summaryrefslogtreecommitdiff
path: root/utility/dumpRSAPublicKey.c
blob: fc238d7f0f418b0c64328d02cfc2f0cd3c270188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* C port of DumpPublicKey.java from the Android Open source project with
 * support for additional RSA key sizes. (platform/system/core,git/libmincrypt
 * /tools/DumpPublicKey.java). Uses the OpenSSL X509 and BIGNUM library.
 */

#include <openssl/pem.h>

#include <stdint.h>
#include <string.h>
#include <unistd.h>

/* Command line tool to extract RSA public keys from X.509 certificates
 * and output a pre-processed version of keys for use by RSA verification
 * routines.
 */

int check(RSA* key) {
  int public_exponent = BN_get_word(key->e);
  int modulus = BN_num_bits(key->n);

  if (public_exponent != 3 && public_exponent != 65537) {
    fprintf(stderr,
            "WARNING: Public exponent should be 3 or 65537 (but is %d).\n",
            public_exponent);
  }

  if (modulus != 1024 && modulus != 2048 && modulus != 4096
      && modulus != 8192) {
    fprintf(stderr, "ERROR: Unknown modulus length = %d.\n", modulus);
    return 0;
  }
  return 1;
}

/* Pre-processes and outputs RSA public key to standard out.
 */
void output(RSA* key) {
  int i, nwords;
  BIGNUM *N = key->n;
  BIGNUM *Big1 = NULL, *Big2 = NULL, *Big32 = NULL, *BigMinus1 = NULL;
  BIGNUM *B = NULL;
  BIGNUM *N0inv= NULL, *R = NULL, *RR = NULL, *RRTemp = NULL, *NnumBits = NULL;
  BIGNUM *n = NULL, *rr = NULL;
  BN_CTX *bn_ctx = BN_CTX_new();
  uint32_t n0invout;

  N = key->n;
  /* Output size of RSA key in 32-bit words */
  nwords = BN_num_bits(N) / 32;
  if (-1 == write(1, &nwords, sizeof(nwords)))
    goto failure;


  /* Initialize BIGNUMs */
  Big1 = BN_new();
  Big2 = BN_new();
  Big32 = BN_new();
  BigMinus1 = BN_new();
  N0inv= BN_new();
  R = BN_new();
  RR = BN_new();
  RRTemp = BN_new();
  NnumBits = BN_new();
  n = BN_new();
  rr = BN_new();


  BN_set_word(Big1, 1L);
  BN_set_word(Big2, 2L);
  BN_set_word(Big32, 32L);
  BN_sub(BigMinus1, Big1, Big2);

  B = BN_new();
  BN_exp(B, Big2, Big32, bn_ctx); /* B = 2^32 */

  /* Calculate and output N0inv = -1 / N[0] mod 2^32 */
  BN_mod_inverse(N0inv, N, B, bn_ctx);
  BN_sub(N0inv, B, N0inv);
  n0invout = BN_get_word(N0inv);
  if (-1 == write(1, &n0invout, sizeof(n0invout)))
    goto failure;

  /* Calculate R = 2^(# of key bits) */
  BN_set_word(NnumBits, BN_num_bits(N));
  BN_exp(R, Big2, NnumBits, bn_ctx);

  /* Calculate RR = R^2 mod N */
  BN_copy(RR, R);
  BN_mul(RRTemp, RR, R, bn_ctx);
  BN_mod(RR, RRTemp, N, bn_ctx);


  /* Write out modulus as little endian array of integers. */
  for (i = 0; i < nwords; ++i) {
    uint32_t nout;

    BN_mod(n, N, B, bn_ctx); /* n = N mod B */
    nout = BN_get_word(n);
    if (-1 == write(1, &nout, sizeof(nout)))
      goto failure;

    BN_rshift(N, N, 32); /*  N = N/B */
  }

  /* Write R^2 as little endian array of integers. */
  for (i = 0; i < nwords; ++i) {
    uint32_t rrout;

    BN_mod(rr, RR, B, bn_ctx); /* rr = RR mod B */
    rrout = BN_get_word(rr);
    if (-1 == write(1, &rrout, sizeof(rrout)))
      goto failure;

    BN_rshift(RR, RR, 32); /* RR = RR/B */
  }

failure:
  /* Free BIGNUMs. */
  BN_free(Big1);
  BN_free(Big2);
  BN_free(Big32);
  BN_free(BigMinus1);
  BN_free(N0inv);
  BN_free(R);
  BN_free(RRTemp);
  BN_free(NnumBits);
  BN_free(n);
  BN_free(rr);

}

int main(int argc, char* argv[]) {
  int cert_mode = 0;
  FILE* fp;
  X509* cert = NULL;
  RSA* pubkey = NULL;
  EVP_PKEY* key;
  char *progname;

  if (argc != 3 || (strcmp(argv[1], "-cert") && strcmp(argv[1], "-pub"))) {
    progname = strrchr(argv[0], '/');
    if (progname)
      progname++;
    else
      progname = argv[0];
    fprintf(stderr, "Usage: %s <-cert | -pub> <file>\n", progname);
    return -1;
  }

  if (!strcmp(argv[1], "-cert"))
    cert_mode = 1;

  fp = fopen(argv[2], "r");

  if (!fp) {
    fprintf(stderr, "Couldn't open file %s!\n", argv[2]);
    return -1;
  }

  if (cert_mode) {
    /* Read the certificate */
    if (!PEM_read_X509(fp, &cert, NULL, NULL)) {
      fprintf(stderr, "Couldn't read certificate.\n");
      goto fail;
    }

    /* Get the public key from the certificate. */
    key = X509_get_pubkey(cert);

    /* Convert to a RSA_style key. */
    if (!(pubkey = EVP_PKEY_get1_RSA(key))) {
      fprintf(stderr, "Couldn't convert to a RSA style key.\n");
      goto fail;
    }
  } else {
    /* Read the pubkey in .PEM format. */
    if (!(pubkey = PEM_read_RSA_PUBKEY(fp, NULL, NULL, NULL))) {
      fprintf(stderr, "Couldn't read public key file.\n");
      goto fail;
    }
  }

  if (check(pubkey)) {
    output(pubkey);
  }

fail:
  X509_free(cert);
  RSA_free(pubkey);
  fclose(fp);

  return 0;
}