summaryrefslogtreecommitdiff
path: root/firmware/lib/gpt_misc.c
blob: 4061bdd961bd6deb77a3528d244474f46c31a1de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "sysincludes.h"

#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "gpt.h"
#include "utility.h"
#include "vboot_api.h"


/**
 * Allocate and read GPT data from the drive.
 *
 * The sector_bytes and gpt_drive_sectors fields should be filled on input.  The
 * primary and secondary header and entries are filled on output.
 *
 * Returns 0 if successful, 1 if error.
 */
int AllocAndReadGptData(VbExDiskHandle_t disk_handle, GptData *gptdata)
{
	uint64_t max_entries_bytes = MAX_NUMBER_OF_ENTRIES * sizeof(GptEntry);
	int primary_valid = 0, secondary_valid = 0;

	/* No data to be written yet */
	gptdata->modified = 0;

	/* Allocate all buffers */
	gptdata->primary_header = (uint8_t *)VbExMalloc(gptdata->sector_bytes);
	gptdata->secondary_header =
		(uint8_t *)VbExMalloc(gptdata->sector_bytes);
	gptdata->primary_entries = (uint8_t *)VbExMalloc(max_entries_bytes);
	gptdata->secondary_entries = (uint8_t *)VbExMalloc(max_entries_bytes);

	if (gptdata->primary_header == NULL ||
	    gptdata->secondary_header == NULL ||
	    gptdata->primary_entries == NULL ||
	    gptdata->secondary_entries == NULL)
		return 1;

	/* Read primary header from the drive, skipping the protective MBR */
	if (0 != VbExDiskRead(disk_handle, 1, 1, gptdata->primary_header))
		return 1;

	/* Only read primary GPT if the primary header is valid */
	GptHeader* primary_header = (GptHeader*)gptdata->primary_header;
	if (0 == CheckHeader(primary_header, 0,
			gptdata->streaming_drive_sectors,
			gptdata->gpt_drive_sectors,
			gptdata->flags)) {
		primary_valid = 1;
		uint64_t entries_bytes = primary_header->number_of_entries
				* primary_header->size_of_entry;
		uint64_t entries_sectors = entries_bytes
					/ gptdata->sector_bytes;
		if (0 != VbExDiskRead(disk_handle,
				      primary_header->entries_lba,
				      entries_sectors,
				      gptdata->primary_entries))
			return 1;
	} else {
		VBDEBUG(("Primary GPT header invalid!\n"));
	}

	/* Read secondary header from the end of the drive */
	if (0 != VbExDiskRead(disk_handle, gptdata->gpt_drive_sectors - 1, 1,
			      gptdata->secondary_header))
		return 1;

	/* Only read secondary GPT if the secondary header is valid */
	GptHeader* secondary_header = (GptHeader*)gptdata->secondary_header;
	if (0 == CheckHeader(secondary_header, 1,
			gptdata->streaming_drive_sectors,
			gptdata->gpt_drive_sectors,
			gptdata->flags)) {
		secondary_valid = 1;
		uint64_t entries_bytes = secondary_header->number_of_entries
				* secondary_header->size_of_entry;
		uint64_t entries_sectors = entries_bytes
				/ gptdata->sector_bytes;
		if (0 != VbExDiskRead(disk_handle,
				      secondary_header->entries_lba,
				      entries_sectors,
				      gptdata->secondary_entries))
			return 1;
	} else {
		VBDEBUG(("Secondary GPT header invalid!\n"));
	}

	/* Return 0 if least one GPT header was valid */
	return (primary_valid || secondary_valid) ? 0 : 1;
}

/**
 * Write any changes for the GPT data back to the drive, then free the buffers.
 *
 * Returns 0 if successful, 1 if error.
 */
int WriteAndFreeGptData(VbExDiskHandle_t disk_handle, GptData *gptdata)
{
	int legacy = 0;
	GptHeader *header = (GptHeader *)gptdata->primary_header;
	uint64_t entries_bytes = header->number_of_entries
				* header->size_of_entry;
	uint64_t entries_sectors = entries_bytes / gptdata->sector_bytes;
	int ret = 1;

	/*
	 * TODO(namnguyen): Preserve padding between primary GPT header and
	 * its entries.
	 */
	uint64_t entries_lba = GPT_PMBR_SECTORS + GPT_HEADER_SECTORS;
	if (gptdata->primary_header) {
		GptHeader *h = (GptHeader *)(gptdata->primary_header);
		entries_lba = h->entries_lba;

		/*
		 * Avoid even looking at this data if we don't need to. We
		 * may in fact not have read it from disk if the read failed,
		 * and this avoids a valgrind complaint.
		 */
		if (gptdata->modified) {
			legacy = !Memcmp(h->signature, GPT_HEADER_SIGNATURE2,
					GPT_HEADER_SIGNATURE_SIZE);
		}
		if (gptdata->modified & GPT_MODIFIED_HEADER1) {
			if (legacy) {
				VBDEBUG(("Not updating GPT header 1: "
					 "legacy mode is enabled.\n"));
			} else {
				VBDEBUG(("Updating GPT header 1\n"));
				if (0 != VbExDiskWrite(disk_handle, 1, 1,
						       gptdata->primary_header))
					goto fail;
			}
		}
	}

	if (gptdata->primary_entries) {
		if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
			if (legacy) {
				VBDEBUG(("Not updating GPT entries 1: "
					 "legacy mode is enabled.\n"));
			} else {
				VBDEBUG(("Updating GPT entries 1\n"));
				if (0 != VbExDiskWrite(disk_handle, entries_lba,
						entries_sectors,
						gptdata->primary_entries))
					goto fail;
			}
		}
	}

	entries_lba = (gptdata->gpt_drive_sectors - entries_sectors -
		GPT_HEADER_SECTORS);
	if (gptdata->secondary_header) {
		GptHeader *h = (GptHeader *)(gptdata->secondary_header);
		entries_lba = h->entries_lba;
		if (gptdata->modified & GPT_MODIFIED_HEADER2) {
			VBDEBUG(("Updating GPT entries 2\n"));
			if (0 != VbExDiskWrite(disk_handle,
					       gptdata->gpt_drive_sectors - 1, 1,
					       gptdata->secondary_header))
				goto fail;
		}
	}

	if (gptdata->secondary_entries) {
		if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
			VBDEBUG(("Updating GPT header 2\n"));
			if (0 != VbExDiskWrite(disk_handle,
				entries_lba, entries_sectors,
				gptdata->secondary_entries))
				goto fail;
		}
	}

	ret = 0;

fail:
	/* Avoid leaking memory on disk write failure */
	if (gptdata->primary_header)
		VbExFree(gptdata->primary_header);
	if (gptdata->primary_entries)
		VbExFree(gptdata->primary_entries);
	if (gptdata->secondary_entries)
		VbExFree(gptdata->secondary_entries);
	if (gptdata->secondary_header)
		VbExFree(gptdata->secondary_header);

	/* Success */
	return ret;
}

int IsUnusedEntry(const GptEntry *e)
{
	static Guid zero = {{{0, 0, 0, 0, 0, {0, 0, 0, 0, 0, 0}}}};
	return !Memcmp(&zero, (const uint8_t*)(&e->type), sizeof(zero));
}

/*
 * Func: GptGetEntrySize
 * Desc: This function returns size(in lba) of a partition represented by
 * given GPT entry.
 */
size_t GptGetEntrySizeLba(const GptEntry *e)
{
	return (e->ending_lba - e->starting_lba + 1);
}

/*
 * Func: GptGetEntrySize
 * Desc: This function returns size(in bytes) of a partition represented by
 * given GPT entry.
 */
size_t GptGetEntrySizeBytes(const GptData *gpt, const GptEntry *e)
{
	return GptGetEntrySizeLba(e) * gpt->sector_bytes;
}