diff options
author | Steven D'Aprano <steve@pearwood.info> | 2016-05-05 03:54:29 +1000 |
---|---|---|
committer | Steven D'Aprano <steve@pearwood.info> | 2016-05-05 03:54:29 +1000 |
commit | 3b06e243527da5f4ca4dc2e3126dc9f5bbdc243c (patch) | |
tree | 2c00f35c03dc6ff24ae5c72f1363ef2da761ddc0 /Lib/statistics.py | |
parent | ad039f754805dc9c9d4cd95ed249984bc1405bd6 (diff) | |
download | cpython-git-3b06e243527da5f4ca4dc2e3126dc9f5bbdc243c.tar.gz |
Issue 26002 and 25974
patches by Upendra Kumar and Stefan Krah
speed up median by using bisect, and general speedup for Decimals using as_integer_ratio
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r-- | Lib/statistics.py | 68 |
1 files changed, 30 insertions, 38 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py index 518f546544..af5d41e89e 100644 --- a/Lib/statistics.py +++ b/Lib/statistics.py @@ -105,6 +105,7 @@ import math from fractions import Fraction from decimal import Decimal from itertools import groupby +from bisect import bisect_left, bisect_right @@ -223,56 +224,26 @@ def _exact_ratio(x): # Optimise the common case of floats. We expect that the most often # used numeric type will be builtin floats, so try to make this as # fast as possible. - if type(x) is float: + if type(x) is float or type(x) is Decimal: return x.as_integer_ratio() try: # x may be an int, Fraction, or Integral ABC. return (x.numerator, x.denominator) except AttributeError: try: - # x may be a float subclass. + # x may be a float or Decimal subclass. return x.as_integer_ratio() except AttributeError: - try: - # x may be a Decimal. - return _decimal_to_ratio(x) - except AttributeError: - # Just give up? - pass + # Just give up? + pass except (OverflowError, ValueError): # float NAN or INF. - assert not math.isfinite(x) + assert not _isfinite(x) return (x, None) msg = "can't convert type '{}' to numerator/denominator" raise TypeError(msg.format(type(x).__name__)) -# FIXME This is faster than Fraction.from_decimal, but still too slow. -def _decimal_to_ratio(d): - """Convert Decimal d to exact integer ratio (numerator, denominator). - - >>> from decimal import Decimal - >>> _decimal_to_ratio(Decimal("2.6")) - (26, 10) - - """ - sign, digits, exp = d.as_tuple() - if exp in ('F', 'n', 'N'): # INF, NAN, sNAN - assert not d.is_finite() - return (d, None) - num = 0 - for digit in digits: - num = num*10 + digit - if exp < 0: - den = 10**-exp - else: - num *= 10**exp - den = 1 - if sign: - num = -num - return (num, den) - - def _convert(value, T): """Convert value to given numeric type T.""" if type(value) is T: @@ -305,6 +276,21 @@ def _counts(data): return table +def _find_lteq(a, x): + 'Locate the leftmost value exactly equal to x' + i = bisect_left(a, x) + if i != len(a) and a[i] == x: + return i + raise ValueError + + +def _find_rteq(a, l, x): + 'Locate the rightmost value exactly equal to x' + i = bisect_right(a, x, lo=l) + if i != (len(a)+1) and a[i-1] == x: + return i-1 + raise ValueError + # === Measures of central tendency (averages) === def mean(data): @@ -442,9 +428,15 @@ def median_grouped(data, interval=1): except TypeError: # Mixed type. For now we just coerce to float. L = float(x) - float(interval)/2 - cf = data.index(x) # Number of values below the median interval. - # FIXME The following line could be more efficient for big lists. - f = data.count(x) # Number of data points in the median interval. + + # Uses bisection search to search for x in data with log(n) time complexity + # Find the position of leftmost occurence of x in data + l1 = _find_lteq(data, x) + # Find the position of rightmost occurence of x in data[l1...len(data)] + # Assuming always l1 <= l2 + l2 = _find_rteq(data, l1, x) + cf = l1 + f = l2 - l1 + 1 return L + interval*(n/2 - cf)/f |