summaryrefslogtreecommitdiff
path: root/Lib/statistics.py
diff options
context:
space:
mode:
authorSteven D'Aprano <steve@pearwood.info>2016-05-05 03:54:29 +1000
committerSteven D'Aprano <steve@pearwood.info>2016-05-05 03:54:29 +1000
commit3b06e243527da5f4ca4dc2e3126dc9f5bbdc243c (patch)
tree2c00f35c03dc6ff24ae5c72f1363ef2da761ddc0 /Lib/statistics.py
parentad039f754805dc9c9d4cd95ed249984bc1405bd6 (diff)
downloadcpython-git-3b06e243527da5f4ca4dc2e3126dc9f5bbdc243c.tar.gz
Issue 26002 and 25974
patches by Upendra Kumar and Stefan Krah speed up median by using bisect, and general speedup for Decimals using as_integer_ratio
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r--Lib/statistics.py68
1 files changed, 30 insertions, 38 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py
index 518f546544..af5d41e89e 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -105,6 +105,7 @@ import math
from fractions import Fraction
from decimal import Decimal
from itertools import groupby
+from bisect import bisect_left, bisect_right
@@ -223,56 +224,26 @@ def _exact_ratio(x):
# Optimise the common case of floats. We expect that the most often
# used numeric type will be builtin floats, so try to make this as
# fast as possible.
- if type(x) is float:
+ if type(x) is float or type(x) is Decimal:
return x.as_integer_ratio()
try:
# x may be an int, Fraction, or Integral ABC.
return (x.numerator, x.denominator)
except AttributeError:
try:
- # x may be a float subclass.
+ # x may be a float or Decimal subclass.
return x.as_integer_ratio()
except AttributeError:
- try:
- # x may be a Decimal.
- return _decimal_to_ratio(x)
- except AttributeError:
- # Just give up?
- pass
+ # Just give up?
+ pass
except (OverflowError, ValueError):
# float NAN or INF.
- assert not math.isfinite(x)
+ assert not _isfinite(x)
return (x, None)
msg = "can't convert type '{}' to numerator/denominator"
raise TypeError(msg.format(type(x).__name__))
-# FIXME This is faster than Fraction.from_decimal, but still too slow.
-def _decimal_to_ratio(d):
- """Convert Decimal d to exact integer ratio (numerator, denominator).
-
- >>> from decimal import Decimal
- >>> _decimal_to_ratio(Decimal("2.6"))
- (26, 10)
-
- """
- sign, digits, exp = d.as_tuple()
- if exp in ('F', 'n', 'N'): # INF, NAN, sNAN
- assert not d.is_finite()
- return (d, None)
- num = 0
- for digit in digits:
- num = num*10 + digit
- if exp < 0:
- den = 10**-exp
- else:
- num *= 10**exp
- den = 1
- if sign:
- num = -num
- return (num, den)
-
-
def _convert(value, T):
"""Convert value to given numeric type T."""
if type(value) is T:
@@ -305,6 +276,21 @@ def _counts(data):
return table
+def _find_lteq(a, x):
+ 'Locate the leftmost value exactly equal to x'
+ i = bisect_left(a, x)
+ if i != len(a) and a[i] == x:
+ return i
+ raise ValueError
+
+
+def _find_rteq(a, l, x):
+ 'Locate the rightmost value exactly equal to x'
+ i = bisect_right(a, x, lo=l)
+ if i != (len(a)+1) and a[i-1] == x:
+ return i-1
+ raise ValueError
+
# === Measures of central tendency (averages) ===
def mean(data):
@@ -442,9 +428,15 @@ def median_grouped(data, interval=1):
except TypeError:
# Mixed type. For now we just coerce to float.
L = float(x) - float(interval)/2
- cf = data.index(x) # Number of values below the median interval.
- # FIXME The following line could be more efficient for big lists.
- f = data.count(x) # Number of data points in the median interval.
+
+ # Uses bisection search to search for x in data with log(n) time complexity
+ # Find the position of leftmost occurence of x in data
+ l1 = _find_lteq(data, x)
+ # Find the position of rightmost occurence of x in data[l1...len(data)]
+ # Assuming always l1 <= l2
+ l2 = _find_rteq(data, l1, x)
+ cf = l1
+ f = l2 - l1 + 1
return L + interval*(n/2 - cf)/f