summaryrefslogtreecommitdiff
path: root/firmware/2lib/2sha256_x86.c
blob: e80477e09f7d603edf3f5fb23fe553b1c38f8d97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/* Copyright 2021 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * SHA256 implementation using x86 SHA extension.
 * Mainly from https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-x86.c,
 * Written and place in public domain by Jeffrey Walton
 * Based on code from Intel, and by Sean Gulley for
 * the miTLS project.
 */
#include "2common.h"
#include "2sha.h"
#include "2sha_private.h"
#include "2api.h"

static struct vb2_sha256_context sha_ctx;

typedef int vb2_m128i __attribute__ ((vector_size(16)));

static inline vb2_m128i vb2_loadu_si128(vb2_m128i *ptr)
{
	vb2_m128i result;
	asm volatile ("movups %1, %0" : "=x"(result) : "m"(*ptr));
	return result;
}

static inline void vb2_storeu_si128(vb2_m128i *to, vb2_m128i from)
{
	asm volatile ("movups %1, %0" : "=m"(*to) : "x"(from));
}

static inline vb2_m128i vb2_add_epi32(vb2_m128i a, vb2_m128i b)
{
	return a + b;
}

static inline vb2_m128i vb2_shuffle_epi8(vb2_m128i value, vb2_m128i mask)
{
	asm ("pshufb %1, %0" : "+x"(value) : "xm"(mask));
	return value;
}

static inline vb2_m128i vb2_shuffle_epi32(vb2_m128i value, int mask)
{
	vb2_m128i result;
	asm ("pshufd %2, %1, %0" : "=x"(result) : "xm"(value), "i" (mask));
	return result;
}

static inline vb2_m128i vb2_alignr_epi8(vb2_m128i a, vb2_m128i b, int imm8)
{
	asm ("palignr %2, %1, %0" : "+x"(a) : "xm"(b), "i"(imm8));
	return a;
}

static inline vb2_m128i vb2_sha256msg1_epu32(vb2_m128i a, vb2_m128i b)
{
	asm ("sha256msg1 %1, %0" : "+x"(a) : "xm"(b));
	return a;
}

static inline vb2_m128i vb2_sha256msg2_epu32(vb2_m128i a, vb2_m128i b)
{
	asm ("sha256msg2 %1, %0" : "+x"(a) : "xm"(b));
	return a;
}

static inline vb2_m128i vb2_sha256rnds2_epu32(vb2_m128i a, vb2_m128i b,
                                              vb2_m128i k)
{
	asm ("sha256rnds2 %1, %0" : "+x"(a) : "xm"(b), "Yz"(k));
	return a;
}

#define SHA256_X86_PUT_STATE1(j, i) 					\
	{								\
		msgtmp[j] = vb2_loadu_si128((vb2_m128i *)			\
				(message + (i << 6) + (j * 16)));	\
		msgtmp[j] = vb2_shuffle_epi8(msgtmp[j], shuf_mask);	\
		msg = vb2_add_epi32(msgtmp[j],				\
			vb2_loadu_si128((vb2_m128i *)&vb2_sha256_k[j * 4]));	\
		state1 = vb2_sha256rnds2_epu32(state1, state0, msg);	\
	}

#define SHA256_X86_PUT_STATE0()						\
	{								\
		msg    = vb2_shuffle_epi32(msg, 0x0E);			\
		state0 = vb2_sha256rnds2_epu32(state0, state1, msg);	\
	}

#define SHA256_X86_LOOP(j)						\
	{								\
		int k = j & 3;						\
		int prev_k = (k + 3) & 3;				\
		int next_k = (k + 1) & 3;				\
		msg = vb2_add_epi32(msgtmp[k],				\
			vb2_loadu_si128((vb2_m128i *)&vb2_sha256_k[j * 4]));	\
		state1 = vb2_sha256rnds2_epu32(state1, state0, msg);	\
		tmp = vb2_alignr_epi8(msgtmp[k], msgtmp[prev_k], 4);	\
		msgtmp[next_k] = vb2_add_epi32(msgtmp[next_k], tmp);	\
		msgtmp[next_k] = vb2_sha256msg2_epu32(msgtmp[next_k],	\
					msgtmp[k]);			\
		SHA256_X86_PUT_STATE0();				\
		msgtmp[prev_k] = vb2_sha256msg1_epu32(msgtmp[prev_k],	\
				msgtmp[k]);				\
	}

static void vb2_sha256_transform_x86ext(const uint8_t *message,
					unsigned int block_nb)
{
	vb2_m128i state0, state1, msg, abef_save, cdgh_save;
	vb2_m128i msgtmp[4];
	vb2_m128i tmp;
	int i;
	const vb2_m128i shuf_mask = {0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f};

	state0 = vb2_loadu_si128((vb2_m128i *)&sha_ctx.h[0]);
	state1 = vb2_loadu_si128((vb2_m128i *)&sha_ctx.h[4]);
	for (i = 0; i < (int) block_nb; i++) {
		abef_save = state0;
		cdgh_save = state1;

		SHA256_X86_PUT_STATE1(0, i);
		SHA256_X86_PUT_STATE0();

		SHA256_X86_PUT_STATE1(1, i);
		SHA256_X86_PUT_STATE0();
		msgtmp[0] = vb2_sha256msg1_epu32(msgtmp[0], msgtmp[1]);

		SHA256_X86_PUT_STATE1(2, i);
		SHA256_X86_PUT_STATE0();
		msgtmp[1] = vb2_sha256msg1_epu32(msgtmp[1], msgtmp[2]);

		SHA256_X86_PUT_STATE1(3, i);
		tmp = vb2_alignr_epi8(msgtmp[3], msgtmp[2], 4);
		msgtmp[0] = vb2_add_epi32(msgtmp[0], tmp);
		msgtmp[0] = vb2_sha256msg2_epu32(msgtmp[0], msgtmp[3]);
		SHA256_X86_PUT_STATE0();
		msgtmp[2] = vb2_sha256msg1_epu32(msgtmp[2], msgtmp[3]);

		SHA256_X86_LOOP(4);
		SHA256_X86_LOOP(5);
		SHA256_X86_LOOP(6);
		SHA256_X86_LOOP(7);
		SHA256_X86_LOOP(8);
		SHA256_X86_LOOP(9);
		SHA256_X86_LOOP(10);
		SHA256_X86_LOOP(11);
		SHA256_X86_LOOP(12);
		SHA256_X86_LOOP(13);
		SHA256_X86_LOOP(14);

		msg = vb2_add_epi32(msgtmp[3],
			vb2_loadu_si128((vb2_m128i *)&vb2_sha256_k[15 * 4]));
		state1 = vb2_sha256rnds2_epu32(state1, state0, msg);
		SHA256_X86_PUT_STATE0();

		state0 = vb2_add_epi32(state0, abef_save);
		state1 = vb2_add_epi32(state1, cdgh_save);

	}

	vb2_storeu_si128((vb2_m128i *)&sha_ctx.h[0], state0);
	vb2_storeu_si128((vb2_m128i *)&sha_ctx.h[4], state1);
}

vb2_error_t vb2ex_hwcrypto_digest_init(enum vb2_hash_algorithm hash_alg,
				       uint32_t data_size)
{
	if (hash_alg != VB2_HASH_SHA256)
		return VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED;

	sha_ctx.h[0] = vb2_sha256_h0[5];
	sha_ctx.h[1] = vb2_sha256_h0[4];
	sha_ctx.h[2] = vb2_sha256_h0[1];
	sha_ctx.h[3] = vb2_sha256_h0[0];
	sha_ctx.h[4] = vb2_sha256_h0[7];
	sha_ctx.h[5] = vb2_sha256_h0[6];
	sha_ctx.h[6] = vb2_sha256_h0[3];
	sha_ctx.h[7] = vb2_sha256_h0[2];
	sha_ctx.size = 0;
	sha_ctx.total_size = 0;
	memset(sha_ctx.block, 0, sizeof(sha_ctx.block));

	return VB2_SUCCESS;
}

vb2_error_t vb2ex_hwcrypto_digest_extend(const uint8_t *buf, uint32_t size)
{
	unsigned int remaining_blocks;
	unsigned int new_size, rem_size, tmp_size;
	const uint8_t *shifted_data;

	tmp_size = VB2_SHA256_BLOCK_SIZE - sha_ctx.size;
	rem_size = size < tmp_size ? size : tmp_size;

	memcpy(&sha_ctx.block[sha_ctx.size], buf, rem_size);

	if (sha_ctx.size + size < VB2_SHA256_BLOCK_SIZE) {
		sha_ctx.size += size;
		return VB2_SUCCESS;
	}

	new_size = size - rem_size;
	remaining_blocks = new_size / VB2_SHA256_BLOCK_SIZE;

	shifted_data = buf + rem_size;

	vb2_sha256_transform_x86ext(sha_ctx.block, 1);
	vb2_sha256_transform_x86ext(shifted_data, remaining_blocks);

	rem_size = new_size % VB2_SHA256_BLOCK_SIZE;

	memcpy(sha_ctx.block, &shifted_data[remaining_blocks * VB2_SHA256_BLOCK_SIZE],
	       rem_size);

	sha_ctx.size = rem_size;
	sha_ctx.total_size += (remaining_blocks + 1) * VB2_SHA256_BLOCK_SIZE;
	return VB2_SUCCESS;
}

vb2_error_t vb2ex_hwcrypto_digest_finalize(uint8_t *digest,
					   uint32_t digest_size)
{
	unsigned int block_nb;
	unsigned int pm_size;
	unsigned int size_b;
	unsigned int block_rem_size = sha_ctx.size % VB2_SHA256_BLOCK_SIZE;
	if (digest_size != VB2_SHA256_DIGEST_SIZE) {
		VB2_DEBUG("ERROR: Digest size does not match expected length.\n");
		return VB2_ERROR_SHA_FINALIZE_DIGEST_SIZE;
	}

	block_nb = (1 + ((VB2_SHA256_BLOCK_SIZE - SHA256_MIN_PAD_LEN)
				< block_rem_size));

	size_b = (sha_ctx.total_size + sha_ctx.size) * 8;
	pm_size = block_nb * VB2_SHA256_BLOCK_SIZE;

	memset(sha_ctx.block + sha_ctx.size, 0, pm_size - sha_ctx.size);
	sha_ctx.block[sha_ctx.size] = SHA256_PAD_BEGIN;
	UNPACK32(size_b, sha_ctx.block + pm_size - 4);

	vb2_sha256_transform_x86ext(sha_ctx.block, block_nb);

	UNPACK32(sha_ctx.h[3], &digest[ 0]);
	UNPACK32(sha_ctx.h[2], &digest[ 4]);
	UNPACK32(sha_ctx.h[7], &digest[ 8]);
	UNPACK32(sha_ctx.h[6], &digest[12]);
	UNPACK32(sha_ctx.h[1], &digest[16]);
	UNPACK32(sha_ctx.h[0], &digest[20]);
	UNPACK32(sha_ctx.h[5], &digest[24]);
	UNPACK32(sha_ctx.h[4], &digest[28]);
	return VB2_SUCCESS;
}