summaryrefslogtreecommitdiff
path: root/common/thermal.c
blob: a300497bde9f913c8d16806c74b88e5ce5574182 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Thermal engine module for Chrome EC */

#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "host_command.h"
#include "pwm.h"
#include "task.h"
#include "temp_sensor.h"
#include "thermal.h"
#include "timer.h"
#include "util.h"
#include "x86_power.h"

/* Defined in board_temp_sensor.c. Must be in the same order as
 * in enum temp_sensor_id.
 */
extern const struct temp_sensor_t temp_sensors[TEMP_SENSOR_COUNT];

/* Temperature threshold configuration. Must be in the same order as in
 * enum temp_sensor_type. Threshold values for overheated action first.
 * Followed by fan speed stepping thresholds. */
static struct thermal_config_t thermal_config[TEMP_SENSOR_TYPE_COUNT] = {
	/* TEMP_SENSOR_TYPE_CPU */
	{THERMAL_CONFIG_WARNING_ON_FAIL,
	 {368, 373, 383, 327, 335, 343, 351, 359} } ,
	/* TEMP_SENSOR_TYPE_BOARD */
	{THERMAL_CONFIG_NO_FLAG, {THERMAL_THRESHOLD_DISABLE_ALL}},
	/* TEMP_SENSOR_TYPE_CASE */
	{THERMAL_CONFIG_NO_FLAG, {341, THERMAL_THRESHOLD_DISABLE, 353,
	 THERMAL_THRESHOLD_DISABLE, THERMAL_THRESHOLD_DISABLE,
	 THERMAL_THRESHOLD_DISABLE, THERMAL_THRESHOLD_DISABLE,
	 THERMAL_THRESHOLD_DISABLE} },
};

/* Fan speed settings. */
/* Real max RPM is about 9300. */
static const int fan_speed[THERMAL_FAN_STEPS + 1] = {0, 3000, 4575, 6150,
						     7725, -1};

/* Number of consecutive overheated events for each temperature sensor. */
static int8_t ot_count[TEMP_SENSOR_COUNT][THRESHOLD_COUNT + THERMAL_FAN_STEPS];

/* Flag that indicate if each threshold is reached.
 * Note that higher threshold reached does not necessarily mean lower thresholds
 * are reached (since we can disable any threshold.) */
static int8_t overheated[THRESHOLD_COUNT + THERMAL_FAN_STEPS];
static int8_t *fan_threshold_reached = overheated + THRESHOLD_COUNT;

static int fan_ctrl_on = 1;


int thermal_set_threshold(enum temp_sensor_type type, int threshold_id, int value)
{
	if (type < 0 || type >= TEMP_SENSOR_TYPE_COUNT)
		return -1;
	if (threshold_id < 0 ||
	    threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
		return -1;
	if (value < 0)
		return -1;

	thermal_config[type].thresholds[threshold_id] = value;

	return EC_SUCCESS;
}


int thermal_get_threshold(enum temp_sensor_type type, int threshold_id)
{
	if (type < 0 || type >= TEMP_SENSOR_TYPE_COUNT)
		return -1;
	if (threshold_id < 0 ||
	    threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
		return -1;

	return thermal_config[type].thresholds[threshold_id];
}


int thermal_toggle_auto_fan_ctrl(int auto_fan_on)
{
	fan_ctrl_on = auto_fan_on;
	return EC_SUCCESS;
}

static void smi_overheated_warning(void)
{
	host_set_single_event(EC_HOST_EVENT_THERMAL_OVERLOAD);
}

static void smi_sensor_failure_warning(void)
{
	host_set_single_event(EC_HOST_EVENT_THERMAL);
}


/* TODO: When we need different overheated action for different boards,
 *       move these action to board-specific file. (e.g. board_thermal.c)
 */
static void overheated_action(void)
{
	if (overheated[THRESHOLD_POWER_DOWN]) {
		cprintf(CC_CHIPSET,
			"[%T critical temperature; shutting down]\n");
		x86_power_force_shutdown();
		host_set_single_event(EC_HOST_EVENT_THERMAL_SHUTDOWN);
		return;
	}

	if (overheated[THRESHOLD_CPU_DOWN])
		x86_power_cpu_overheated(1);
	else
		x86_power_cpu_overheated(0);

	if (overheated[THRESHOLD_WARNING]) {
		smi_overheated_warning();
		chipset_throttle_cpu(1);
	}
	else
		chipset_throttle_cpu(0);

	if (fan_ctrl_on) {
		int i;
		for (i = THERMAL_FAN_STEPS - 1; i >= 0; --i)
			if (fan_threshold_reached[i])
				break;
		pwm_set_fan_target_rpm(fan_speed[i + 1]);
	}
}


/* Update counter and check if the counter has reached delay limit.
 * Note that we have various delay period to prevent one error value triggering
 * overheated action. */
static inline void update_and_check_stat(int temp,
					 int sensor_id,
					 int threshold_id)
{
	enum temp_sensor_type type = temp_sensors[sensor_id].type;
	const struct thermal_config_t *config = thermal_config + type;
	const int16_t threshold = config->thresholds[threshold_id];
	const int delay = temp_sensors[sensor_id].action_delay_sec;

	if (threshold > 0 && temp >= threshold) {
		++ot_count[sensor_id][threshold_id];
		if (ot_count[sensor_id][threshold_id] >= delay) {
			ot_count[sensor_id][threshold_id] = delay;
			overheated[threshold_id] = 1;
		}
	}
	else if (ot_count[sensor_id][threshold_id] >= delay &&
		 temp >= threshold - 3) {
		/* Once the threshold is reached, only if the temperature
		 * drops to 3 degrees below threshold do we deassert
		 * overheated signal. This is to prevent temperature
		 * oscillating around the threshold causing threshold
		 * keep being triggered. */
		overheated[threshold_id] = 1;
	} else
		ot_count[sensor_id][threshold_id] = 0;
}


static void thermal_process(void)
{
	int i, j;
	int cur_temp;
	int flag;
	int rv;

	for (i = 0; i < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++i)
		overheated[i] = 0;

	for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
		enum temp_sensor_type type = temp_sensors[i].type;

		if (type == TEMP_SENSOR_TYPE_IGNORED)
			continue;

		flag = thermal_config[type].config_flags;

		rv = temp_sensor_read(i, &cur_temp);
		if (rv == EC_ERROR_NOT_POWERED) {
			/* Sensor not powered; ignore it */
			continue;
		} else if (rv) {
			/* Other sensor failure */
			if (flag & THERMAL_CONFIG_WARNING_ON_FAIL)
				smi_sensor_failure_warning();
			continue;
		}

		for (j = 0; j < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++j)
			update_and_check_stat(cur_temp, i, j);
	}

	overheated_action();
}


void thermal_task(void)
{
	while (1) {
		thermal_process();
		usleep(1000000);
	}
}

/*****************************************************************************/
/* Console commands */

static void print_thermal_config(enum temp_sensor_type type)
{
	const struct thermal_config_t *config = thermal_config + type;
	ccprintf("Sensor Type %d:\n", type);
	ccprintf("\tWarning: %d K\n",
		 config->thresholds[THRESHOLD_WARNING]);
	ccprintf("\tCPU Down: %d K\n",
		 config->thresholds[THRESHOLD_CPU_DOWN]);
	ccprintf("\tPower Down: %d K\n",
		 config->thresholds[THRESHOLD_POWER_DOWN]);
}


static void print_fan_stepping(enum temp_sensor_type type)
{
	const struct thermal_config_t *config = thermal_config + type;
	int i;

	ccprintf("Sensor Type %d:\n", type);
	ccprintf("\tLowest speed: %d RPM\n", fan_speed[0]);
	for (i = 0; i < THERMAL_FAN_STEPS; ++i)
		ccprintf("\t%3d K:        %d RPM\n",
			 config->thresholds[THRESHOLD_COUNT + i],
			 fan_speed[i+1]);
}


static int command_thermal_config(int argc, char **argv)
{
	char *e;
	int sensor_type, threshold_id, value;

	if (argc != 2 && argc != 4)
		return EC_ERROR_PARAM_COUNT;

	sensor_type = strtoi(argv[1], &e, 0);
	if (*e || sensor_type < 0 || sensor_type >= TEMP_SENSOR_TYPE_COUNT)
		return EC_ERROR_PARAM1;

	if (argc == 2) {
		print_thermal_config(sensor_type);
		return EC_SUCCESS;
	}

	threshold_id = strtoi(argv[2], &e, 0);
	if (*e || threshold_id < 0 || threshold_id >= THRESHOLD_COUNT)
		return EC_ERROR_PARAM2;

	value = strtoi(argv[3], &e, 0);
	if (*e || value < 0)
		return EC_ERROR_PARAM3;

	thermal_config[sensor_type].thresholds[threshold_id] = value;
	ccprintf("Setting threshold %d of sensor type %d to %d\n",
		 threshold_id, sensor_type, value);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalconf, command_thermal_config,
			"sensortype [threshold_id temp]",
			"Get/set thermal threshold temp",
			NULL);


static int command_fan_config(int argc, char **argv)
{
	char *e;
	int sensor_type, stepping_id, value;

	if (argc != 2 && argc != 4)
		return EC_ERROR_PARAM_COUNT;

	sensor_type = strtoi(argv[1], &e, 0);
	if ((e && *e) || sensor_type < 0 ||
	    sensor_type >= TEMP_SENSOR_TYPE_COUNT)
		return EC_ERROR_PARAM1;

	if (argc == 2) {
		print_fan_stepping(sensor_type);
		return EC_SUCCESS;
	}

	stepping_id = strtoi(argv[2], &e, 0);
	if ((e && *e) || stepping_id < 0 || stepping_id >= THERMAL_FAN_STEPS)
		return EC_ERROR_PARAM2;

	value = strtoi(argv[3], &e, 0);
	if (*e || value < 0)
		return EC_ERROR_PARAM3;

	thermal_config[sensor_type].thresholds[THRESHOLD_COUNT + stepping_id] =
		value;
	ccprintf("Setting fan step %d of sensor type %d to %d K\n",
		 stepping_id, sensor_type, value);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalfan, command_fan_config,
			"sensortype [threshold_id rpm]",
			"Get/set thermal threshold fan rpm",
			NULL);


static int command_thermal_auto_fan_ctrl(int argc, char **argv)
{
	return thermal_toggle_auto_fan_ctrl(1);
}
DECLARE_CONSOLE_COMMAND(autofan, command_thermal_auto_fan_ctrl,
			NULL,
			"Enable thermal fan control",
			NULL);