summaryrefslogtreecommitdiff
path: root/driver/accelgyro_lsm6dsm.c
blob: 1cabc9e089c0fb76e3531924a1ada3d2380f9b7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
/* Copyright 2016 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/**
 * LSM6DSx (x is L/M/3) accelerometer and gyro module for Chrome EC
 * 3D digital accelerometer & 3D digital gyroscope
 * This driver supports both devices LSM6DSM and LSM6DSL
 */

#include "driver/accelgyro_lsm6dsm.h"
#include "driver/mag_lis2mdl.h"
#include "hooks.h"
#include "hwtimer.h"
#include "mag_cal.h"
#include "math_util.h"
#include "motion_sense_fifo.h"
#include "queue.h"
#include "task.h"
#include "timer.h"

#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
#define CPRINTS(format, args...) cprints(CC_ACCEL, format, ## args)

#define IS_FSTS_EMPTY(s) ((s).len & LSM6DSM_FIFO_EMPTY)

#ifndef FIFO_READ_LEN
#define FIFO_READ_LEN 0
#endif

#ifndef CONFIG_ACCEL_LSM6DSM_INT_EVENT
#define CONFIG_ACCEL_LSM6DSM_INT_EVENT 0
#endif

static volatile uint32_t last_interrupt_timestamp;

/**
 * Gets the sensor type associated with the dev_fifo enum. This type can be used
 * to get the sensor number by using it as an offset from the first sensor in
 * the lsm6dsm (the accelerometer).
 *
 * @param fifo_type The dev_fifo enum in question.
 * @return the type of sensor represented by the fifo type.
 */
static inline uint8_t get_sensor_type(enum dev_fifo fifo_type)
{
	static uint8_t map[] = {
		MOTIONSENSE_TYPE_GYRO,
		MOTIONSENSE_TYPE_ACCEL,
		MOTIONSENSE_TYPE_MAG,
	};
	return map[fifo_type];
}

/**
 * @return output base register for sensor
 */
static inline int get_xyz_reg(enum motionsensor_type type)
{
	return LSM6DSM_ACCEL_OUT_X_L_ADDR -
		(LSM6DSM_ACCEL_OUT_X_L_ADDR - LSM6DSM_GYRO_OUT_X_L_ADDR) * type;
}

/**
 * Configure interrupt int 1 to fire handler for:
 *
 * FIFO threshold on watermark
 *
 * @accel: Motion sensor pointer to accelerometer.
 */
__maybe_unused static int config_interrupt(const struct motion_sensor_t *accel)
{
	int ret = EC_SUCCESS;
	int int1_ctrl_val;

	ret = st_raw_read8(accel->port, accel->i2c_spi_addr_flags,
			   LSM6DSM_INT1_CTRL, &int1_ctrl_val);
	if (ret != EC_SUCCESS)
		return ret;

	if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
		/* As soon as one sample is ready, trigger an interrupt. */
		ret = st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
				    LSM6DSM_FIFO_CTRL1_ADDR,
				    OUT_XYZ_SIZE / sizeof(uint16_t));
		if (ret != EC_SUCCESS)
			return ret;
		int1_ctrl_val |= LSM6DSM_INT_FIFO_TH | LSM6DSM_INT_FIFO_OVR |
			LSM6DSM_INT_FIFO_FULL;
	}

	return st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
			     LSM6DSM_INT1_CTRL, int1_ctrl_val);
}


/**
 * fifo_disable - set fifo mode
 * @accel: Motion sensor pointer: must be MOTIONSENSE_TYPE_ACCEL.
 * @fmode: BYPASS or CONTINUOUS
 */
static int fifo_disable(const struct motion_sensor_t *accel)
{
	return st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
			     LSM6DSM_FIFO_CTRL5_ADDR, 0x00);
}

/**
 * fifo_reset_pattern: called at each new FIFO pattern.
 */
static void fifo_reset_pattern(struct lsm6dsm_data *private)
{
	/* The fifo is ready to run. */
	memcpy(&private->accel_fifo_state->current,
	       &private->accel_fifo_state->config,
	       sizeof(struct lsm6dsm_fifo_data));
	private->accel_fifo_state->next_in_pattern = FIFO_DEV_INVALID;
}

/**
 * fifo_enable - Configure internal FIFO parameters
 * @accel must be the accelerometer sensor.
 *
 * Configure FIFO decimators to have every time the right pattern
 * with acc/gyro
 */
static int fifo_enable(const struct motion_sensor_t *accel)
{
	const struct motion_sensor_t *s;
	int err, i, rate;
	uint8_t decimators[FIFO_DEV_NUM] = { 0 };
	unsigned int odrs[FIFO_DEV_NUM];
	unsigned int min_odr = LSM6DSM_ODR_MAX_VAL;
	unsigned int max_odr = 0;
	uint8_t odr_reg_val;
	struct lsm6dsm_data *private = LSM6DSM_GET_DATA(accel);
	struct lsm6dsm_accel_fifo_state *fifo_state = private->accel_fifo_state;
	/* In FIFO sensors are mapped in a different way. */
	uint8_t agm_maps[] = {
		MOTIONSENSE_TYPE_GYRO,
		MOTIONSENSE_TYPE_ACCEL,
		MOTIONSENSE_TYPE_MAG,
	};


	/* Search for min and max odr values for acc, gyro. */
	for (i = FIFO_DEV_GYRO; i < FIFO_DEV_NUM; i++) {
		/* Check if sensor enabled with ODR. */
		s = accel + agm_maps[i];
		rate = s->drv->get_data_rate(s);
		if (rate > 0) {
			min_odr = MIN(min_odr, rate);
			max_odr = MAX(max_odr, rate);
		}
		odrs[i] = rate;
	}

	if (max_odr == 0) {
		/* Leave FIFO disabled. */
		return EC_SUCCESS;
	}

	/* FIFO ODR must be set before the decimation factors */
	odr_reg_val = LSM6DSM_ODR_TO_REG(max_odr) <<
					LSM6DSM_FIFO_CTRL5_ODR_OFF;
	err = st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
			    LSM6DSM_FIFO_CTRL5_ADDR, odr_reg_val);

	/* Scan all sensors configuration to calculate FIFO decimator. */
	fifo_state->config.total_samples_in_pattern = 0;
	for (i = FIFO_DEV_GYRO; i < FIFO_DEV_NUM; i++) {
		if (odrs[i] > 0) {
			fifo_state->config.samples_in_pattern[i] =
				odrs[i] / min_odr;
			decimators[i] =
				LSM6DSM_FIFO_DECIMATOR(max_odr / odrs[i]);
			fifo_state->config.total_samples_in_pattern +=
				fifo_state->config.samples_in_pattern[i];
		} else {
			/* Not in FIFO if sensor disabled. */
			fifo_state->config.samples_in_pattern[i] = 0;
		}
	}
	st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
		      LSM6DSM_FIFO_CTRL3_ADDR,
		      (decimators[FIFO_DEV_GYRO] << LSM6DSM_FIFO_DEC_G_OFF) |
		      (decimators[FIFO_DEV_ACCEL] << LSM6DSM_FIFO_DEC_XL_OFF));
	if (IS_ENABLED(CONFIG_LSM6DSM_SEC_I2C)) {
		st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
				LSM6DSM_FIFO_CTRL4_ADDR,
				decimators[FIFO_DEV_MAG]);

		/*
		 * FIFO ODR is limited by odr of gyro or accel.
		 * If we are sampling magnetometer faster than gyro or accel,
		 * bump up ODR of accel. Thanks to decimation we will still
		 * measure at the specified ODR.
		 * Contrary to gyroscope, sampling faster will not affect
		 * measurements.
		 * Set the ODR behind the back of set/get_data_rate.
		 *
		 * First samples after ODR changes must be thrown out [See
		 * AN4987, section 3.9].
		 * When increasing accel ODR, the FIFO is going to drop samples,
		 * - except the first one after ODR change.
		 * When decreasing accel ODR, we don't need to drop sample if
		 * frequency is less than 52Hz.
		 * At most, we need to drop one sample, but Android requirement
		 * specify that changing one sensor ODR should not affect other
		 * sensors.
		 * Leave the bad sample alone, it will be a single glitch in the
		 * accelerometer data stream.
		 */
		if (max_odr > MAX(odrs[FIFO_DEV_ACCEL], odrs[FIFO_DEV_GYRO])) {
			st_write_data_with_mask(accel,
				LSM6DSM_ODR_REG(accel->type),
				LSM6DSM_ODR_MASK,
				LSM6DSM_ODR_TO_REG(max_odr));
		} else {
			st_write_data_with_mask(accel,
				LSM6DSM_ODR_REG(accel->type),
				LSM6DSM_ODR_MASK,
				LSM6DSM_ODR_TO_REG(odrs[FIFO_DEV_ACCEL]));
		}
	}
	/*
	 * After ODR and decimation values are set, continuous mode can be
	 * enabled
	 */
	err = st_raw_write8(accel->port, accel->i2c_spi_addr_flags,
			    LSM6DSM_FIFO_CTRL5_ADDR,
			    odr_reg_val | LSM6DSM_FIFO_MODE_CONTINUOUS_VAL);
	if (err != EC_SUCCESS)
		return err;
	fifo_reset_pattern(private);
	return EC_SUCCESS;
}

/*
 * Must order FIFO read based on ODR:
 * For example Acc @ 52 Hz, Gyro @ 26 Hz Mag @ 13 Hz in FIFO we have
 * for each pattern this data samples:
 *  ________ _______ _______ _______ ________ _______ _______
 * | Gyro_0 | Acc_0 | Mag_0 | Acc_1 | Gyro_1 | Acc_2 | Acc_3 |
 * |________|_______|_______|_______|________|_______|_______|
 *
 * Total samples for each pattern: 2 Gyro, 4 Acc, 1 Mag.
 *
 * Returns dev_fifo enum value of next sample to process
 */
static int fifo_next(struct lsm6dsm_data *private)
{
	int next_id;
	struct lsm6dsm_accel_fifo_state *fifo_state = private->accel_fifo_state;

	if (fifo_state->current.total_samples_in_pattern == 0)
		fifo_reset_pattern(private);

	if (fifo_state->current.total_samples_in_pattern == 0) {
		/*
		 * Not expected we are supposed to be called to process FIFO
		 * data.
		 */
		CPRINTS("FIFO empty pattern");
		return FIFO_DEV_INVALID;
	}

	for (next_id = fifo_state->next_in_pattern + 1; 1; next_id++) {
		if (next_id == FIFO_DEV_NUM)
			next_id = FIFO_DEV_GYRO;
		if (fifo_state->current.samples_in_pattern[next_id] != 0) {
			fifo_state->current.samples_in_pattern[next_id]--;
			fifo_state->current.total_samples_in_pattern--;
			fifo_state->next_in_pattern = next_id;
			return next_id;
		}
	}
	/* Will never happen. */
	return FIFO_DEV_INVALID;
}

/**
 * push_fifo_data - Scan data pattern and push upside
 */
static void push_fifo_data(struct motion_sensor_t *accel, uint8_t *fifo,
			   uint16_t flen,
			   uint32_t timestamp)
{
	struct motion_sensor_t *s;
	struct lsm6dsm_data *private = LSM6DSM_GET_DATA(accel);

	while (flen > 0) {
		struct ec_response_motion_sensor_data vect;
		int id;
		int *axis;
		int next_fifo = fifo_next(private);
		/*
		 * This should never happen, but it could. There will be a
		 * report from inside fifo_next about it, so no extra message
		 * required here.
		 */
		if (next_fifo == FIFO_DEV_INVALID) {
			return;
		}

		id = get_sensor_type(next_fifo);
		if (private->accel_fifo_state->samples_to_discard[id] > 0) {
			private->accel_fifo_state->samples_to_discard[id]--;
		} else {
			s = accel + id;
			axis = s->raw_xyz;

			/* Apply precision, sensitivity and rotation. */
			if (IS_ENABLED(CONFIG_MAG_LSM6DSM_LIS2MDL) &&
			    (s->type == MOTIONSENSE_TYPE_MAG)) {
				lis2mdl_normalize(s, axis, fifo);
				rotate(axis, *s->rot_standard_ref, axis);
			} else {
				st_normalize(s, axis, fifo);
			}


			vect.data[X] = axis[X];
			vect.data[Y] = axis[Y];
			vect.data[Z] = axis[Z];

			vect.flags = 0;
			vect.sensor_num = s - motion_sensors;
			motion_sense_fifo_stage_data(&vect, s, 3, timestamp);
		}

		fifo += OUT_XYZ_SIZE;
		flen -= OUT_XYZ_SIZE;
	}
}

static int load_fifo(struct motion_sensor_t *s, const struct fstatus *fsts,
		     uint32_t *last_fifo_read_ts)
{
	uint32_t interrupt_timestamp = last_interrupt_timestamp;
	int err, left, length;
	uint8_t fifo[FIFO_READ_LEN];

	/*
	 * DIFF[11:0] are number of unread uint16 in FIFO
	 * mask DIFF and compute total byte len to read from FIFO.
	 */
	left = fsts->len & LSM6DSM_FIFO_DIFF_MASK;
	left *= sizeof(uint16_t);
	left = (left / OUT_XYZ_SIZE) * OUT_XYZ_SIZE;

	/*
	 * TODO(b/122912601): phaser360: Investigate Standard Deviation error
	 *				 during CtsSensorTests
	 * - check "pattern" register versus where code thinks it is parsing
	 */

	/* Push all data on upper side. */
	do {
		/* Fit len to pre-allocated static buffer. */
		if (left > FIFO_READ_LEN)
			length = FIFO_READ_LEN;
		else
			length = left;

		/* Read data and copy in buffer. */
		err = st_raw_read_n_noinc(s->port, s->i2c_spi_addr_flags,
					  LSM6DSM_FIFO_DATA_ADDR,
					  fifo, length);
		*last_fifo_read_ts = __hw_clock_source_read();
		if (err != EC_SUCCESS)
			return err;

		/*
		 * Manage patterns and push data. Data is pushed with the
		 * timestamp of the interrupt that got us into this function
		 * in the first place. This avoids a potential race condition
		 * where we empty the FIFO, and a new IRQ comes in between
		 * reading the last sample and pushing it into the FIFO.
		 */

		push_fifo_data(s, fifo, length, interrupt_timestamp);
		left -= length;
	} while (left > 0);

	motion_sense_fifo_commit_data();

	return EC_SUCCESS;
}

static int is_fifo_empty(struct motion_sensor_t *s, struct fstatus *fsts)
{
	int res;

	if (s->flags & MOTIONSENSE_FLAG_INT_SIGNAL)
		return gpio_get_level(s->int_signal);
	CPRINTS("Interrupt signal not set for %s", s->name);
	res = st_raw_read_n_noinc(s->port, s->i2c_spi_addr_flags,
				  LSM6DSM_FIFO_STS1_ADDR,
				  (int8_t *)fsts, sizeof(*fsts));
	/* If we failed to read the FIFO size assume empty. */
	if (res != EC_SUCCESS)
		return 1;
	return IS_FSTS_EMPTY(*fsts);
}

static void handle_interrupt_for_fifo(uint32_t ts)
{
	if (IS_ENABLED(CONFIG_ACCEL_FIFO) &&
	    time_after(ts, last_interrupt_timestamp))
		last_interrupt_timestamp = ts;
	task_set_event(TASK_ID_MOTIONSENSE, CONFIG_ACCEL_LSM6DSM_INT_EVENT);
}

/**
 * lsm6dsm_interrupt - interrupt from int1/2 pin of sensor
 */
void lsm6dsm_interrupt(enum gpio_signal signal)
{
	handle_interrupt_for_fifo(__hw_clock_source_read());
}

/**
 * irq_handler - bottom half of the interrupt stack
 */
__maybe_unused static int irq_handler(
	struct motion_sensor_t *s, uint32_t *event)
{
	int ret = EC_SUCCESS;

	if ((s->type != MOTIONSENSE_TYPE_ACCEL) ||
	    (!(*event & CONFIG_ACCEL_LSM6DSM_INT_EVENT)))
		return EC_ERROR_NOT_HANDLED;

	if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
		struct fstatus fsts;
		uint32_t last_fifo_read_ts;
		uint32_t triggering_interrupt_timestamp =
			last_interrupt_timestamp;

		/* Read how many data pattern on FIFO to read and pattern. */
		ret = st_raw_read_n_noinc(s->port, s->i2c_spi_addr_flags,
					  LSM6DSM_FIFO_STS1_ADDR,
					  (uint8_t *)&fsts, sizeof(fsts));
		if (ret != EC_SUCCESS)
			return ret;
		last_fifo_read_ts = __hw_clock_source_read();
		if (fsts.len & (LSM6DSM_FIFO_DATA_OVR | LSM6DSM_FIFO_FULL))
			CPRINTS("%s FIFO Overrun: %04x", s->name, fsts.len);
		if (!IS_FSTS_EMPTY(fsts))
			ret = load_fifo(s, &fsts, &last_fifo_read_ts);

		/*
		 * Check if FIFO isn't empty and we never got an interrupt.
		 * This can happen if new entries were added to the FIFO after
		 * the count was read, but before the FIFO was cleared out.
		 * In the long term it might be better to use the last
		 * spread timestamp instead.
		 */
		if (!is_fifo_empty(s, &fsts) &&
		    triggering_interrupt_timestamp == last_interrupt_timestamp)
			handle_interrupt_for_fifo(last_fifo_read_ts);
	}

	return ret;
}

/**
 * set_range - set full scale range
 * @s: Motion sensor pointer
 * @range: Range
 * @rnd: Round up/down flag
 * Note: Range is sensitivity/gain for speed purpose
 */
static int set_range(struct motion_sensor_t *s, int range, int rnd)
{
	int err;
	uint8_t ctrl_reg, reg_val;
	int newrange = range;

	switch (s->type) {
	case MOTIONSENSE_TYPE_ACCEL:
		/* Adjust and check rounded value for acc. */
		if (rnd && (newrange < LSM6DSM_ACCEL_NORMALIZE_FS(newrange)))
			newrange *= 2;

		if (newrange > LSM6DSM_ACCEL_FS_MAX_VAL)
			newrange = LSM6DSM_ACCEL_FS_MAX_VAL;

		reg_val = LSM6DSM_ACCEL_FS_REG(newrange);
		break;
	case MOTIONSENSE_TYPE_GYRO:
		/* Adjust and check rounded value for gyro. */
		reg_val = LSM6DSM_GYRO_FS_REG(range);
		if (rnd && (range > LSM6DSM_GYRO_NORMALIZE_FS(reg_val)))
			reg_val++;

		if (reg_val > LSM6DSM_GYRO_FS_MAX_REG_VAL)
			reg_val = LSM6DSM_GYRO_FS_MAX_REG_VAL;
		newrange = LSM6DSM_GYRO_NORMALIZE_FS(reg_val);
		break;
	default:
		return EC_RES_INVALID_PARAM;
	}

	ctrl_reg = LSM6DSM_RANGE_REG(s->type);
	mutex_lock(s->mutex);
	err = st_write_data_with_mask(s, ctrl_reg, LSM6DSM_RANGE_MASK, reg_val);
	if (err == EC_SUCCESS)
		/* Save internally gain for speed optimization. */
		s->current_range = newrange;
	mutex_unlock(s->mutex);
	return err;
}

/**
 * lsm6dsm_set_data_rate
 * @s: Motion sensor pointer
 * @range: Rate (mHz)
 * @rnd: Round up/down flag
 *
 * For mag in cascade with lsm6dsm/l we use acc trigger and FIFO decimators
 */
int lsm6dsm_set_data_rate(const struct motion_sensor_t *s, int rate, int rnd)
{
	struct stprivate_data *data = s->drv_data;
	const struct motion_sensor_t *accel = IS_ENABLED(CONFIG_ACCEL_FIFO) ?
		LSM6DSM_MAIN_SENSOR(s) : NULL;
	struct lsm6dsm_data *private = IS_ENABLED(CONFIG_ACCEL_FIFO) ?
		LSM6DSM_GET_DATA(accel) : NULL;
	int ret = EC_SUCCESS, normalized_rate = 0;
	uint8_t ctrl_reg, reg_val = 0;

	if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
		/* FIFO must be disabled before setting any ODR values */
		ret = fifo_disable(accel);
		if (ret != EC_SUCCESS) {
			CPRINTS("Failed to disable FIFO. Error: %d", ret);
			return ret;
		}
	}

	if (rate > 0) {
		reg_val = LSM6DSM_ODR_TO_REG(rate);
		normalized_rate = LSM6DSM_REG_TO_ODR(reg_val);

		if (rnd && (normalized_rate < rate)) {
			reg_val++;
			normalized_rate = LSM6DSM_REG_TO_ODR(reg_val);
		}
		if (normalized_rate < LSM6DSM_ODR_MIN_VAL ||
		    normalized_rate > LSM6DSM_ODR_MAX_VAL)
			return EC_RES_INVALID_PARAM;
	}

	/*
	 * TODO(b:110143516) Improve data rate selection:
	 * Sensor is always running at 100Hz, even when not used.
	 */
	if (IS_ENABLED(CONFIG_MAG_LSM6DSM_LIS2MDL) &&
	    (s->type == MOTIONSENSE_TYPE_MAG)) {
		struct mag_cal_t *cal = LIS2MDL_CAL(s);

		init_mag_cal(cal);
		/*
		 * Magnetometer ODR is calculating at 100Hz, but we are reading
		 * less often.
		 */
		if (normalized_rate > 0)
			cal->batch_size = MAX(
				MAG_CAL_MIN_BATCH_SIZE,
				(normalized_rate * 1000) /
					MAG_CAL_MIN_BATCH_WINDOW_US);
		else
			cal->batch_size = 0;
		CPRINTS("Batch size: %d", cal->batch_size);
		mutex_lock(s->mutex);
	} else {
		mutex_lock(s->mutex);
		ctrl_reg = LSM6DSM_ODR_REG(s->type);
		ret = st_write_data_with_mask(s, ctrl_reg, LSM6DSM_ODR_MASK,
					      reg_val);
	}
	if (ret == EC_SUCCESS) {
		data->base.odr = normalized_rate;
		if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
			struct lsm6dsm_accel_fifo_state *fifo_state =
				private->accel_fifo_state;
			fifo_state->samples_to_discard[s->type] =
				LSM6DSM_DISCARD_SAMPLES;
			ret = fifo_enable(accel);
			if (ret != EC_SUCCESS)
				CPRINTS("Failed to enable FIFO. Error: %d",
					ret);
		}
	}

	mutex_unlock(s->mutex);
	return ret;
}

static int is_data_ready(const struct motion_sensor_t *s, int *ready)
{
	int ret, tmp;

	ret = st_raw_read8(s->port, s->i2c_spi_addr_flags,
			   LSM6DSM_STATUS_REG, &tmp);
	if (ret != EC_SUCCESS) {
		CPRINTS("%s type:0x%X RS Error", s->name, s->type);
		return ret;
	}

	if (MOTIONSENSE_TYPE_ACCEL == s->type)
		*ready = (LSM6DSM_STS_XLDA_UP == (tmp & LSM6DSM_STS_XLDA_MASK));
	else
		*ready = (LSM6DSM_STS_GDA_UP == (tmp & LSM6DSM_STS_GDA_MASK));

	return EC_SUCCESS;
}

/*
 * Is not very efficient to collect the data in read: better have an interrupt
 * and collect the FIFO, even if it has one item: we don't have to check if the
 * sensor is ready (minimize I2C access).
 */
static int read(const struct motion_sensor_t *s, intv3_t v)
{
	uint8_t raw[OUT_XYZ_SIZE];
	uint8_t xyz_reg;
	int ret, tmp = 0;

	ret = is_data_ready(s, &tmp);
	if (ret != EC_SUCCESS)
		return ret;

	/*
	 * If sensor data is not ready, return the previous read data.
	 * Note: return success so that motion senor task can read again
	 * to get the latest updated sensor data quickly.
	 */
	if (!tmp) {
		if (v != s->raw_xyz)
			memcpy(v, s->raw_xyz, sizeof(s->raw_xyz));
		return EC_SUCCESS;
	}

	xyz_reg = get_xyz_reg(s->type);

	/* Read data bytes starting at xyz_reg. */
	ret = st_raw_read_n_noinc(s->port, s->i2c_spi_addr_flags,
				  xyz_reg, raw, OUT_XYZ_SIZE);
	if (ret != EC_SUCCESS)
		return ret;

	/* Apply precision, sensitivity and rotation vector. */
	st_normalize(s, v, raw);
	return EC_SUCCESS;
}

static int init(struct motion_sensor_t *s)
{
	int ret = 0, tmp;
	struct stprivate_data *data = s->drv_data;
	uint8_t ctrl_reg, reg_val = 0;

	ret = st_raw_read8(s->port, s->i2c_spi_addr_flags,
			   LSM6DSM_WHO_AM_I_REG, &tmp);
	if (ret != EC_SUCCESS)
		return EC_ERROR_UNKNOWN;

	if (tmp != LSM6DS3_WHO_AM_I && tmp != LSM6DSM_WHO_AM_I) {
		/* Unrecognized sensor */
		CPRINTS("Unknown WHO_AM_I value: 0x%x", tmp);
		return EC_ERROR_ACCESS_DENIED;
	}

	/*
	 * This sensor can be powered through an EC reboot, so the state of the
	 * sensor is unknown here so reset it
	 * LSM6DSM/L supports both accel & gyro features
	 * Board will see two virtual sensor devices: accel & gyro
	 * Requirement: Accel need be init before gyro and mag
	 */
	if (s->type == MOTIONSENSE_TYPE_ACCEL) {
		mutex_lock(s->mutex);

		/* Software reset procedure. */
		reg_val = LSM6DSM_ODR_TO_REG(LSM6DSM_ODR_MIN_VAL);
		ctrl_reg = LSM6DSM_ODR_REG(MOTIONSENSE_TYPE_ACCEL);

		/* Power OFF gyro. */
		ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
				    LSM6DSM_CTRL2_ADDR, 0);
		if (ret != EC_SUCCESS)
			goto err_unlock;

		/* Power ON Accel. */
		ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
				    ctrl_reg, reg_val);
		if (ret != EC_SUCCESS)
			goto err_unlock;

		/* Software reset. */
		ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
				    LSM6DSM_CTRL3_ADDR, LSM6DSM_SW_RESET);
		if (ret != EC_SUCCESS)
			goto err_unlock;

		if (IS_ENABLED(CONFIG_LSM6DSM_SEC_I2C)) {
			/*
			 * Reboot to reload memory content as pass-through mode
			 * can get stuck.
			 * Direct to the AN: See "AN4987 - LSM6DSM: always-on 3D
			 * accelerometer and 3D gyroscope".
			 */

			/* Power ON Accel. */
			ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
					ctrl_reg, reg_val);
			if (ret != EC_SUCCESS)
				goto err_unlock;

			ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
					LSM6DSM_CTRL3_ADDR, LSM6DSM_BOOT);
			if (ret != EC_SUCCESS)
				goto err_unlock;

			/*
			 * Refer to AN4987, wait 15ms for accelerometer to doing
			 * full reboot.
			 */
			msleep(15);

			/* Power OFF Accel. */
			ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
					ctrl_reg, 0);
			if (ret != EC_SUCCESS)
				goto err_unlock;
		}

		/*
		 * Output data not updated until have been read.
		 * Prefer interrupt to be active low.
		 */
		ret = st_raw_write8(s->port, s->i2c_spi_addr_flags,
				    LSM6DSM_CTRL3_ADDR,
				    LSM6DSM_BDU
				    | LSM6DSM_H_L_ACTIVE
				    | LSM6DSM_IF_INC);
		if (ret != EC_SUCCESS)
			goto err_unlock;

		if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
			ret = fifo_disable(s);
			if (ret != EC_SUCCESS)
				goto err_unlock;
		}

		if (IS_ENABLED(CONFIG_ACCEL_INTERRUPTS))
			ret = config_interrupt(s);
		if (ret != EC_SUCCESS)
			goto err_unlock;

		mutex_unlock(s->mutex);
	}

	/* Set default resolution common to acc and gyro. */
	data->resol = LSM6DSM_RESOLUTION;
	return sensor_init_done(s);

err_unlock:
	mutex_unlock(s->mutex);
	CPRINTS("%s: MS Init type:0x%X Error", s->name, s->type);
	return ret;
}

static int read_temp(const struct motion_sensor_t *s, int *temp)
{
	int ret;
	uint8_t raw[2];

	ret = st_raw_read_n_noinc(s->port, s->i2c_spi_addr_flags,
				  LSM6DSM_OUT_TEMP_L_ADDR, raw, 2);
	if (ret != EC_SUCCESS)
		return ret;

	*temp = C_TO_K(25 + (int)raw[1]);

	return EC_SUCCESS;
}

const struct accelgyro_drv lsm6dsm_drv = {
	.init = init,
	.read = read,
	.set_range = set_range,
	.get_resolution = st_get_resolution,
	.set_data_rate = lsm6dsm_set_data_rate,
	.get_data_rate = st_get_data_rate,
	.read_temp = read_temp,
	.set_offset = st_set_offset,
	.get_offset = st_get_offset,
#ifdef CONFIG_ACCEL_INTERRUPTS
	.irq_handler = irq_handler,
#endif /* CONFIG_ACCEL_INTERRUPTS */
};