summaryrefslogtreecommitdiff
path: root/zephyr/drivers/cros_rtc/nxp_rtc_pcf85063a.c
blob: c5580eaeef4173a2c1c10b120e012287fe3a6028 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/* Copyright 2021 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#define DT_DRV_COMPAT nxp_rtc_pcf85063a

#include <assert.h>
#include <zephyr/device.h>
#include <drivers/cros_rtc.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/kernel.h>
#include <rtc.h>
#include <soc.h>

#include "nxp_rtc_pcf85063a.h"

#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(cros_rtc, LOG_LEVEL_ERR);

/* Driver config */
struct nxp_rtc_pcf85063a_config {
	const struct device *bus;
	const uint16_t i2c_addr_flags;
	const struct gpio_dt_spec gpio_alert;
};

/* Driver data */
struct nxp_rtc_pcf85063a_data {
	const struct device *dev;
	uint8_t time_reg[NUM_TIMER_REGS];
	struct gpio_callback gpio_cb;
	cros_rtc_alarm_callback_t alarm_callback;
};

/* Driver convenience defines */
#define DRV_CONFIG(dev) ((const struct nxp_rtc_pcf85063a_config *)(dev)->config)
#define DRV_DATA(dev) ((struct nxp_rtc_pcf85063a_data *)(dev)->data)

/*
 * is_alarm == true: Reads alarm registers SECONDS, MINUTES, HOURS, and DAYS
 * is_alarm == false: Reads time registers SECONDS, MINUTES, HOURS, DAYS, and
 *			MONTHS, YEARS
 */
static int pcf85063a_read_time_regs(const struct device *dev, bool is_alarm)
{
	const struct nxp_rtc_pcf85063a_config *const config = DRV_CONFIG(dev);
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);
	uint8_t start_reg;
	uint8_t num_reg;

	if (is_alarm) {
		start_reg = REG_SECOND_ALARM;
		num_reg = NUM_ALARM_REGS;
	} else {
		start_reg = REG_SECONDS;
		num_reg = NUM_TIMER_REGS;
	}

	return i2c_burst_read(config->bus, config->i2c_addr_flags, start_reg,
			      data->time_reg, num_reg);
}

static int pcf85063a_read_reg(const struct device *dev, uint8_t reg,
			      uint8_t *val)
{
	const struct nxp_rtc_pcf85063a_config *const config = DRV_CONFIG(dev);

	return i2c_reg_read_byte(config->bus, config->i2c_addr_flags, reg, val);
}

/*
 * is_alarm == true: Writes alarm registers SECONDS, MINUTES, HOURS, and DAYS
 * is_alarm == false: Writes time registers SECONDS, MINUTES, HOURS, DAYS, and
 *			MONTHS, YEARS
 */
static int pcf85063a_write_time_regs(const struct device *dev, bool is_alarm)
{
	const struct nxp_rtc_pcf85063a_config *const config = DRV_CONFIG(dev);
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);
	uint8_t tx_buf[NUM_TIMER_REGS];
	uint8_t start_reg;
	uint8_t num_reg;

	if (is_alarm) {
		start_reg = REG_SECOND_ALARM;
		num_reg = NUM_ALARM_REGS;
	} else {
		start_reg = REG_SECONDS;
		num_reg = NUM_TIMER_REGS;
	}

	for (int i = 0; i < num_reg; i++) {
		tx_buf[i] = data->time_reg[i];
	}

	return i2c_burst_write(config->bus, config->i2c_addr_flags, start_reg,
			       tx_buf, num_reg);
}

static int pcf85063a_write_reg(const struct device *dev, uint8_t reg,
			       uint8_t val)
{
	const struct nxp_rtc_pcf85063a_config *const config = DRV_CONFIG(dev);
	uint8_t tx_buf[2];

	tx_buf[0] = reg;
	tx_buf[1] = val;

	return i2c_write(config->bus, tx_buf, sizeof(tx_buf),
			 config->i2c_addr_flags);
}

/*
 * val bits 7 to 4 - tens place
 * val bits 3 to 0 - ones place
 */
static int bcd_to_dec(uint8_t val, enum bcd_mask mask)
{
	int tens = ((val & mask) >> 4) * 10;
	int ones = (val & 0xf);

	return tens + ones;
}

/*
 * val bits 7 to 4 - tens place
 * val bits 3 to 0 - ones place
 */
static uint8_t dec_to_bcd(uint32_t val, enum bcd_mask mask)
{
	int tens = val / 10;
	int ones = val - (tens * 10);

	return ((tens << 4) & mask) | ones;
}

static int nxp_rtc_pcf85063a_read_seconds(const struct device *dev,
					  uint32_t *value, bool is_alarm)
{
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);
	struct calendar_date time;
	int ret;

	ret = pcf85063a_read_time_regs(dev, is_alarm);

	if (ret < 0) {
		return ret;
	}

	if (is_alarm) {
		*value = (bcd_to_dec(data->time_reg[DAYS], DAYS_MASK) *
			  SECS_PER_DAY) +
			 (bcd_to_dec(data->time_reg[HOURS], HOURS24_MASK) *
			  SECS_PER_HOUR) +
			 (bcd_to_dec(data->time_reg[MINUTES], MINUTES_MASK) *
			  SECS_PER_MINUTE) +
			 bcd_to_dec(data->time_reg[SECONDS], SECONDS_MASK);
	} else {
		time.year = bcd_to_dec(data->time_reg[YEARS], YEARS_MASK);
		time.month = bcd_to_dec(data->time_reg[MONTHS], MONTHS_MASK);
		time.day = bcd_to_dec(data->time_reg[DAYS], DAYS_MASK);

		*value = date_to_sec(time) - SECS_TILL_YEAR_2K +
			 (bcd_to_dec(data->time_reg[HOURS], HOURS24_MASK) *
			  SECS_PER_HOUR) +
			 (bcd_to_dec(data->time_reg[MINUTES], MINUTES_MASK) *
			  SECS_PER_MINUTE) +
			 bcd_to_dec(data->time_reg[SECONDS], SECONDS_MASK);
	}

	return ret;
}

static int nxp_rtc_pcf85063a_write_seconds(const struct device *dev,
					   uint32_t value, bool is_alarm)
{
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);
	struct calendar_date time;
	uint32_t tmp_sec;

	time = sec_to_date(value + SECS_TILL_YEAR_2K);

	if (!is_alarm) {
		data->time_reg[YEARS] = dec_to_bcd(time.year, YEARS_MASK);
		data->time_reg[MONTHS] = dec_to_bcd(time.month, MONTHS_MASK);
	}

	data->time_reg[DAYS] = dec_to_bcd(time.day, DAYS_MASK);

	if (is_alarm && data->time_reg[DAYS] == 0) {
		data->time_reg[DAYS] |= DISABLE_ALARM;
	}

	value %= SECS_PER_DAY;
	tmp_sec = value / SECS_PER_HOUR;
	data->time_reg[HOURS] = dec_to_bcd(tmp_sec, HOURS24_MASK);

	if (is_alarm && data->time_reg[HOURS] == 0) {
		data->time_reg[HOURS] |= DISABLE_ALARM;
	}

	value -= (tmp_sec * SECS_PER_HOUR);
	tmp_sec = value / SECS_PER_MINUTE;
	data->time_reg[MINUTES] = dec_to_bcd(tmp_sec, MINUTES_MASK);

	if (is_alarm && data->time_reg[MINUTES] == 0) {
		data->time_reg[MINUTES] |= DISABLE_ALARM;
	}

	value -= (tmp_sec * SECS_PER_MINUTE);
	data->time_reg[SECONDS] = dec_to_bcd(value, SECONDS_MASK);

	if (is_alarm && data->time_reg[SECONDS] == 0) {
		data->time_reg[SECONDS] |= DISABLE_ALARM;
	}

	return pcf85063a_write_time_regs(dev, is_alarm);
}

static int nxp_rtc_pcf85063a_configure(const struct device *dev,
				       cros_rtc_alarm_callback_t callback)
{
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);

	if (callback == NULL) {
		return -EINVAL;
	}

	data->alarm_callback = callback;

	return 0;
}

static int nxp_rtc_pcf85063a_get_value(const struct device *dev,
				       uint32_t *value)
{
	return nxp_rtc_pcf85063a_read_seconds(dev, value, false);
}

static int nxp_rtc_pcf85063a_set_value(const struct device *dev, uint32_t value)
{
	return nxp_rtc_pcf85063a_write_seconds(dev, value, false);
}

static int nxp_rtc_pcf85063a_get_alarm(const struct device *dev,
				       uint32_t *seconds,
				       uint32_t *microseconds)
{
	*microseconds = 0;
	return nxp_rtc_pcf85063a_read_seconds(dev, seconds, true);
}

static int nxp_rtc_pcf85063a_reset_alarm(const struct device *dev)
{
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);
	int ret;

	/* Disable alarm interrupt and clear pending alarm flag */
	ret = pcf85063a_write_reg(dev, REG_CONTROL_2, 0);
	if (ret < 0) {
		return ret;
	}

	/* Clear and disable the alarm registers */
	data->time_reg[SECONDS] = DISABLE_ALARM;
	data->time_reg[MINUTES] = DISABLE_ALARM;
	data->time_reg[HOURS] = DISABLE_ALARM;
	data->time_reg[DAYS] = DISABLE_ALARM;

	return pcf85063a_write_time_regs(dev, true);
}

static int nxp_rtc_pcf85063a_set_alarm(const struct device *dev,
				       uint32_t seconds, uint32_t microseconds)
{
	int ret;

	ARG_UNUSED(microseconds);

	ret = nxp_rtc_pcf85063a_reset_alarm(dev);

	if (ret < 0) {
		return ret;
	}

	ret = nxp_rtc_pcf85063a_write_seconds(dev, seconds, true);

	if (ret < 0) {
		return ret;
	}

	return pcf85063a_write_reg(dev, REG_CONTROL_2, ENABLE_ALARM_INTERRUPT);
}

static void nxp_pcf85063a_isr(const struct device *port,
			      struct gpio_callback *cb, uint32_t pin)
{
	struct nxp_rtc_pcf85063a_data *data =
		CONTAINER_OF(cb, struct nxp_rtc_pcf85063a_data, gpio_cb);
	const struct device *dev = (const struct device *)data->dev;

	ARG_UNUSED(port);
	ARG_UNUSED(pin);
	ARG_UNUSED(cb);

	LOG_DBG("%s", __func__);

	/* Call callback function */
	if (data->alarm_callback) {
		data->alarm_callback(dev);
	}
}

static const struct cros_rtc_driver_api nxp_rtc_pcf85063a_driver_api = {
	.configure = nxp_rtc_pcf85063a_configure,
	.get_value = nxp_rtc_pcf85063a_get_value,
	.set_value = nxp_rtc_pcf85063a_set_value,
	.get_alarm = nxp_rtc_pcf85063a_get_alarm,
	.set_alarm = nxp_rtc_pcf85063a_set_alarm,
	.reset_alarm = nxp_rtc_pcf85063a_reset_alarm,
};

static int nxp_rtc_pcf85063a_init(const struct device *dev)
{
	const struct nxp_rtc_pcf85063a_config *const config = DRV_CONFIG(dev);
	struct nxp_rtc_pcf85063a_data *data = DRV_DATA(dev);
	uint8_t val;
	int ret;

	if (!device_is_ready(config->bus)) {
		LOG_ERR("Device %s is not ready", config->bus->name);
		return -ENODEV;
	}

	/*
	 * Read Control_1 register. For normal operation,
	 * the values should be as follows:
	 *	Bit 7 (external clock test mode)    : (0) normal mode
	 *	Bit 6 (unused)                      : (0)
	 *	Bit 5 (STOP bit)                    : (0) RTC clock runs
	 *	BIT 4 (software reset)              : (0) no software reset
	 *	BIT 3 (unused)                      : (0)
	 *	BIT 2 (correction interrupt enable) : (0) no correction
	 *	                                          interrupt generated
	 *	BIT 1 (12 or 24-hour mode)          : (0) 24-hour mode
	 *	BIT 0 (internal oscillator capacitor: (0) 7pF
	 */
	ret = pcf85063a_read_reg(dev, REG_CONTROL_1, &val);

	if (ret < 0) {
		return ret;
	}

	if (val != CONTROL_1_DEFAULT_VALUE) {
		/* PCF85063A is not initialized, so send soft reset */
		ret = pcf85063a_write_reg(dev, REG_CONTROL_1, SOFT_RESET);

		if (ret < 0) {
			return ret;
		}
	}

	/*
	 * Read Seconds register and check if oscillator is stopped.
	 * If so, clear the bit.
	 */
	ret = pcf85063a_read_reg(dev, REG_SECONDS, &val);

	if (ret < 0) {
		return ret;
	}

	if (val & OS_BIT) {
		/* Oscillator stop bit is set, clear it. */
		val &= ~OS_BIT;
		ret = pcf85063a_write_reg(dev, REG_SECONDS, val);

		if (ret < 0) {
			return ret;
		}
	}

	nxp_rtc_pcf85063a_reset_alarm(dev);

	/* Configure GPIO interrupt pin for PCF85063A alarm pin */

	if (!device_is_ready(config->gpio_alert.port)) {
		LOG_ERR("Alert GPIO device not ready");
		return -ENODEV;
	}

	ret = gpio_pin_configure_dt(&config->gpio_alert, GPIO_INPUT);

	if (ret < 0) {
		LOG_ERR("Could not configure RTC alert pin");
		return ret;
	}

	gpio_init_callback(&data->gpio_cb, nxp_pcf85063a_isr,
			   BIT(config->gpio_alert.pin));

	ret = gpio_add_callback(config->gpio_alert.port, &data->gpio_cb);

	if (ret < 0) {
		LOG_ERR("Could not set RTC alert pin callback");
		return ret;
	}

	data->dev = dev;

	return gpio_pin_interrupt_configure_dt(&config->gpio_alert,
					       GPIO_INT_EDGE_FALLING);
}

#define PCF85063A_INT_GPIOS DT_PHANDLE(DT_NODELABEL(pcf85063a), int_pin)

/*
 * dt_flags is a uint8_t type.  However, for platform/ec
 * the GPIO flags in the devicetree are expanded past 8 bits
 * to support the INPUT/OUTPUT and PULLUP/PULLDOWN properties.
 * Cast back to a gpio_dt_flags to compile, discarding the bits
 * that are not supported by the Zephyr GPIO API.
 */
#define CROS_EC_GPIO_DT_SPEC_GET(node_id, prop)                            \
	{                                                                  \
		.port = DEVICE_DT_GET(DT_GPIO_CTLR(node_id, prop)),        \
		.pin = DT_GPIO_PIN(node_id, prop),                         \
		.dt_flags = (gpio_dt_flags_t)DT_GPIO_FLAGS(node_id, prop), \
	}

static const struct nxp_rtc_pcf85063a_config nxp_rtc_pcf85063a_cfg_0 = {
	.bus = DEVICE_DT_GET(DT_INST_BUS(0)),
	.i2c_addr_flags = DT_INST_REG_ADDR(0),
	.gpio_alert = CROS_EC_GPIO_DT_SPEC_GET(PCF85063A_INT_GPIOS, gpios)
};

static struct nxp_rtc_pcf85063a_data nxp_rtc_pcf85063a_data_0;

DEVICE_DT_INST_DEFINE(0, nxp_rtc_pcf85063a_init, /* pm_control_fn= */ NULL,
		      &nxp_rtc_pcf85063a_data_0, &nxp_rtc_pcf85063a_cfg_0,
		      POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		      &nxp_rtc_pcf85063a_driver_api);