summaryrefslogtreecommitdiff
path: root/Doc
diff options
context:
space:
mode:
authorStefan Krah <skrah@bytereef.org>2012-02-25 12:24:21 +0100
committerStefan Krah <skrah@bytereef.org>2012-02-25 12:24:21 +0100
commit9a2d99e28a5c2989b2db4023acae4f550885f2ef (patch)
tree29bb99fc008de30ecc1e765d6d14ee35cd5bdfe5 /Doc
parent5a3d04623b0dc8219326989bc3619d5f56737a94 (diff)
downloadcpython-git-9a2d99e28a5c2989b2db4023acae4f550885f2ef.tar.gz
- Issue #10181: New memoryview implementation fixes multiple ownership
and lifetime issues of dynamically allocated Py_buffer members (#9990) as well as crashes (#8305, #7433). Many new features have been added (See whatsnew/3.3), and the documentation has been updated extensively. The ndarray test object from _testbuffer.c implements all aspects of PEP-3118, so further development towards the complete implementation of the PEP can proceed in a test-driven manner. Thanks to Nick Coghlan, Antoine Pitrou and Pauli Virtanen for review and many ideas. - Issue #12834: Fix incorrect results of memoryview.tobytes() for non-contiguous arrays. - Issue #5231: Introduce memoryview.cast() method that allows changing format and shape without making a copy of the underlying memory.
Diffstat (limited to 'Doc')
-rw-r--r--Doc/c-api/buffer.rst485
-rw-r--r--Doc/c-api/memoryview.rst29
-rw-r--r--Doc/c-api/typeobj.rst88
-rw-r--r--Doc/library/stdtypes.rst298
-rw-r--r--Doc/whatsnew/3.3.rst56
5 files changed, 712 insertions, 244 deletions
diff --git a/Doc/c-api/buffer.rst b/Doc/c-api/buffer.rst
index d98ece3e98..2d199922f2 100644
--- a/Doc/c-api/buffer.rst
+++ b/Doc/c-api/buffer.rst
@@ -7,6 +7,7 @@ Buffer Protocol
.. sectionauthor:: Greg Stein <gstein@lyra.org>
.. sectionauthor:: Benjamin Peterson
+.. sectionauthor:: Stefan Krah
.. index::
@@ -20,7 +21,7 @@ as image processing or numeric analysis.
While each of these types have their own semantics, they share the common
characteristic of being backed by a possibly large memory buffer. It is
-then desireable, in some situations, to access that buffer directly and
+then desirable, in some situations, to access that buffer directly and
without intermediate copying.
Python provides such a facility at the C level in the form of the *buffer
@@ -60,8 +61,10 @@ isn't needed anymore. Failure to do so could lead to various issues such as
resource leaks.
-The buffer structure
-====================
+.. _buffer-structure:
+
+Buffer structure
+================
Buffer structures (or simply "buffers") are useful as a way to expose the
binary data from another object to the Python programmer. They can also be
@@ -81,246 +84,400 @@ can be created.
.. c:type:: Py_buffer
- .. c:member:: void *buf
+ .. c:member:: void \*obj
+
+ A new reference to the exporting object or *NULL*. The reference is owned
+ by the consumer and automatically decremented and set to *NULL* by
+ :c:func:`PyBuffer_Release`.
+
+ For temporary buffers that are wrapped by :c:func:`PyMemoryView_FromBuffer`
+ this field must be *NULL*.
- A pointer to the start of the memory for the object.
+ .. c:member:: void \*buf
+
+ A pointer to the start of the logical structure described by the buffer
+ fields. This can be any location within the underlying physical memory
+ block of the exporter. For example, with negative :c:member:`~Py_buffer.strides`
+ the value may point to the end of the memory block.
+
+ For contiguous arrays, the value points to the beginning of the memory
+ block.
.. c:member:: Py_ssize_t len
- :noindex:
- The total length of the memory in bytes.
+ ``product(shape) * itemsize``. For contiguous arrays, this is the length
+ of the underlying memory block. For non-contiguous arrays, it is the length
+ that the logical structure would have if it were copied to a contiguous
+ representation.
+
+ Accessing ``((char *)buf)[0] up to ((char *)buf)[len-1]`` is only valid
+ if the buffer has been obtained by a request that guarantees contiguity. In
+ most cases such a request will be :c:macro:`PyBUF_SIMPLE` or :c:macro:`PyBUF_WRITABLE`.
.. c:member:: int readonly
- An indicator of whether the buffer is read only.
+ An indicator of whether the buffer is read-only. This field is controlled
+ by the :c:macro:`PyBUF_WRITABLE` flag.
+
+ .. c:member:: Py_ssize_t itemsize
+
+ Item size in bytes of a single element. Same as the value of :func:`struct.calcsize`
+ called on non-NULL :c:member:`~Py_buffer.format` values.
+
+ Important exception: If a consumer requests a buffer without the
+ :c:macro:`PyBUF_FORMAT` flag, :c:member:`~Py_Buffer.format` will
+ be set to *NULL*, but :c:member:`~Py_buffer.itemsize` still has
+ the value for the original format.
+
+ If :c:member:`~Py_Buffer.shape` is present, the equality
+ ``product(shape) * itemsize == len`` still holds and the consumer
+ can use :c:member:`~Py_buffer.itemsize` to navigate the buffer.
+
+ If :c:member:`~Py_Buffer.shape` is *NULL* as a result of a :c:macro:`PyBUF_SIMPLE`
+ or a :c:macro:`PyBUF_WRITABLE` request, the consumer must disregard
+ :c:member:`~Py_buffer.itemsize` and assume ``itemsize == 1``.
- .. c:member:: const char *format
- :noindex:
+ .. c:member:: const char \*format
- A *NULL* terminated string in :mod:`struct` module style syntax giving
- the contents of the elements available through the buffer. If this is
- *NULL*, ``"B"`` (unsigned bytes) is assumed.
+ A *NUL* terminated string in :mod:`struct` module style syntax describing
+ the contents of a single item. If this is *NULL*, ``"B"`` (unsigned bytes)
+ is assumed.
+
+ This field is controlled by the :c:macro:`PyBUF_FORMAT` flag.
.. c:member:: int ndim
- The number of dimensions the memory represents as a multi-dimensional
- array. If it is 0, :c:data:`strides` and :c:data:`suboffsets` must be
- *NULL*.
-
- .. c:member:: Py_ssize_t *shape
-
- An array of :c:type:`Py_ssize_t`\s the length of :c:data:`ndim` giving the
- shape of the memory as a multi-dimensional array. Note that
- ``((*shape)[0] * ... * (*shape)[ndims-1])*itemsize`` should be equal to
- :c:data:`len`.
-
- .. c:member:: Py_ssize_t *strides
-
- An array of :c:type:`Py_ssize_t`\s the length of :c:data:`ndim` giving the
- number of bytes to skip to get to a new element in each dimension.
-
- .. c:member:: Py_ssize_t *suboffsets
-
- An array of :c:type:`Py_ssize_t`\s the length of :c:data:`ndim`. If these
- suboffset numbers are greater than or equal to 0, then the value stored
- along the indicated dimension is a pointer and the suboffset value
- dictates how many bytes to add to the pointer after de-referencing. A
- suboffset value that it negative indicates that no de-referencing should
- occur (striding in a contiguous memory block).
-
- Here is a function that returns a pointer to the element in an N-D array
- pointed to by an N-dimensional index when there are both non-NULL strides
- and suboffsets::
-
- void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
- Py_ssize_t *suboffsets, Py_ssize_t *indices) {
- char *pointer = (char*)buf;
- int i;
- for (i = 0; i < ndim; i++) {
- pointer += strides[i] * indices[i];
- if (suboffsets[i] >=0 ) {
- pointer = *((char**)pointer) + suboffsets[i];
- }
- }
- return (void*)pointer;
- }
+ The number of dimensions the memory represents as an n-dimensional array.
+ If it is 0, :c:member:`~Py_Buffer.buf` points to a single item representing
+ a scalar. In this case, :c:member:`~Py_buffer.shape`, :c:member:`~Py_buffer.strides`
+ and :c:member:`~Py_buffer.suboffsets` MUST be *NULL*.
+ The macro :c:macro:`PyBUF_MAX_NDIM` limits the maximum number of dimensions
+ to 64. Exporters MUST respect this limit, consumers of multi-dimensional
+ buffers SHOULD be able to handle up to :c:macro:`PyBUF_MAX_NDIM` dimensions.
- .. c:member:: Py_ssize_t itemsize
+ .. c:member:: Py_ssize_t \*shape
+
+ An array of :c:type:`Py_ssize_t` of length :c:member:`~Py_buffer.ndim`
+ indicating the shape of the memory as an n-dimensional array. Note that
+ ``shape[0] * ... * shape[ndim-1] * itemsize`` MUST be equal to
+ :c:member:`~Py_buffer.len`.
+
+ Shape values are restricted to ``shape[n] >= 0``. The case
+ ``shape[n] == 0`` requires special attention. See `complex arrays`_
+ for further information.
+
+ The shape array is read-only for the consumer.
+
+ .. c:member:: Py_ssize_t \*strides
+
+ An array of :c:type:`Py_ssize_t` of length :c:member:`~Py_buffer.ndim`
+ giving the number of bytes to skip to get to a new element in each
+ dimension.
+
+ Stride values can be any integer. For regular arrays, strides are
+ usually positive, but a consumer MUST be able to handle the case
+ ``strides[n] <= 0``. See `complex arrays`_ for further information.
+
+ The strides array is read-only for the consumer.
+
+ .. c:member:: Py_ssize_t \*suboffsets
+
+ An array of :c:type:`Py_ssize_t` of length :c:member:`~Py_buffer.ndim`.
+ If ``suboffsets[n] >= 0``, the values stored along the nth dimension are
+ pointers and the suboffset value dictates how many bytes to add to each
+ pointer after de-referencing. A suboffset value that is negative
+ indicates that no de-referencing should occur (striding in a contiguous
+ memory block).
- This is a storage for the itemsize (in bytes) of each element of the
- shared memory. It is technically un-necessary as it can be obtained
- using :c:func:`PyBuffer_SizeFromFormat`, however an exporter may know
- this information without parsing the format string and it is necessary
- to know the itemsize for proper interpretation of striding. Therefore,
- storing it is more convenient and faster.
+ This type of array representation is used by the Python Imaging Library
+ (PIL). See `complex arrays`_ for further information how to access elements
+ of such an array.
- .. c:member:: void *internal
+ The suboffsets array is read-only for the consumer.
+
+ .. c:member:: void \*internal
This is for use internally by the exporting object. For example, this
might be re-cast as an integer by the exporter and used to store flags
about whether or not the shape, strides, and suboffsets arrays must be
- freed when the buffer is released. The consumer should never alter this
+ freed when the buffer is released. The consumer MUST NOT alter this
value.
+.. _buffer-request-types:
-Buffer-related functions
-========================
+Buffer request types
+====================
+Buffers are usually obtained by sending a buffer request to an exporting
+object via :c:func:`PyObject_GetBuffer`. Since the complexity of the logical
+structure of the memory can vary drastically, the consumer uses the *flags*
+argument to specify the exact buffer type it can handle.
-.. c:function:: int PyObject_CheckBuffer(PyObject *obj)
+All :c:data:`Py_buffer` fields are unambiguously defined by the request
+type.
+
+request-independent fields
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+The following fields are not influenced by *flags* and must always be filled in
+with the correct values: :c:member:`~Py_buffer.obj`, :c:member:`~Py_buffer.buf`,
+:c:member:`~Py_buffer.len`, :c:member:`~Py_buffer.itemsize`, :c:member:`~Py_buffer.ndim`.
- Return 1 if *obj* supports the buffer interface otherwise 0. When 1 is
- returned, it doesn't guarantee that :c:func:`PyObject_GetBuffer` will
- succeed.
+readonly, format
+~~~~~~~~~~~~~~~~
-.. c:function:: int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
+ .. c:macro:: PyBUF_WRITABLE
- Export a view over some internal data from the target object *obj*.
- *obj* must not be NULL, and *view* must point to an existing
- :c:type:`Py_buffer` structure allocated by the caller (most uses of
- this function will simply declare a local variable of type
- :c:type:`Py_buffer`). The *flags* argument is a bit field indicating
- what kind of buffer is requested. The buffer interface allows
- for complicated memory layout possibilities; however, some callers
- won't want to handle all the complexity and instead request a simple
- view of the target object (using :c:macro:`PyBUF_SIMPLE` for a read-only
- view and :c:macro:`PyBUF_WRITABLE` for a read-write view).
+ Controls the :c:member:`~Py_buffer.readonly` field. If set, the exporter
+ MUST provide a writable buffer or else report failure. Otherwise, the
+ exporter MAY provide either a read-only or writable buffer, but the choice
+ MUST be consistent for all consumers.
- Some exporters may not be able to share memory in every possible way and
- may need to raise errors to signal to some consumers that something is
- just not possible. These errors should be a :exc:`BufferError` unless
- there is another error that is actually causing the problem. The
- exporter can use flags information to simplify how much of the
- :c:data:`Py_buffer` structure is filled in with non-default values and/or
- raise an error if the object can't support a simpler view of its memory.
+ .. c:macro:: PyBUF_FORMAT
- On success, 0 is returned and the *view* structure is filled with useful
- values. On error, -1 is returned and an exception is raised; the *view*
- is left in an undefined state.
+ Controls the :c:member:`~Py_buffer.format` field. If set, this field MUST
+ be filled in correctly. Otherwise, this field MUST be *NULL*.
- The following are the possible values to the *flags* arguments.
- .. c:macro:: PyBUF_SIMPLE
+:c:macro:`PyBUF_WRITABLE` can be \|'d to any of the flags in the next section.
+Since :c:macro:`PyBUF_SIMPLE` is defined as 0, :c:macro:`PyBUF_WRITABLE`
+can be used as a stand-alone flag to request a simple writable buffer.
- This is the default flag. The returned buffer exposes a read-only
- memory area. The format of data is assumed to be raw unsigned bytes,
- without any particular structure. This is a "stand-alone" flag
- constant. It never needs to be '|'d to the others. The exporter will
- raise an error if it cannot provide such a contiguous buffer of bytes.
+:c:macro:`PyBUF_FORMAT` can be \|'d to any of the flags except :c:macro:`PyBUF_SIMPLE`.
+The latter already implies format ``B`` (unsigned bytes).
- .. c:macro:: PyBUF_WRITABLE
- Like :c:macro:`PyBUF_SIMPLE`, but the returned buffer is writable. If
- the exporter doesn't support writable buffers, an error is raised.
+shape, strides, suboffsets
+~~~~~~~~~~~~~~~~~~~~~~~~~~
- .. c:macro:: PyBUF_STRIDES
+The flags that control the logical structure of the memory are listed
+in decreasing order of complexity. Note that each flag contains all bits
+of the flags below it.
- This implies :c:macro:`PyBUF_ND`. The returned buffer must provide
- strides information (i.e. the strides cannot be NULL). This would be
- used when the consumer can handle strided, discontiguous arrays.
- Handling strides automatically assumes you can handle shape. The
- exporter can raise an error if a strided representation of the data is
- not possible (i.e. without the suboffsets).
- .. c:macro:: PyBUF_ND
++-----------------------------+-------+---------+------------+
+| Request | shape | strides | suboffsets |
++=============================+=======+=========+============+
+| .. c:macro:: PyBUF_INDIRECT | yes | yes | if needed |
++-----------------------------+-------+---------+------------+
+| .. c:macro:: PyBUF_STRIDES | yes | yes | NULL |
++-----------------------------+-------+---------+------------+
+| .. c:macro:: PyBUF_ND | yes | NULL | NULL |
++-----------------------------+-------+---------+------------+
+| .. c:macro:: PyBUF_SIMPLE | NULL | NULL | NULL |
++-----------------------------+-------+---------+------------+
- The returned buffer must provide shape information. The memory will be
- assumed C-style contiguous (last dimension varies the fastest). The
- exporter may raise an error if it cannot provide this kind of
- contiguous buffer. If this is not given then shape will be *NULL*.
- .. c:macro:: PyBUF_C_CONTIGUOUS
- PyBUF_F_CONTIGUOUS
- PyBUF_ANY_CONTIGUOUS
+contiguity requests
+~~~~~~~~~~~~~~~~~~~
- These flags indicate that the contiguity returned buffer must be
- respectively, C-contiguous (last dimension varies the fastest), Fortran
- contiguous (first dimension varies the fastest) or either one. All of
- these flags imply :c:macro:`PyBUF_STRIDES` and guarantee that the
- strides buffer info structure will be filled in correctly.
+C or Fortran contiguity can be explicitly requested, with and without stride
+information. Without stride information, the buffer must be C-contiguous.
- .. c:macro:: PyBUF_INDIRECT
++-----------------------------------+-------+---------+------------+--------+
+| Request | shape | strides | suboffsets | contig |
++===================================+=======+=========+============+========+
+| .. c:macro:: PyBUF_C_CONTIGUOUS | yes | yes | NULL | C |
++-----------------------------------+-------+---------+------------+--------+
+| .. c:macro:: PyBUF_F_CONTIGUOUS | yes | yes | NULL | F |
++-----------------------------------+-------+---------+------------+--------+
+| .. c:macro:: PyBUF_ANY_CONTIGUOUS | yes | yes | NULL | C or F |
++-----------------------------------+-------+---------+------------+--------+
+| .. c:macro:: PyBUF_ND | yes | NULL | NULL | C |
++-----------------------------------+-------+---------+------------+--------+
- This flag indicates the returned buffer must have suboffsets
- information (which can be NULL if no suboffsets are needed). This can
- be used when the consumer can handle indirect array referencing implied
- by these suboffsets. This implies :c:macro:`PyBUF_STRIDES`.
- .. c:macro:: PyBUF_FORMAT
+compound requests
+~~~~~~~~~~~~~~~~~
- The returned buffer must have true format information if this flag is
- provided. This would be used when the consumer is going to be checking
- for what 'kind' of data is actually stored. An exporter should always
- be able to provide this information if requested. If format is not
- explicitly requested then the format must be returned as *NULL* (which
- means ``'B'``, or unsigned bytes).
+All possible requests are fully defined by some combination of the flags in
+the previous section. For convenience, the buffer protocol provides frequently
+used combinations as single flags.
- .. c:macro:: PyBUF_STRIDED
+In the following table *U* stands for undefined contiguity. The consumer would
+have to call :c:func:`PyBuffer_IsContiguous` to determine contiguity.
- This is equivalent to ``(PyBUF_STRIDES | PyBUF_WRITABLE)``.
- .. c:macro:: PyBUF_STRIDED_RO
- This is equivalent to ``(PyBUF_STRIDES)``.
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| Request | shape | strides | suboffsets | contig | readonly | format |
++===============================+=======+=========+============+========+==========+========+
+| .. c:macro:: PyBUF_FULL | yes | yes | if needed | U | 0 | yes |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_FULL_RO | yes | yes | if needed | U | 1 or 0 | yes |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_RECORDS | yes | yes | NULL | U | 0 | yes |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_RECORDS_RO | yes | yes | NULL | U | 1 or 0 | yes |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_STRIDED | yes | yes | NULL | U | 0 | NULL |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_STRIDED_RO | yes | yes | NULL | U | 1 or 0 | NULL |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_CONTIG | yes | NULL | NULL | C | 0 | NULL |
++-------------------------------+-------+---------+------------+--------+----------+--------+
+| .. c:macro:: PyBUF_CONTIG_RO | yes | NULL | NULL | C | 1 or 0 | NULL |
++-------------------------------+-------+---------+------------+--------+----------+--------+
- .. c:macro:: PyBUF_RECORDS
- This is equivalent to ``(PyBUF_STRIDES | PyBUF_FORMAT |
- PyBUF_WRITABLE)``.
+Complex arrays
+==============
- .. c:macro:: PyBUF_RECORDS_RO
+NumPy-style: shape and strides
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The logical structure of NumPy-style arrays is defined by :c:member:`~Py_buffer.itemsize`,
+:c:member:`~Py_buffer.ndim`, :c:member:`~Py_buffer.shape` and :c:member:`~Py_buffer.strides`.
+
+If ``ndim == 0``, the memory location pointed to by :c:member:`~Py_buffer.buf` is
+interpreted as a scalar of size :c:member:`~Py_buffer.itemsize`. In that case,
+both :c:member:`~Py_buffer.shape` and :c:member:`~Py_buffer.strides` are *NULL*.
+
+If :c:member:`~Py_buffer.strides` is *NULL*, the array is interpreted as
+a standard n-dimensional C-array. Otherwise, the consumer must access an
+n-dimensional array as follows:
+
+ ``ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1]``
+ ``item = *((typeof(item) *)ptr);``
+
+
+As noted above, :c:member:`~Py_buffer.buf` can point to any location within
+the actual memory block. An exporter can check the validity of a buffer with
+this function:
+
+.. code-block:: python
+
+ def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
+ """Verify that the parameters represent a valid array within
+ the bounds of the allocated memory:
+ char *mem: start of the physical memory block
+ memlen: length of the physical memory block
+ offset: (char *)buf - mem
+ """
+ if offset % itemsize:
+ return False
+ if offset < 0 or offset+itemsize > memlen:
+ return False
+ if any(v % itemsize for v in strides):
+ return False
+
+ if ndim <= 0:
+ return ndim == 0 and not shape and not strides
+ if 0 in shape:
+ return True
+
+ imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
+ if strides[j] <= 0)
+ imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
+ if strides[j] > 0)
+
+ return 0 <= offset+imin and offset+imax+itemsize <= memlen
+
+
+PIL-style: shape, strides and suboffsets
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In addition to the regular items, PIL-style arrays can contain pointers
+that must be followed in order to get to the next element in a dimension.
+For example, the regular three-dimensional C-array ``char v[2][2][3]`` can
+also be viewed as an array of 2 pointers to 2 two-dimensional arrays:
+``char (*v[2])[2][3]``. In suboffsets representation, those two pointers
+can be embedded at the start of :c:member:`~Py_buffer.buf`, pointing
+to two ``char x[2][3]`` arrays that can be located anywhere in memory.
+
+
+Here is a function that returns a pointer to the element in an N-D array
+pointed to by an N-dimensional index when there are both non-NULL strides
+and suboffsets::
+
+ void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
+ Py_ssize_t *suboffsets, Py_ssize_t *indices) {
+ char *pointer = (char*)buf;
+ int i;
+ for (i = 0; i < ndim; i++) {
+ pointer += strides[i] * indices[i];
+ if (suboffsets[i] >=0 ) {
+ pointer = *((char**)pointer) + suboffsets[i];
+ }
+ }
+ return (void*)pointer;
+ }
- This is equivalent to ``(PyBUF_STRIDES | PyBUF_FORMAT)``.
- .. c:macro:: PyBUF_FULL
+Buffer-related functions
+========================
- This is equivalent to ``(PyBUF_INDIRECT | PyBUF_FORMAT |
- PyBUF_WRITABLE)``.
+.. c:function:: int PyObject_CheckBuffer(PyObject *obj)
- .. c:macro:: PyBUF_FULL_RO
+ Return 1 if *obj* supports the buffer interface otherwise 0. When 1 is
+ returned, it doesn't guarantee that :c:func:`PyObject_GetBuffer` will
+ succeed.
- This is equivalent to ``(PyBUF_INDIRECT | PyBUF_FORMAT)``.
- .. c:macro:: PyBUF_CONTIG
+.. c:function:: int PyObject_GetBuffer(PyObject *exporter, Py_buffer *view, int flags)
- This is equivalent to ``(PyBUF_ND | PyBUF_WRITABLE)``.
+ Send a request to *exporter* to fill in *view* as specified by *flags*.
+ If the exporter cannot provide a buffer of the exact type, it MUST raise
+ :c:data:`PyExc_BufferError`, set :c:member:`view->obj` to *NULL* and
+ return -1.
- .. c:macro:: PyBUF_CONTIG_RO
+ On success, fill in *view*, set :c:member:`view->obj` to a new reference
+ to *exporter* and return 0.
- This is equivalent to ``(PyBUF_ND)``.
+ Successful calls to :c:func:`PyObject_GetBuffer` must be paired with calls
+ to :c:func:`PyBuffer_Release`, similar to :c:func:`malloc` and :c:func:`free`.
+ Thus, after the consumer is done with the buffer, :c:func:`PyBuffer_Release`
+ must be called exactly once.
.. c:function:: void PyBuffer_Release(Py_buffer *view)
- Release the buffer *view*. This should be called when the buffer is no
- longer being used as it may free memory from it.
+ Release the buffer *view* and decrement the reference count for
+ :c:member:`view->obj`. This function MUST be called when the buffer
+ is no longer being used, otherwise reference leaks may occur.
+
+ It is an error to call this function on a buffer that was not obtained via
+ :c:func:`PyObject_GetBuffer`.
.. c:function:: Py_ssize_t PyBuffer_SizeFromFormat(const char *)
- Return the implied :c:data:`~Py_buffer.itemsize` from the struct-stype
- :c:data:`~Py_buffer.format`.
+ Return the implied :c:data:`~Py_buffer.itemsize` from :c:data:`~Py_buffer.format`.
+ This function is not yet implemented.
-.. c:function:: int PyBuffer_IsContiguous(Py_buffer *view, char fortran)
+.. c:function:: int PyBuffer_IsContiguous(Py_buffer *view, char order)
- Return 1 if the memory defined by the *view* is C-style (*fortran* is
- ``'C'``) or Fortran-style (*fortran* is ``'F'``) contiguous or either one
- (*fortran* is ``'A'``). Return 0 otherwise.
+ Return 1 if the memory defined by the *view* is C-style (*order* is
+ ``'C'``) or Fortran-style (*order* is ``'F'``) contiguous or either one
+ (*order* is ``'A'``). Return 0 otherwise.
-.. c:function:: void PyBuffer_FillContiguousStrides(int ndim, Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t itemsize, char fortran)
+.. c:function:: void PyBuffer_FillContiguousStrides(int ndim, Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t itemsize, char order)
Fill the *strides* array with byte-strides of a contiguous (C-style if
- *fortran* is ``'C'`` or Fortran-style if *fortran* is ``'F'``) array of the
+ *order* is ``'C'`` or Fortran-style if *order* is ``'F'``) array of the
given shape with the given number of bytes per element.
-.. c:function:: int PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int infoflags)
+.. c:function:: int PyBuffer_FillInfo(Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
+
+ Handle buffer requests for an exporter that wants to expose *buf* of size *len*
+ with writability set according to *readonly*. *buf* is interpreted as a sequence
+ of unsigned bytes.
+
+ The *flags* argument indicates the request type. This function always fills in
+ *view* as specified by flags, unless *buf* has been designated as read-only
+ and :c:macro:`PyBUF_WRITABLE` is set in *flags*.
+
+ On success, set :c:member:`view->obj` to a new reference to *exporter* and
+ return 0. Otherwise, raise :c:data:`PyExc_BufferError`, set
+ :c:member:`view->obj` to *NULL* and return -1;
+
+ If this function is used as part of a :ref:`getbufferproc <buffer-structs>`,
+ *exporter* MUST be set to the exporting object. Otherwise, *exporter* MUST
+ be NULL.
+
- Fill in a buffer-info structure, *view*, correctly for an exporter that can
- only share a contiguous chunk of memory of "unsigned bytes" of the given
- length. Return 0 on success and -1 (with raising an error) on error.
diff --git a/Doc/c-api/memoryview.rst b/Doc/c-api/memoryview.rst
index 6b49cdf70a..ef039753af 100644
--- a/Doc/c-api/memoryview.rst
+++ b/Doc/c-api/memoryview.rst
@@ -17,16 +17,19 @@ any other object.
Create a memoryview object from an object that provides the buffer interface.
If *obj* supports writable buffer exports, the memoryview object will be
- readable and writable, otherwise it will be read-only.
+ read/write, otherwise it may be either read-only or read/write at the
+ discretion of the exporter.
+.. c:function:: PyObject *PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)
+
+ Create a memoryview object using *mem* as the underlying buffer.
+ *flags* can be one of :c:macro:`PyBUF_READ` or :c:macro:`PyBUF_WRITE`.
.. c:function:: PyObject *PyMemoryView_FromBuffer(Py_buffer *view)
Create a memoryview object wrapping the given buffer structure *view*.
- The memoryview object then owns the buffer represented by *view*, which
- means you shouldn't try to call :c:func:`PyBuffer_Release` yourself: it
- will be done on deallocation of the memoryview object.
-
+ For simple byte buffers, :c:func:`PyMemoryView_FromMemory` is the preferred
+ function.
.. c:function:: PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
@@ -43,10 +46,16 @@ any other object.
currently allowed to create subclasses of :class:`memoryview`.
-.. c:function:: Py_buffer *PyMemoryView_GET_BUFFER(PyObject *obj)
+.. c:function:: Py_buffer *PyMemoryView_GET_BUFFER(PyObject *mview)
+
+ Return a pointer to the memoryview's private copy of the exporter's buffer.
+ *mview* **must** be a memoryview instance; this macro doesn't check its type,
+ you must do it yourself or you will risk crashes.
+
+.. c:function:: Py_buffer *PyMemoryView_GET_BASE(PyObject *mview)
- Return a pointer to the buffer structure wrapped by the given
- memoryview object. The object **must** be a memoryview instance;
- this macro doesn't check its type, you must do it yourself or you
- will risk crashes.
+ Return either a pointer to the exporting object that the memoryview is based
+ on or *NULL* if the memoryview has been created by one of the functions
+ :c:func:`PyMemoryView_FromMemory` or :c:func:`PyMemoryView_FromBuffer`.
+ *mview* **must** be a memoryview instance.
diff --git a/Doc/c-api/typeobj.rst b/Doc/c-api/typeobj.rst
index 68ca9adaa9..b15d927719 100644
--- a/Doc/c-api/typeobj.rst
+++ b/Doc/c-api/typeobj.rst
@@ -1198,46 +1198,74 @@ Buffer Object Structures
.. sectionauthor:: Greg J. Stein <greg@lyra.org>
.. sectionauthor:: Benjamin Peterson
+.. sectionauthor:: Stefan Krah
+.. c:type:: PyBufferProcs
-The :ref:`buffer interface <bufferobjects>` exports a model where an object can expose its internal
-data.
+ This structure holds pointers to the functions required by the
+ :ref:`Buffer protocol <bufferobjects>`. The protocol defines how
+ an exporter object can expose its internal data to consumer objects.
-If an object does not export the buffer interface, then its :attr:`tp_as_buffer`
-member in the :c:type:`PyTypeObject` structure should be *NULL*. Otherwise, the
-:attr:`tp_as_buffer` will point to a :c:type:`PyBufferProcs` structure.
+.. c:member:: getbufferproc PyBufferProcs.bf_getbuffer
+ The signature of this function is::
-.. c:type:: PyBufferProcs
+ int (PyObject *exporter, Py_buffer *view, int flags);
+
+ Handle a request to *exporter* to fill in *view* as specified by *flags*.
+ A standard implementation of this function will take these steps:
+
+ - Check if the request can be met. If not, raise :c:data:`PyExc_BufferError`,
+ set :c:data:`view->obj` to *NULL* and return -1.
+
+ - Fill in the requested fields.
+
+ - Increment an internal counter for the number of exports.
+
+ - Set :c:data:`view->obj` to *exporter* and increment :c:data:`view->obj`.
+
+ - Return 0.
+
+ The individual fields of *view* are described in section
+ :ref:`Buffer structure <buffer-structure>`, the rules how an exporter
+ must react to specific requests are in section
+ :ref:`Buffer request types <buffer-request-types>`.
+
+ All memory pointed to in the :c:type:`Py_buffer` structure belongs to
+ the exporter and must remain valid until there are no consumers left.
+ :c:member:`~Py_buffer.shape`, :c:member:`~Py_buffer.strides`,
+ :c:member:`~Py_buffer.suboffsets` and :c:member:`~Py_buffer.internal`
+ are read-only for the consumer.
+
+ :c:func:`PyBuffer_FillInfo` provides an easy way of exposing a simple
+ bytes buffer while dealing correctly with all request types.
+
+ :c:func:`PyObject_GetBuffer` is the interface for the consumer that
+ wraps this function.
+
+.. c:member:: releasebufferproc PyBufferProcs.bf_releasebuffer
+
+ The signature of this function is::
+
+ void (PyObject *exporter, Py_buffer *view);
- Structure used to hold the function pointers which define an implementation of
- the buffer protocol.
+ Handle a request to release the resources of the buffer. If no resources
+ need to be released, this field may be *NULL*. A standard implementation
+ of this function will take these steps:
- .. c:member:: getbufferproc bf_getbuffer
+ - Decrement an internal counter for the number of exports.
- This should fill a :c:type:`Py_buffer` with the necessary data for
- exporting the type. The signature of :data:`getbufferproc` is ``int
- (PyObject *obj, Py_buffer *view, int flags)``. *obj* is the object to
- export, *view* is the :c:type:`Py_buffer` struct to fill, and *flags* gives
- the conditions the caller wants the memory under. (See
- :c:func:`PyObject_GetBuffer` for all flags.) :c:member:`bf_getbuffer` is
- responsible for filling *view* with the appropriate information.
- (:c:func:`PyBuffer_FillView` can be used in simple cases.) See
- :c:type:`Py_buffer`\s docs for what needs to be filled in.
+ - If the counter is 0, free all memory associated with *view*.
+ The exporter MUST use the :c:member:`~Py_buffer.internal` field to keep
+ track of buffer-specific resources (if present). This field is guaranteed
+ to remain constant, while a consumer MAY pass a copy of the original buffer
+ as the *view* argument.
- .. c:member:: releasebufferproc bf_releasebuffer
- This should release the resources of the buffer. The signature of
- :c:data:`releasebufferproc` is ``void (PyObject *obj, Py_buffer *view)``.
- If the :c:data:`bf_releasebuffer` function is not provided (i.e. it is
- *NULL*), then it does not ever need to be called.
+ This function MUST NOT decrement :c:data:`view->obj`, since that is
+ done automatically in :c:func:`PyBuffer_Release`.
- The exporter of the buffer interface must make sure that any memory
- pointed to in the :c:type:`Py_buffer` structure remains valid until
- releasebuffer is called. Exporters will need to define a
- :c:data:`bf_releasebuffer` function if they can re-allocate their memory,
- strides, shape, suboffsets, or format variables which they might share
- through the struct bufferinfo.
- See :c:func:`PyBuffer_Release`.
+ :c:func:`PyBuffer_Release` is the interface for the consumer that
+ wraps this function.
diff --git a/Doc/library/stdtypes.rst b/Doc/library/stdtypes.rst
index a07be4f91f..183b2f78fc 100644
--- a/Doc/library/stdtypes.rst
+++ b/Doc/library/stdtypes.rst
@@ -2377,7 +2377,7 @@ memoryview type
:class:`memoryview` objects allow Python code to access the internal data
of an object that supports the :ref:`buffer protocol <bufferobjects>` without
-copying. Memory is generally interpreted as simple bytes.
+copying.
.. class:: memoryview(obj)
@@ -2391,52 +2391,88 @@ copying. Memory is generally interpreted as simple bytes.
is a single byte, but other types such as :class:`array.array` may have
bigger elements.
- ``len(view)`` returns the total number of elements in the memoryview,
- *view*. The :class:`~memoryview.itemsize` attribute will give you the
+ ``len(view)`` is equal to the length of :class:`~memoryview.tolist`.
+ If ``view.ndim = 0``, the length is 1. If ``view.ndim = 1``, the length
+ is equal to the number of elements in the view. For higher dimensions,
+ the length is equal to the length of the nested list representation of
+ the view. The :class:`~memoryview.itemsize` attribute will give you the
number of bytes in a single element.
- A :class:`memoryview` supports slicing to expose its data. Taking a single
- index will return a single element as a :class:`bytes` object. Full
- slicing will result in a subview::
+ A :class:`memoryview` supports slicing to expose its data. If
+ :class:`~memoryview.format` is one of the native format specifiers
+ from the :mod:`struct` module, indexing will return a single element
+ with the correct type. Full slicing will result in a subview::
+
+ >>> v = memoryview(b'abcefg')
+ >>> v[1]
+ 98
+ >>> v[-1]
+ 103
+ >>> v[1:4]
+ <memory at 0x7f3ddc9f4350>
+ >>> bytes(v[1:4])
+ b'bce'
+
+ Other native formats::
+
+ >>> import array
+ >>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
+ >>> a[0]
+ -11111111
+ >>> a[-1]
+ 44444444
+ >>> a[2:3].tolist()
+ [-33333333]
+ >>> a[::2].tolist()
+ [-11111111, -33333333]
+ >>> a[::-1].tolist()
+ [44444444, -33333333, 22222222, -11111111]
- >>> v = memoryview(b'abcefg')
- >>> v[1]
- b'b'
- >>> v[-1]
- b'g'
- >>> v[1:4]
- <memory at 0x77ab28>
- >>> bytes(v[1:4])
- b'bce'
-
- If the object the memoryview is over supports changing its data, the
- memoryview supports slice assignment::
+ .. versionadded:: 3.3
+
+ If the underlying object is writable, the memoryview supports slice
+ assignment. Resizing is not allowed::
>>> data = bytearray(b'abcefg')
>>> v = memoryview(data)
>>> v.readonly
False
- >>> v[0] = b'z'
+ >>> v[0] = ord(b'z')
>>> data
bytearray(b'zbcefg')
>>> v[1:4] = b'123'
>>> data
bytearray(b'z123fg')
- >>> v[2] = b'spam'
+ >>> v[2:3] = b'spam'
Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ValueError: cannot modify size of memoryview object
-
- Notice how the size of the memoryview object cannot be changed.
+ File "<stdin>", line 1, in <module>
+ ValueError: memoryview assignment: lvalue and rvalue have different structures
+ >>> v[2:6] = b'spam'
+ >>> data
+ bytearray(b'z1spam')
- Memoryviews of hashable (read-only) types are also hashable and their
- hash value matches the corresponding bytes object::
+ Memoryviews of hashable (read-only) types are also hashable. The hash
+ is defined as ``hash(m) == hash(m.tobytes())``::
>>> v = memoryview(b'abcefg')
>>> hash(v) == hash(b'abcefg')
True
>>> hash(v[2:4]) == hash(b'ce')
True
+ >>> hash(v[::-2]) == hash(b'abcefg'[::-2])
+ True
+
+ Hashing of multi-dimensional objects is supported::
+
+ >>> buf = bytes(list(range(12)))
+ >>> x = memoryview(buf)
+ >>> y = x.cast('B', shape=[2,2,3])
+ >>> x.tolist()
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
+ >>> y.tolist()
+ [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
+ >>> hash(x) == hash(y) == hash(y.tobytes())
+ True
.. versionchanged:: 3.3
Memoryview objects are now hashable.
@@ -2455,12 +2491,20 @@ copying. Memory is generally interpreted as simple bytes.
>>> bytes(m)
b'abc'
+ For non-contiguous arrays the result is equal to the flattened list
+ representation with all elements converted to bytes.
+
.. method:: tolist()
- Return the data in the buffer as a list of integers. ::
+ Return the data in the buffer as a list of elements. ::
>>> memoryview(b'abc').tolist()
[97, 98, 99]
+ >>> import array
+ >>> a = array.array('d', [1.1, 2.2, 3.3])
+ >>> m = memoryview(a)
+ >>> m.tolist()
+ [1.1, 2.2, 3.3]
.. method:: release()
@@ -2487,7 +2531,7 @@ copying. Memory is generally interpreted as simple bytes.
>>> with memoryview(b'abc') as m:
... m[0]
...
- b'a'
+ 97
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
@@ -2495,45 +2539,219 @@ copying. Memory is generally interpreted as simple bytes.
.. versionadded:: 3.2
+ .. method:: cast(format[, shape])
+
+ Cast a memoryview to a new format or shape. *shape* defaults to
+ ``[byte_length//new_itemsize]``, which means that the result view
+ will be one-dimensional. The return value is a new memoryview, but
+ the buffer itself is not copied. Supported casts are 1D -> C-contiguous
+ and C-contiguous -> 1D. One of the formats must be a byte format
+ ('B', 'b' or 'c'). The byte length of the result must be the same
+ as the original length.
+
+ Cast 1D/long to 1D/unsigned bytes::
+
+ >>> import array
+ >>> a = array.array('l', [1,2,3])
+ >>> x = memoryview(a)
+ >>> x.format
+ 'l'
+ >>> x.itemsize
+ 8
+ >>> len(x)
+ 3
+ >>> x.nbytes
+ 24
+ >>> y = x.cast('B')
+ >>> y.format
+ 'B'
+ >>> y.itemsize
+ 1
+ >>> len(y)
+ 24
+ >>> y.nbytes
+ 24
+
+ Cast 1D/unsigned bytes to 1D/char::
+
+ >>> b = bytearray(b'zyz')
+ >>> x = memoryview(b)
+ >>> x[0] = b'a'
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ ValueError: memoryview: invalid value for format "B"
+ >>> y = x.cast('c')
+ >>> y[0] = b'a'
+ >>> b
+ bytearray(b'ayz')
+
+ Cast 1D/bytes to 3D/ints to 1D/signed char::
+
+ >>> import struct
+ >>> buf = struct.pack("i"*12, *list(range(12)))
+ >>> x = memoryview(buf)
+ >>> y = x.cast('i', shape=[2,2,3])
+ >>> y.tolist()
+ [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
+ >>> y.format
+ 'i'
+ >>> y.itemsize
+ 4
+ >>> len(y)
+ 2
+ >>> y.nbytes
+ 48
+ >>> z = y.cast('b')
+ >>> z.format
+ 'b'
+ >>> z.itemsize
+ 1
+ >>> len(z)
+ 48
+ >>> z.nbytes
+ 48
+
+ Cast 1D/unsigned char to to 2D/unsigned long::
+
+ >>> buf = struct.pack("L"*6, *list(range(6)))
+ >>> x = memoryview(buf)
+ >>> y = x.cast('L', shape=[2,3])
+ >>> len(y)
+ 2
+ >>> y.nbytes
+ 48
+ >>> y.tolist()
+ [[0, 1, 2], [3, 4, 5]]
+
+ .. versionadded:: 3.3
+
There are also several readonly attributes available:
+ .. attribute:: obj
+
+ The underlying object of the memoryview::
+
+ >>> b = bytearray(b'xyz')
+ >>> m = memoryview(b)
+ >>> m.obj is b
+ True
+
+ .. versionadded:: 3.3
+
+ .. attribute:: nbytes
+
+ ``nbytes == product(shape) * itemsize == len(m.tobytes())``. This is
+ the amount of space in bytes that the array would use in a contiguous
+ representation. It is not necessarily equal to len(m)::
+
+ >>> import array
+ >>> a = array.array('i', [1,2,3,4,5])
+ >>> m = memoryview(a)
+ >>> len(m)
+ 5
+ >>> m.nbytes
+ 20
+ >>> y = m[::2]
+ >>> len(y)
+ 3
+ >>> y.nbytes
+ 12
+ >>> len(y.tobytes())
+ 12
+
+ Multi-dimensional arrays::
+
+ >>> import struct
+ >>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])
+ >>> x = memoryview(buf)
+ >>> y = x.cast('d', shape=[3,4])
+ >>> y.tolist()
+ [[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
+ >>> len(y)
+ 3
+ >>> y.nbytes
+ 96
+
+ .. versionadded:: 3.3
+
+ .. attribute:: readonly
+
+ A bool indicating whether the memory is read only.
+
.. attribute:: format
A string containing the format (in :mod:`struct` module style) for each
- element in the view. This defaults to ``'B'``, a simple bytestring.
+ element in the view. A memoryview can be created from exporters with
+ arbitrary format strings, but some methods (e.g. :meth:`tolist`) are
+ restricted to native single element formats. Special care must be taken
+ when comparing memoryviews. Since comparisons are required to return a
+ value for ``==`` and ``!=``, two memoryviews referencing the same
+ exporter can compare as not-equal if the exporter's format is not
+ understood::
+
+ >>> from ctypes import BigEndianStructure, c_long
+ >>> class BEPoint(BigEndianStructure):
+ ... _fields_ = [("x", c_long), ("y", c_long)]
+ ...
+ >>> point = BEPoint(100, 200)
+ >>> a = memoryview(point)
+ >>> b = memoryview(point)
+ >>> a == b
+ False
+ >>> a.tolist()
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ NotImplementedError: memoryview: unsupported format T{>l:x:>l:y:}
.. attribute:: itemsize
The size in bytes of each element of the memoryview::
- >>> m = memoryview(array.array('H', [1,2,3]))
+ >>> import array, struct
+ >>> m = memoryview(array.array('H', [32000, 32001, 32002]))
>>> m.itemsize
2
>>> m[0]
- b'\x01\x00'
- >>> len(m[0]) == m.itemsize
+ 32000
+ >>> struct.calcsize('H') == m.itemsize
True
- .. attribute:: shape
-
- A tuple of integers the length of :attr:`ndim` giving the shape of the
- memory as a N-dimensional array.
-
.. attribute:: ndim
An integer indicating how many dimensions of a multi-dimensional array the
memory represents.
+ .. attribute:: shape
+
+ A tuple of integers the length of :attr:`ndim` giving the shape of the
+ memory as a N-dimensional array.
+
.. attribute:: strides
A tuple of integers the length of :attr:`ndim` giving the size in bytes to
access each element for each dimension of the array.
- .. attribute:: readonly
+ .. attribute:: suboffsets
- A bool indicating whether the memory is read only.
+ Used internally for PIL-style arrays. The value is informational only.
+
+ .. attribute:: c_contiguous
+
+ A bool indicating whether the memory is C-contiguous.
+
+ .. versionadded:: 3.3
+
+ .. attribute:: f_contiguous
+
+ A bool indicating whether the memory is Fortran contiguous.
+
+ .. versionadded:: 3.3
+
+ .. attribute:: contiguous
+
+ A bool indicating whether the memory is contiguous.
- .. memoryview.suboffsets isn't documented because it only seems useful for C
+ .. versionadded:: 3.3
.. _typecontextmanager:
diff --git a/Doc/whatsnew/3.3.rst b/Doc/whatsnew/3.3.rst
index 20e2914bc0..560331f39b 100644
--- a/Doc/whatsnew/3.3.rst
+++ b/Doc/whatsnew/3.3.rst
@@ -49,6 +49,62 @@
This article explains the new features in Python 3.3, compared to 3.2.
+.. _pep-3118:
+
+PEP 3118: New memoryview implementation and buffer protocol documentation
+=========================================================================
+
+:issue:`10181` - memoryview bug fixes and features.
+ Written by Stefan Krah.
+
+The new memoryview implementation comprehensively fixes all ownership and
+lifetime issues of dynamically allocated fields in the Py_buffer struct
+that led to multiple crash reports. Additionally, several functions that
+crashed or returned incorrect results for non-contiguous or multi-dimensional
+input have been fixed.
+
+The memoryview object now has a PEP-3118 compliant getbufferproc()
+that checks the consumer's request type. Many new features have been
+added, most of them work in full generality for non-contiguous arrays
+and arrays with suboffsets.
+
+The documentation has been updated, clearly spelling out responsibilities
+for both exporters and consumers. Buffer request flags are grouped into
+basic and compound flags. The memory layout of non-contiguous and
+multi-dimensional NumPy-style arrays is explained.
+
+Features
+--------
+
+* All native single character format specifiers in struct module syntax
+ (optionally prefixed with '@') are now supported.
+
+* With some restrictions, the cast() method allows changing of format and
+ shape of C-contiguous arrays.
+
+* Multi-dimensional list representations are supported for any array type.
+
+* Multi-dimensional comparisons are supported for any array type.
+
+* All array types are hashable if the exporting object is hashable
+ and the view is read-only.
+
+* Arbitrary slicing of any 1-D arrays type is supported. For example, it
+ is now possible to reverse a memoryview in O(1) by using a negative step.
+
+API changes
+-----------
+
+* The maximum number of dimensions is officially limited to 64.
+
+* The representation of empty shape, strides and suboffsets is now
+ an empty tuple instead of None.
+
+* Accessing a memoryview element with format 'B' (unsigned bytes)
+ now returns an integer (in accordance with the struct module syntax).
+ For returning a bytes object the view must be cast to 'c' first.
+
+
.. _pep-393:
PEP 393: Flexible String Representation