summaryrefslogtreecommitdiff
path: root/common/sha1.c
blob: 25d9b04793617e461bd3d0f78deab334b33bcdea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * SHA-1 implementation largely based on libmincrypt in the the Android
 * Open Source Project (platorm/system/core.git/libmincrypt/sha.c
 */

#include "sha1.h"

static uint32_t ror27(uint32_t val)
{
	return (val >> 27) | (val << 5);
}
static uint32_t ror2(uint32_t val)
{
	return (val >> 2) | (val << 30);
}
static uint32_t ror31(uint32_t val)
{
	return (val >> 31) | (val << 1);
}

static void sha1_transform(struct sha1_ctx *ctx)
{
	uint32_t W[80];
	register uint32_t A, B, C, D, E;
	int t;

	A = ctx->state[0];
	B = ctx->state[1];
	C = ctx->state[2];
	D = ctx->state[3];
	E = ctx->state[4];

#define SHA_F1(A, B, C, D, E, t)					\
	E += ror27(A) +							\
			(W[t] = __builtin_bswap32(ctx->buf.w[t])) +	\
			(D^(B&(C^D))) + 0x5A827999;			\
	B = ror2(B);

	for (t = 0; t < 15; t += 5) {
		SHA_F1(A, B, C, D, E, t + 0);
		SHA_F1(E, A, B, C, D, t + 1);
		SHA_F1(D, E, A, B, C, t + 2);
		SHA_F1(C, D, E, A, B, t + 3);
		SHA_F1(B, C, D, E, A, t + 4);
	}
	SHA_F1(A, B, C, D, E, t + 0);  /* 16th one, t == 15 */

#undef SHA_F1

#define SHA_F1(A, B, C, D, E, t)					      \
	E += ror27(A) +							      \
			(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
			(D^(B&(C^D))) + 0x5A827999;			      \
	B = ror2(B);

	SHA_F1(E, A, B, C, D, t + 1);
	SHA_F1(D, E, A, B, C, t + 2);
	SHA_F1(C, D, E, A, B, t + 3);
	SHA_F1(B, C, D, E, A, t + 4);

#undef SHA_F1

#define SHA_F2(A, B, C, D, E, t)					      \
	E += ror27(A) +							      \
			(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
			(B^C^D) + 0x6ED9EBA1;				      \
	B = ror2(B);

	for (t = 20; t < 40; t += 5) {
		SHA_F2(A, B, C, D, E, t + 0);
		SHA_F2(E, A, B, C, D, t + 1);
		SHA_F2(D, E, A, B, C, t + 2);
		SHA_F2(C, D, E, A, B, t + 3);
		SHA_F2(B, C, D, E, A, t + 4);
	}

#undef SHA_F2

#define SHA_F3(A, B, C, D, E, t)					      \
	E += ror27(A) +							      \
			(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
			((B&C)|(D&(B|C))) + 0x8F1BBCDC;			      \
	B = ror2(B);

	for (; t < 60; t += 5) {
		SHA_F3(A, B, C, D, E, t + 0);
		SHA_F3(E, A, B, C, D, t + 1);
		SHA_F3(D, E, A, B, C, t + 2);
		SHA_F3(C, D, E, A, B, t + 3);
		SHA_F3(B, C, D, E, A, t + 4);
	}

#undef SHA_F3

#define SHA_F4(A, B, C, D, E, t)					      \
	E += ror27(A) +							      \
			(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
			(B^C^D) + 0xCA62C1D6;				      \
	B = ror2(B);

	for (; t < 80; t += 5) {
		SHA_F4(A, B, C, D, E, t + 0);
		SHA_F4(E, A, B, C, D, t + 1);
		SHA_F4(D, E, A, B, C, t + 2);
		SHA_F4(C, D, E, A, B, t + 3);
		SHA_F4(B, C, D, E, A, t + 4);
	}

#undef SHA_F4

	ctx->state[0] += A;
	ctx->state[1] += B;
	ctx->state[2] += C;
	ctx->state[3] += D;
	ctx->state[4] += E;
}

void sha1_update(struct sha1_ctx *ctx, const uint8_t *data, uint32_t len)
{
	int i = ctx->count % sizeof(ctx->buf);
	const uint8_t *p = (const uint8_t *)data;

	ctx->count += len;

	while (len > sizeof(ctx->buf) - i) {
		memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i);
		len -= sizeof(ctx->buf) - i;
		p += sizeof(ctx->buf) - i;
		sha1_transform(ctx);
		i = 0;
	}

	while (len--) {
		ctx->buf.b[i++] = *p++;
		if (i == sizeof(ctx->buf)) {
			sha1_transform(ctx);
			i = 0;
		}
	}
}


uint8_t *sha1_final(struct sha1_ctx *ctx)
{
	uint32_t cnt = ctx->count * 8;
	int i;

	sha1_update(ctx, (uint8_t *)"\x80", 1);
	while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8))
		sha1_update(ctx, (uint8_t *)"\0", 1);

	for (i = 0; i < 8; ++i) {
		uint8_t tmp = cnt >> ((7 - i) * 8);
		sha1_update(ctx, &tmp, 1);
	}

	for (i = 0; i < 5; i++)
		ctx->buf.w[i] = __builtin_bswap32(ctx->state[i]);

	return ctx->buf.b;
}

void sha1_init(struct sha1_ctx *ctx)
{
	ctx->state[0] = 0x67452301;
	ctx->state[1] = 0xEFCDAB89;
	ctx->state[2] = 0x98BADCFE;
	ctx->state[3] = 0x10325476;
	ctx->state[4] = 0xC3D2E1F0;
	ctx->count = 0;
}