yield;
+
+ hamt_iterator_init(&it->hi_iter, o->h_root);
+
+ return (PyObject*)it;
+}
+
+#define ITERATOR_TYPE_SHARED_SLOTS \
+ .tp_basicsize = sizeof(PyHamtIterator), \
+ .tp_itemsize = 0, \
+ .tp_as_mapping = &PyHamtIterator_as_mapping, \
+ .tp_dealloc = (destructor)hamt_baseiter_tp_dealloc, \
+ .tp_getattro = PyObject_GenericGetAttr, \
+ .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, \
+ .tp_traverse = (traverseproc)hamt_baseiter_tp_traverse, \
+ .tp_clear = (inquiry)hamt_baseiter_tp_clear, \
+ .tp_iter = PyObject_SelfIter, \
+ .tp_iternext = (iternextfunc)hamt_baseiter_tp_iternext,
+
+
+/////////////////////////////////// _PyHamtItems_Type
+
+
+PyTypeObject _PyHamtItems_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "items",
+ ITERATOR_TYPE_SHARED_SLOTS
+};
+
+static PyObject *
+hamt_iter_yield_items(PyObject *key, PyObject *val)
+{
+ return PyTuple_Pack(2, key, val);
+}
+
+PyObject *
+_PyHamt_NewIterItems(PyHamtObject *o)
+{
+ return hamt_baseiter_new(
+ &_PyHamtItems_Type, hamt_iter_yield_items, o);
+}
+
+
+/////////////////////////////////// _PyHamtKeys_Type
+
+
+PyTypeObject _PyHamtKeys_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "keys",
+ ITERATOR_TYPE_SHARED_SLOTS
+};
+
+static PyObject *
+hamt_iter_yield_keys(PyObject *key, PyObject *val)
+{
+ Py_INCREF(key);
+ return key;
+}
+
+PyObject *
+_PyHamt_NewIterKeys(PyHamtObject *o)
+{
+ return hamt_baseiter_new(
+ &_PyHamtKeys_Type, hamt_iter_yield_keys, o);
+}
+
+
+/////////////////////////////////// _PyHamtValues_Type
+
+
+PyTypeObject _PyHamtValues_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "values",
+ ITERATOR_TYPE_SHARED_SLOTS
+};
+
+static PyObject *
+hamt_iter_yield_values(PyObject *key, PyObject *val)
+{
+ Py_INCREF(val);
+ return val;
+}
+
+PyObject *
+_PyHamt_NewIterValues(PyHamtObject *o)
+{
+ return hamt_baseiter_new(
+ &_PyHamtValues_Type, hamt_iter_yield_values, o);
+}
+
+
+/////////////////////////////////// _PyHamt_Type
+
+
+#ifdef Py_DEBUG
+static PyObject *
+hamt_dump(PyHamtObject *self);
+#endif
+
+
+static PyObject *
+hamt_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ return (PyObject*)_PyHamt_New();
+}
+
+static int
+hamt_tp_clear(PyHamtObject *self)
+{
+ Py_CLEAR(self->h_root);
+ return 0;
+}
+
+
+static int
+hamt_tp_traverse(PyHamtObject *self, visitproc visit, void *arg)
+{
+ Py_VISIT(self->h_root);
+ return 0;
+}
+
+static void
+hamt_tp_dealloc(PyHamtObject *self)
+{
+ PyObject_GC_UnTrack(self);
+ if (self->h_weakreflist != NULL) {
+ PyObject_ClearWeakRefs((PyObject*)self);
+ }
+ (void)hamt_tp_clear(self);
+ Py_TYPE(self)->tp_free(self);
+}
+
+
+static PyObject *
+hamt_tp_richcompare(PyObject *v, PyObject *w, int op)
+{
+ if (!PyHamt_Check(v) || !PyHamt_Check(w) || (op != Py_EQ && op != Py_NE)) {
+ Py_RETURN_NOTIMPLEMENTED;
+ }
+
+ int res = _PyHamt_Eq((PyHamtObject *)v, (PyHamtObject *)w);
+ if (res < 0) {
+ return NULL;
+ }
+
+ if (op == Py_NE) {
+ res = !res;
+ }
+
+ if (res) {
+ Py_RETURN_TRUE;
+ }
+ else {
+ Py_RETURN_FALSE;
+ }
+}
+
+static int
+hamt_tp_contains(PyHamtObject *self, PyObject *key)
+{
+ PyObject *val;
+ return _PyHamt_Find(self, key, &val);
+}
+
+static PyObject *
+hamt_tp_subscript(PyHamtObject *self, PyObject *key)
+{
+ PyObject *val;
+ hamt_find_t res = hamt_find(self, key, &val);
+ switch (res) {
+ case F_ERROR:
+ return NULL;
+ case F_FOUND:
+ Py_INCREF(val);
+ return val;
+ case F_NOT_FOUND:
+ PyErr_SetObject(PyExc_KeyError, key);
+ return NULL;
+ default:
+ Py_UNREACHABLE();
+ }
+}
+
+static Py_ssize_t
+hamt_tp_len(PyHamtObject *self)
+{
+ return _PyHamt_Len(self);
+}
+
+static PyObject *
+hamt_tp_iter(PyHamtObject *self)
+{
+ return _PyHamt_NewIterKeys(self);
+}
+
+static PyObject *
+hamt_py_set(PyHamtObject *self, PyObject *args)
+{
+ PyObject *key;
+ PyObject *val;
+
+ if (!PyArg_UnpackTuple(args, "set", 2, 2, &key, &val)) {
+ return NULL;
+ }
+
+ return (PyObject *)_PyHamt_Assoc(self, key, val);
+}
+
+static PyObject *
+hamt_py_get(PyHamtObject *self, PyObject *args)
+{
+ PyObject *key;
+ PyObject *def = NULL;
+
+ if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &def)) {
+ return NULL;
+ }
+
+ PyObject *val = NULL;
+ hamt_find_t res = hamt_find(self, key, &val);
+ switch (res) {
+ case F_ERROR:
+ return NULL;
+ case F_FOUND:
+ Py_INCREF(val);
+ return val;
+ case F_NOT_FOUND:
+ if (def == NULL) {
+ Py_RETURN_NONE;
+ }
+ Py_INCREF(def);
+ return def;
+ default:
+ Py_UNREACHABLE();
+ }
+}
+
+static PyObject *
+hamt_py_delete(PyHamtObject *self, PyObject *key)
+{
+ return (PyObject *)_PyHamt_Without(self, key);
+}
+
+static PyObject *
+hamt_py_items(PyHamtObject *self, PyObject *args)
+{
+ return _PyHamt_NewIterItems(self);
+}
+
+static PyObject *
+hamt_py_values(PyHamtObject *self, PyObject *args)
+{
+ return _PyHamt_NewIterValues(self);
+}
+
+static PyObject *
+hamt_py_keys(PyHamtObject *self, PyObject *args)
+{
+ return _PyHamt_NewIterKeys(self);
+}
+
+#ifdef Py_DEBUG
+static PyObject *
+hamt_py_dump(PyHamtObject *self, PyObject *args)
+{
+ return hamt_dump(self);
+}
+#endif
+
+
+static PyMethodDef PyHamt_methods[] = {
+ {"set", (PyCFunction)hamt_py_set, METH_VARARGS, NULL},
+ {"get", (PyCFunction)hamt_py_get, METH_VARARGS, NULL},
+ {"delete", (PyCFunction)hamt_py_delete, METH_O, NULL},
+ {"items", (PyCFunction)hamt_py_items, METH_NOARGS, NULL},
+ {"keys", (PyCFunction)hamt_py_keys, METH_NOARGS, NULL},
+ {"values", (PyCFunction)hamt_py_values, METH_NOARGS, NULL},
+#ifdef Py_DEBUG
+ {"__dump__", (PyCFunction)hamt_py_dump, METH_NOARGS, NULL},
+#endif
+ {NULL, NULL}
+};
+
+static PySequenceMethods PyHamt_as_sequence = {
+ 0, /* sq_length */
+ 0, /* sq_concat */
+ 0, /* sq_repeat */
+ 0, /* sq_item */
+ 0, /* sq_slice */
+ 0, /* sq_ass_item */
+ 0, /* sq_ass_slice */
+ (objobjproc)hamt_tp_contains, /* sq_contains */
+ 0, /* sq_inplace_concat */
+ 0, /* sq_inplace_repeat */
+};
+
+static PyMappingMethods PyHamt_as_mapping = {
+ (lenfunc)hamt_tp_len, /* mp_length */
+ (binaryfunc)hamt_tp_subscript, /* mp_subscript */
+};
+
+PyTypeObject _PyHamt_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "hamt",
+ sizeof(PyHamtObject),
+ .tp_methods = PyHamt_methods,
+ .tp_as_mapping = &PyHamt_as_mapping,
+ .tp_as_sequence = &PyHamt_as_sequence,
+ .tp_iter = (getiterfunc)hamt_tp_iter,
+ .tp_dealloc = (destructor)hamt_tp_dealloc,
+ .tp_getattro = PyObject_GenericGetAttr,
+ .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
+ .tp_richcompare = hamt_tp_richcompare,
+ .tp_traverse = (traverseproc)hamt_tp_traverse,
+ .tp_clear = (inquiry)hamt_tp_clear,
+ .tp_new = hamt_tp_new,
+ .tp_weaklistoffset = offsetof(PyHamtObject, h_weakreflist),
+ .tp_hash = PyObject_HashNotImplemented,
+};
+
+
+/////////////////////////////////// Tree Node Types
+
+
+PyTypeObject _PyHamt_ArrayNode_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "hamt_array_node",
+ sizeof(PyHamtNode_Array),
+ 0,
+ .tp_dealloc = (destructor)hamt_node_array_dealloc,
+ .tp_getattro = PyObject_GenericGetAttr,
+ .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
+ .tp_traverse = (traverseproc)hamt_node_array_traverse,
+ .tp_free = PyObject_GC_Del,
+ .tp_hash = PyObject_HashNotImplemented,
+};
+
+PyTypeObject _PyHamt_BitmapNode_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "hamt_bitmap_node",
+ sizeof(PyHamtNode_Bitmap) - sizeof(PyObject *),
+ sizeof(PyObject *),
+ .tp_dealloc = (destructor)hamt_node_bitmap_dealloc,
+ .tp_getattro = PyObject_GenericGetAttr,
+ .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
+ .tp_traverse = (traverseproc)hamt_node_bitmap_traverse,
+ .tp_free = PyObject_GC_Del,
+ .tp_hash = PyObject_HashNotImplemented,
+};
+
+PyTypeObject _PyHamt_CollisionNode_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "hamt_collision_node",
+ sizeof(PyHamtNode_Collision) - sizeof(PyObject *),
+ sizeof(PyObject *),
+ .tp_dealloc = (destructor)hamt_node_collision_dealloc,
+ .tp_getattro = PyObject_GenericGetAttr,
+ .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
+ .tp_traverse = (traverseproc)hamt_node_collision_traverse,
+ .tp_free = PyObject_GC_Del,
+ .tp_hash = PyObject_HashNotImplemented,
+};
+
+
+int
+_PyHamt_Init(void)
+{
+ if ((PyType_Ready(&_PyHamt_Type) < 0) ||
+ (PyType_Ready(&_PyHamt_ArrayNode_Type) < 0) ||
+ (PyType_Ready(&_PyHamt_BitmapNode_Type) < 0) ||
+ (PyType_Ready(&_PyHamt_CollisionNode_Type) < 0) ||
+ (PyType_Ready(&_PyHamtKeys_Type) < 0) ||
+ (PyType_Ready(&_PyHamtValues_Type) < 0) ||
+ (PyType_Ready(&_PyHamtItems_Type) < 0))
+ {
+ return 0;
+ }
+
+ return 1;
+}
+
+void
+_PyHamt_Fini(void)
+{
+ Py_CLEAR(_empty_hamt);
+ Py_CLEAR(_empty_bitmap_node);
+}