summaryrefslogtreecommitdiff
path: root/common/pinweaver.c
blob: 7cea0ca1b015260a45f756ddc05c73885efd06f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include <common.h>
#include <compile_time_macros.h>
#include <console.h>
#include <dcrypto.h>
#include <extension.h>
#include <hooks.h>
#include <nvmem_vars.h>
#include <pinweaver.h>
#include <pinweaver_tpm_imports.h>
#include <pinweaver_types.h>
#include <timer.h>
#include <tpm_vendor_cmds.h>
#include <trng.h>
#include <tpm_registers.h>
#include <util.h>

/* Compile time sanity checks. */
/* Make sure the hash size is consistent with dcrypto. */
BUILD_ASSERT(PW_HASH_SIZE >= SHA256_DIGEST_SIZE);

/* sizeof(struct leaf_data_t) % 16 should be zero */
BUILD_ASSERT(sizeof(struct leaf_sensitive_data_t) % PW_WRAP_BLOCK_SIZE == 0);

BUILD_ASSERT(sizeof(((struct merkle_tree_t *)0)->wrap_key) ==
	     AES256_BLOCK_CIPHER_KEY_SIZE);

/* Verify that the nvmem_vars log entries have the correct sizes. */
BUILD_ASSERT(sizeof(struct pw_long_term_storage_t) +
	     sizeof(struct pw_log_storage_t) <= PW_MAX_VAR_USAGE);

/* Verify that the request structs will fit into the message. */
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE >=
	     sizeof(struct pw_request_header_t) +
	     sizeof(union {struct pw_request_insert_leaf_t insert_leaf;
		     struct pw_request_remove_leaf_t remove_leaf;
		     struct pw_request_try_auth_t try_auth;
		     struct pw_request_reset_auth_t reset_auth;
		     struct pw_request_get_log_t get_log;
		     struct pw_request_log_replay_t log_replay; }) +
	     sizeof(struct leaf_public_data_t) +
	     sizeof(struct leaf_sensitive_data_t) +
	     PW_MAX_PATH_SIZE);

#define PW_MAX_RESPONSE_SIZE (sizeof(struct pw_response_header_t) + \
		sizeof(union {struct pw_response_insert_leaf_t insert_leaf; \
			struct pw_response_try_auth_t try_auth; \
			struct pw_response_reset_auth_t reset_auth; \
			struct pw_response_log_replay_t log_replay; }) + \
		PW_LEAF_PAYLOAD_SIZE)
#define PW_VALID_PCR_CRITERIA_SIZE \
		(sizeof(struct valid_pcr_value_t) * PW_MAX_PCR_CRITERIA_COUNT)
/* Verify that the request structs will fit into the message. */
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE >= PW_MAX_RESPONSE_SIZE);
/* Make sure the largest possible message would fit in
 * (struct tpm_register_file).data_fifo.
 */
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE + sizeof(struct tpm_cmd_header) <= 2048);

/* PW_MAX_PATH_SIZE should not change unless PW_LEAF_MAJOR_VERSION changes too.
 * Update these statements whenever these constants are changed to remind future
 * maintainers about this requirement.
 *
 * This requirement helps guarantee that forward compatibility across the same
 * PW_LEAF_MAJOR_VERSION doesn't break because of a path length becoming too
 * long after new fields are added to struct wrapped_leaf_data_t or its sub
 * fields.
 */
BUILD_ASSERT(PW_LEAF_MAJOR_VERSION == 0);
BUILD_ASSERT(PW_MAX_PATH_SIZE == 1024);

/* If fields are appended to struct leaf_sensitive_data_t, an encryption
 * operation should be performed on them reusing the same IV since the prefix
 * won't change.
 *
 * If any data in the original struct leaf_sensitive_data_t changes, a new IV
 * should be generated and stored as part of the log for a replay to be
 * possible.
 */
BUILD_ASSERT(sizeof(struct leaf_sensitive_data_t) == 3 * PW_SECRET_SIZE);

#define RESTART_TIMER_THRESHOLD (10 * SECOND)

/* This var caches the restart count so the nvram log structure doesn't need to
 * be walked every time try_auth request is made.
 */
uint32_t pw_restart_count;

/******************************************************************************/
/* Struct helper functions.
 */

void import_leaf(const struct unimported_leaf_data_t *unimported,
		 struct imported_leaf_data_t *imported)
{
	imported->head = &unimported->head;
	imported->hmac = unimported->hmac;
	imported->iv = unimported->iv;
	imported->pub = (const struct leaf_public_data_t *)unimported->payload;
	imported->cipher_text = unimported->payload + unimported->head.pub_len;
	imported->hashes = (const uint8_t (*)[PW_HASH_SIZE])(
			imported->cipher_text + unimported->head.sec_len);
}

/******************************************************************************/
/* Basic operations required by the Merkle tree.
 */

static int derive_keys(struct merkle_tree_t *merkle_tree)
{
	struct APPKEY_CTX ctx;
	int ret = EC_SUCCESS;
	const uint32_t KEY_TYPE_AES = 0x0;
	const uint32_t KEY_TYPE_HMAC = 0xffffffff;
	union {
		uint32_t v[8];
		uint8_t bytes[sizeof(uint32_t) * 8];
	} input;
	uint32_t type_field;
	size_t seed_size = sizeof(input);
	size_t x;

	get_storage_seed(input.v, &seed_size);
	for (x = 0; x < ARRAY_SIZE(input.bytes) &&
		    x < ARRAY_SIZE(merkle_tree->key_derivation_nonce); ++x)
		input.bytes[x] ^= merkle_tree->key_derivation_nonce[x];
	type_field = input.v[6];

	if (!DCRYPTO_appkey_init(PINWEAVER, &ctx))
		return PW_ERR_CRYPTO_FAILURE;

	input.v[6] = type_field ^ KEY_TYPE_AES;
	if (!DCRYPTO_appkey_derive(PINWEAVER, input.v,
				  (uint32_t *)merkle_tree->wrap_key)) {
		ret = PW_ERR_CRYPTO_FAILURE;
		goto cleanup;
	}

	input.v[6] = type_field ^ KEY_TYPE_HMAC;
	if (!DCRYPTO_appkey_derive(PINWEAVER, input.v,
				  (uint32_t *)merkle_tree->hmac_key)) {
		ret = PW_ERR_CRYPTO_FAILURE;
	}
cleanup:
	DCRYPTO_appkey_finish(&ctx);
	return ret;
}

/* Creates an empty merkle_tree with the given parameters. */
static int create_merkle_tree(struct bits_per_level_t bits_per_level,
			      struct height_t height,
			      struct merkle_tree_t *merkle_tree)
{
	uint16_t fan_out = 1 << bits_per_level.v;
	uint8_t temp_hash[PW_HASH_SIZE] = {};
	uint8_t hx;
	uint16_t kx;
	struct sha256_ctx ctx;

	merkle_tree->bits_per_level = bits_per_level;
	merkle_tree->height = height;

	/* Initialize the root hash. */
	for (hx = 0; hx < height.v; ++hx) {
		SHA256_hw_init(&ctx);
		for (kx = 0; kx < fan_out; ++kx)
			HASH_update((union hash_ctx *)&ctx, temp_hash,
				    PW_HASH_SIZE);
		memcpy(temp_hash, HASH_final((union hash_ctx *)&ctx),
		       PW_HASH_SIZE);
	}
	memcpy(merkle_tree->root, temp_hash, PW_HASH_SIZE);

	rand_bytes(merkle_tree->key_derivation_nonce,
		   sizeof(merkle_tree->key_derivation_nonce));
	return derive_keys(merkle_tree);
}

/* Computes the HMAC for an encrypted leaf using the key in the merkle_tree. */
static void compute_hmac(const struct merkle_tree_t *merkle_tree,
			 const struct imported_leaf_data_t *imported_leaf_data,
			 uint8_t result[PW_HASH_SIZE])
{
	struct hmac_sha256_ctx hmac;

	HMAC_SHA256_hw_init(&hmac, merkle_tree->hmac_key,
				 sizeof(merkle_tree->hmac_key));
	/* use HASH_update() vs. HMAC_update() due limits of dcrypto mock. */
	HASH_update((union hash_ctx *)&hmac.hash, imported_leaf_data->head,
		    sizeof(*imported_leaf_data->head));
	HASH_update((union hash_ctx *)&hmac.hash, imported_leaf_data->iv,
		    sizeof(PW_WRAP_BLOCK_SIZE));
	HASH_update((union hash_ctx *)&hmac.hash, imported_leaf_data->pub,
		    imported_leaf_data->head->pub_len);
	HASH_update((union hash_ctx *)&hmac.hash,
		    imported_leaf_data->cipher_text,
		    imported_leaf_data->head->sec_len);
	memcpy(result, HMAC_SHA256_hw_final(&hmac), PW_HASH_SIZE);
}

/* Computes the root hash for the specified path and child hash. */
static void compute_root_hash(const struct merkle_tree_t *merkle_tree,
			      struct label_t path,
			      const uint8_t hashes[][PW_HASH_SIZE],
			      const uint8_t child_hash[PW_HASH_SIZE],
			      uint8_t new_root[PW_HASH_SIZE])
{
	/* This is one less than the fan out, the number of sibling hashes. */
	const uint16_t num_aux = (1 << merkle_tree->bits_per_level.v) - 1;
	const uint16_t path_suffix_mask = num_aux;
	uint8_t temp_hash[PW_HASH_SIZE];
	uint8_t hx = 0;
	uint64_t index = path.v;

	compute_hash(hashes, num_aux,
		     (struct index_t){index & path_suffix_mask},
		     child_hash, temp_hash);
	for (hx = 1; hx < merkle_tree->height.v; ++hx) {
		hashes += num_aux;
		index = index >> merkle_tree->bits_per_level.v;
		compute_hash(hashes, num_aux,
			     (struct index_t){index & path_suffix_mask},
			     temp_hash, temp_hash);
	}
	memcpy(new_root, temp_hash, sizeof(temp_hash));
}

/* Checks to see the specified path is valid. The length of the path should be
 * validated prior to calling this function.
 *
 * Returns 0 on success or an error code otherwise.
 */
static int authenticate_path(const struct merkle_tree_t *merkle_tree,
			     struct label_t path,
			     const uint8_t hashes[][PW_HASH_SIZE],
			     const uint8_t child_hash[PW_HASH_SIZE])
{
	uint8_t parent[PW_HASH_SIZE];

	compute_root_hash(merkle_tree, path, hashes, child_hash, parent);
	if (memcmp(parent, merkle_tree->root, sizeof(parent)) != 0)
		return PW_ERR_PATH_AUTH_FAILED;
	return EC_SUCCESS;
}

static void init_wrapped_leaf_data(
		struct wrapped_leaf_data_t *wrapped_leaf_data)
{
	wrapped_leaf_data->head.leaf_version.major = PW_LEAF_MAJOR_VERSION;
	wrapped_leaf_data->head.leaf_version.minor = PW_LEAF_MINOR_VERSION;
	wrapped_leaf_data->head.pub_len = sizeof(wrapped_leaf_data->pub);
	wrapped_leaf_data->head.sec_len =
			sizeof(wrapped_leaf_data->cipher_text);
}

/* Encrypts the leaf meta data. */
static int encrypt_leaf_data(const struct merkle_tree_t *merkle_tree,
			     const struct leaf_data_t *leaf_data,
			     struct wrapped_leaf_data_t *wrapped_leaf_data)
{
	/* Generate a random IV.
	 *
	 * If fields are appended to struct leaf_sensitive_data_t, an encryption
	 * operation should be performed on them reusing the same IV since the
	 * prefix won't change.
	 *
	 * If any data of in the original struct leaf_sensitive_data_t changes,
	 * a new IV should be generated and stored as part of the log for a
	 * replay to be possible.
	 */
	rand_bytes(wrapped_leaf_data->iv, sizeof(wrapped_leaf_data->iv));
	memcpy(&wrapped_leaf_data->pub, &leaf_data->pub,
	       sizeof(leaf_data->pub));
	if (!DCRYPTO_aes_ctr(wrapped_leaf_data->cipher_text,
			    merkle_tree->wrap_key,
			    sizeof(merkle_tree->wrap_key) << 3,
			    wrapped_leaf_data->iv, (uint8_t *)&leaf_data->sec,
			    sizeof(leaf_data->sec))) {
		return PW_ERR_CRYPTO_FAILURE;
	}
	return EC_SUCCESS;
}

/* Decrypts the leaf meta data. */
static int decrypt_leaf_data(
		const struct merkle_tree_t *merkle_tree,
		const struct imported_leaf_data_t *imported_leaf_data,
		struct leaf_data_t *leaf_data)
{
	memcpy(&leaf_data->pub, imported_leaf_data->pub,
	       MIN(imported_leaf_data->head->pub_len,
		   sizeof(struct leaf_public_data_t)));
	if (!DCRYPTO_aes_ctr((uint8_t *)&leaf_data->sec, merkle_tree->wrap_key,
			    sizeof(merkle_tree->wrap_key) << 3,
			    imported_leaf_data->iv,
			    imported_leaf_data->cipher_text,
			    sizeof(leaf_data->sec))) {
		return PW_ERR_CRYPTO_FAILURE;
	}
	return EC_SUCCESS;
}

static int handle_leaf_update(
		const struct merkle_tree_t *merkle_tree,
		const struct leaf_data_t *leaf_data,
		const uint8_t hashes[][PW_HASH_SIZE],
		struct wrapped_leaf_data_t *wrapped_leaf_data,
		uint8_t new_root[PW_HASH_SIZE],
		const struct imported_leaf_data_t *optional_old_wrapped_data)
{
	int ret;
	struct imported_leaf_data_t ptrs;

	init_wrapped_leaf_data(wrapped_leaf_data);
	if (optional_old_wrapped_data == NULL) {
		ret = encrypt_leaf_data(merkle_tree, leaf_data,
					wrapped_leaf_data);
		if (ret != EC_SUCCESS)
			return ret;
	} else {
		memcpy(wrapped_leaf_data->iv, optional_old_wrapped_data->iv,
		       sizeof(wrapped_leaf_data->iv));
		memcpy(&wrapped_leaf_data->pub, &leaf_data->pub,
		       sizeof(leaf_data->pub));
		memcpy(wrapped_leaf_data->cipher_text,
		       optional_old_wrapped_data->cipher_text,
		       sizeof(wrapped_leaf_data->cipher_text));
	}

	import_leaf((const struct unimported_leaf_data_t *)wrapped_leaf_data,
		    &ptrs);
	compute_hmac(merkle_tree, &ptrs, wrapped_leaf_data->hmac);

	compute_root_hash(merkle_tree, leaf_data->pub.label,
			  hashes, wrapped_leaf_data->hmac,
			  new_root);

	return EC_SUCCESS;
}

/******************************************************************************/
/* Parameter and state validation functions.
 */

static int validate_tree_parameters(struct bits_per_level_t bits_per_level,
				    struct height_t height)
{
	uint8_t fan_out = 1 << bits_per_level.v;

	if (bits_per_level.v < BITS_PER_LEVEL_MIN ||
	    bits_per_level.v > BITS_PER_LEVEL_MAX)
		return PW_ERR_BITS_PER_LEVEL_INVALID;

	if (height.v < HEIGHT_MIN ||
	    height.v > HEIGHT_MAX(bits_per_level.v) ||
	    ((fan_out - 1) * height.v) * PW_HASH_SIZE > PW_MAX_PATH_SIZE)
		return PW_ERR_HEIGHT_INVALID;

	return EC_SUCCESS;
}

/* Verifies that merkle_tree has been initialized. */
static int validate_tree(const struct merkle_tree_t *merkle_tree)
{
	if (validate_tree_parameters(merkle_tree->bits_per_level,
				     merkle_tree->height) != EC_SUCCESS)
		return PW_ERR_TREE_INVALID;
	return EC_SUCCESS;
}

/* Checks the following conditions:
 * Extra index fields should be all zero.
 */
static int validate_label(const struct merkle_tree_t *merkle_tree,
			  struct label_t path)
{
	uint8_t shift_by = merkle_tree->bits_per_level.v *
			   merkle_tree->height.v;

	if ((path.v >> shift_by) == 0)
		return EC_SUCCESS;
	return PW_ERR_LABEL_INVALID;
}

/* Checks the following conditions:
 * Columns should be strictly increasing.
 * Zeroes for filler at the end of the delay_schedule are permitted.
 */
static int validate_delay_schedule(const struct delay_schedule_entry_t
				   delay_schedule[PW_SCHED_COUNT])
{
	size_t x;

	/* The first entry should not be useless. */
	if (delay_schedule[0].time_diff.v == 0)
		return PW_ERR_DELAY_SCHEDULE_INVALID;

	for (x = PW_SCHED_COUNT - 1; x > 0; --x) {
		if (delay_schedule[x].attempt_count.v == 0) {
			if (delay_schedule[x].time_diff.v != 0)
				return PW_ERR_DELAY_SCHEDULE_INVALID;
		} else if (delay_schedule[x].attempt_count.v <=
				delay_schedule[x - 1].attempt_count.v ||
				delay_schedule[x].time_diff.v <=
				delay_schedule[x - 1].time_diff.v) {
			return PW_ERR_DELAY_SCHEDULE_INVALID;
		}
	}
	return EC_SUCCESS;
}

static int validate_pcr_value(const struct valid_pcr_value_t
			      valid_pcr_criteria[PW_MAX_PCR_CRITERIA_COUNT])
{
	size_t index;
	uint8_t sha256_of_selected_pcr[SHA256_DIGEST_SIZE];

	for (index = 0; index < PW_MAX_PCR_CRITERIA_COUNT; ++index) {
		/* The criteria with bitmask[0] = bitmask[1] = 0 is considered
		 * the end of list criteria. If it happens that the first
		 * bitmask is zero, we consider that no criteria has to be
		 * satisfied and return success in that case.
		 */
		if (valid_pcr_criteria[index].bitmask[0] == 0 &&
		    valid_pcr_criteria[index].bitmask[1] == 0) {
			if (index == 0)
				return EC_SUCCESS;

			return PW_ERR_PCR_NOT_MATCH;
		}

		if (get_current_pcr_digest(valid_pcr_criteria[index].bitmask,
					   sha256_of_selected_pcr)) {
			cprints(CC_TASK,
				"PinWeaver: Read PCR error, bitmask: %d, %d",
				valid_pcr_criteria[index].bitmask[0],
				valid_pcr_criteria[index].bitmask[1]);
			return PW_ERR_PCR_NOT_MATCH;
		}

		/* Check if the curent PCR digest is the same as expected by
		 * criteria.
		 */
		if (memcmp(sha256_of_selected_pcr,
			   valid_pcr_criteria[index].digest,
			   SHA256_DIGEST_SIZE) == 0) {
			return EC_SUCCESS;
		}
	}

	cprints(CC_TASK, "PinWeaver: No criteria matches PCR values");
	return PW_ERR_PCR_NOT_MATCH;
}

static int expected_payload_len(int minor_version)
{
	switch (minor_version) {
	case 0:
		return PW_LEAF_PAYLOAD_SIZE - PW_VALID_PCR_CRITERIA_SIZE;
	case PW_LEAF_MINOR_VERSION:
		return PW_LEAF_PAYLOAD_SIZE;
	default:
		return 0;
	}
}

static int validate_leaf_header(const struct leaf_header_t *head,
				uint16_t payload_len, uint16_t aux_hash_len)
{
	uint32_t leaf_payload_len = head->pub_len + head->sec_len;

	if (head->leaf_version.major != PW_LEAF_MAJOR_VERSION)
		return PW_ERR_LEAF_VERSION_MISMATCH;

	if (head->leaf_version.minor <= PW_LEAF_MINOR_VERSION &&
	    leaf_payload_len !=
	    expected_payload_len(head->leaf_version.minor)) {
		return PW_ERR_LENGTH_INVALID;
	}

	if (payload_len != leaf_payload_len + aux_hash_len * PW_HASH_SIZE)
		return PW_ERR_LENGTH_INVALID;

	return EC_SUCCESS;
}

/* Common validation for requests that include a path to authenticate. */
static int validate_request_with_path(const struct merkle_tree_t *merkle_tree,
				      struct label_t path,
				      const uint8_t hashes[][PW_HASH_SIZE],
				      const uint8_t hmac[PW_HASH_SIZE])
{
	int ret;

	ret = validate_tree(merkle_tree);
	if (ret != EC_SUCCESS)
		return ret;

	ret = validate_label(merkle_tree, path);
	if (ret != EC_SUCCESS)
		return ret;

	return authenticate_path(merkle_tree, path, hashes, hmac);
}

/* Common validation for requests that import a leaf. */
static int validate_request_with_wrapped_leaf(
		const struct merkle_tree_t *merkle_tree,
		uint16_t payload_len,
		const struct unimported_leaf_data_t *unimported_leaf_data,
		struct imported_leaf_data_t *imported_leaf_data,
		struct leaf_data_t *leaf_data)
{
	int ret;
	uint8_t hmac[PW_HASH_SIZE];

	ret = validate_leaf_header(&unimported_leaf_data->head, payload_len,
				   get_path_auxiliary_hash_count(merkle_tree));
	if (ret != EC_SUCCESS)
		return ret;

	import_leaf(unimported_leaf_data, imported_leaf_data);
	ret = validate_request_with_path(merkle_tree,
					 imported_leaf_data->pub->label,
					 imported_leaf_data->hashes,
					 imported_leaf_data->hmac);
	if (ret != EC_SUCCESS)
		return ret;

	compute_hmac(merkle_tree, imported_leaf_data, hmac);
	/* Safe memcmp is used here to prevent an attacker from being able to
	 * brute force a valid HMAC for a crafted wrapped_leaf_data.
	 * memcmp provides an attacker a timing side-channel they can use to
	 * determine how much of a prefix is correct.
	 */
	if (safe_memcmp(hmac, unimported_leaf_data->hmac, sizeof(hmac)))
		return PW_ERR_HMAC_AUTH_FAILED;

	ret = decrypt_leaf_data(merkle_tree, imported_leaf_data, leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	/* The code below handles version upgrades. */
	if (unimported_leaf_data->head.leaf_version.minor == 0 &&
	    unimported_leaf_data->head.leaf_version.major == 0) {
		/* Populate the leaf_data with default pcr value */
		memset(&leaf_data->pub.valid_pcr_criteria, 0,
		       PW_VALID_PCR_CRITERIA_SIZE);
	}

	return EC_SUCCESS;
}

/* Sets the value of ts to the current notion of time. */
static void update_timestamp(struct pw_timestamp_t *ts)
{
	ts->timer_value = get_time().val / SECOND;
	ts->boot_count = pw_restart_count;
}

/* Checks if an auth attempt can be made or not based on the delay schedule.
 * EC_SUCCESS is returned when a new attempt can be made otherwise
 * seconds_to_wait will be updated with the remaining wait time required.
 */
static int test_rate_limit(struct leaf_data_t *leaf_data,
			   struct time_diff_t *seconds_to_wait)
{
	uint64_t ready_time;
	uint8_t x;
	struct pw_timestamp_t current_time;
	struct time_diff_t delay = {0};

	/* This loop ends when x is one greater than the index that applies. */
	for (x = 0; x < ARRAY_SIZE(leaf_data->pub.delay_schedule); ++x) {
		/* Stop if a null entry is reached. The first part of the delay
		 * schedule has a list of increasing (attempt_count, time_diff)
		 * pairs with any unused entries zeroed out at the end.
		 */
		if (leaf_data->pub.delay_schedule[x].attempt_count.v == 0)
			break;

		/* Stop once a delay schedule entry is reached whose
		 * threshold is greater than the current number of
		 * attempts.
		 */
		if (leaf_data->pub.attempt_count.v <
		    leaf_data->pub.delay_schedule[x].attempt_count.v)
			break;
	}

	/* If the first threshold was greater than the current number of
	 * attempts, there is no delay. Otherwise, grab the delay from the
	 * entry prior to the one that was too big.
	 */
	if (x > 0)
		delay = leaf_data->pub.delay_schedule[x - 1].time_diff;

	if (delay.v == 0)
		return EC_SUCCESS;

	if (delay.v == PW_BLOCK_ATTEMPTS) {
		seconds_to_wait->v = PW_BLOCK_ATTEMPTS;
		return PW_ERR_RATE_LIMIT_REACHED;
	}

	update_timestamp(&current_time);

	if (leaf_data->pub.timestamp.boot_count == current_time.boot_count)
		ready_time = delay.v + leaf_data->pub.timestamp.timer_value;
	else
		ready_time = delay.v;

	if (current_time.timer_value >= ready_time)
		return EC_SUCCESS;

	seconds_to_wait->v = ready_time - current_time.timer_value;
	return PW_ERR_RATE_LIMIT_REACHED;
}

/******************************************************************************/
/* Logging implementation.
 */

/* Once the storage version is incremented, the update code needs to be written
 * to handle differences in the structs.
 *
 * See the two comments "Add storage format updates here." below.
 */
BUILD_ASSERT(PW_STORAGE_VERSION == 0);

void force_restart_count(uint32_t mock_value)
{
	pw_restart_count = mock_value;
}

/* Returns EC_SUCCESS if the root hash was found. Sets *index to the first index
 * of the log entry with a matching root hash, or the index of the last valid
 * entry.
 */
static int find_relevant_entry(const struct pw_log_storage_t *log,
			       const uint8_t root[PW_HASH_SIZE], int *index)
{
	/* Find the relevant log entry. */
	for (*index = 0; *index < PW_LOG_ENTRY_COUNT; ++*index) {
		if (log->entries[*index].type.v == PW_MT_INVALID)
			break;
		if (memcmp(root, log->entries[*index].root, PW_HASH_SIZE) == 0)
			return EC_SUCCESS;
	}
	--*index;
	return PW_ERR_ROOT_NOT_FOUND;
}

static int load_log_data(struct pw_log_storage_t *log)
{
	const struct tuple *ptr;
	const struct pw_log_storage_t *view;
	int rv = EC_SUCCESS;

	ptr = getvar(PW_LOG_VAR0, sizeof(PW_LOG_VAR0) - 1);
	if (ptr == NULL)
		return PW_ERR_NV_EMPTY;

	view = (void *)tuple_val(ptr);
	if (ptr->val_len != sizeof(struct pw_log_storage_t))
		rv = PW_ERR_NV_LENGTH_MISMATCH;
	else if (view->storage_version != PW_STORAGE_VERSION)
		rv = PW_ERR_NV_VERSION_MISMATCH;
	else
		memcpy(log, view, ptr->val_len);

	freevar(ptr);

	return rv;
}

int store_log_data(const struct pw_log_storage_t *log)
{
	return setvar(PW_LOG_VAR0, sizeof(PW_LOG_VAR0) - 1, (uint8_t *)log,
		      sizeof(struct pw_log_storage_t));
}

static int load_merkle_tree(struct merkle_tree_t *merkle_tree)
{
	int ret;
	const struct tuple *ptr;

	cprints(CC_TASK, "PinWeaver: Loading Tree!");

	/* Handle the immutable data. */
	{
		const struct pw_long_term_storage_t *tree;

		ptr = getvar(PW_TREE_VAR, sizeof(PW_TREE_VAR) - 1);
		if (!ptr)
			return PW_ERR_NV_EMPTY;

		tree = (void *)tuple_val(ptr);
		/* Add storage format updates here. */
		if (ptr->val_len != sizeof(*tree)) {
			freevar(ptr);
			return PW_ERR_NV_LENGTH_MISMATCH;
		}
		if (tree->storage_version != PW_STORAGE_VERSION) {
			freevar(ptr);
			return PW_ERR_NV_VERSION_MISMATCH;
		}

		merkle_tree->bits_per_level = tree->bits_per_level;
		merkle_tree->height = tree->height;
		memcpy(merkle_tree->key_derivation_nonce,
		       tree->key_derivation_nonce,
		       sizeof(tree->key_derivation_nonce));
		ret = derive_keys(merkle_tree);
		freevar(ptr);
		if (ret != EC_SUCCESS)
			return ret;
	}

	/* Handle the root hash. */
	{
		struct pw_log_storage_t *log;

		ptr = getvar(PW_LOG_VAR0, sizeof(PW_LOG_VAR0) - 1);
		if (!ptr)
			return PW_ERR_NV_EMPTY;

		log = (void *)tuple_val(ptr);
		/* Add storage format updates here. */
		if (ptr->val_len != sizeof(struct pw_log_storage_t)) {
			freevar(ptr);
			return PW_ERR_NV_LENGTH_MISMATCH;
		}
		if (log->storage_version != PW_STORAGE_VERSION) {
			freevar(ptr);
			return PW_ERR_NV_VERSION_MISMATCH;
		}

		memcpy(merkle_tree->root, log->entries[0].root,
		       sizeof(merkle_tree->root));

		/* This forces an NVRAM write for hard reboots for which the
		 * timer value gets reset. The TPM restart and reset counters
		 * were not used because they do not track the state of the
		 * counter.
		 *
		 * Pinweaver uses the restart_count to know when the time since
		 * boot can be used as the elapsed time for the delay schedule,
		 * versus when the elapsed time starts from a timestamp.
		 */
		if (get_time().val < RESTART_TIMER_THRESHOLD) {
			++log->restart_count;
			ret = setvar(PW_LOG_VAR0, sizeof(PW_LOG_VAR0) - 1,
				     (uint8_t *)log,
				     sizeof(struct pw_log_storage_t));
			if (ret != EC_SUCCESS) {
				freevar(ptr);
				return ret;
			}
		}
		pw_restart_count = log->restart_count;
		freevar(ptr);
	}

	cprints(CC_TASK, "PinWeaver: Loaded Tree. restart_count = %d",
		pw_restart_count);

	return EC_SUCCESS;
}

/* This should only be called when a new tree is created. */
int store_merkle_tree(const struct merkle_tree_t *merkle_tree)
{
	int ret;

	/* Handle the immutable data. */
	{
		struct pw_long_term_storage_t data;

		data.storage_version = PW_STORAGE_VERSION;
		data.bits_per_level = merkle_tree->bits_per_level;
		data.height = merkle_tree->height;
		memcpy(data.key_derivation_nonce,
		       merkle_tree->key_derivation_nonce,
		       sizeof(data.key_derivation_nonce));

		ret = setvar(PW_TREE_VAR, sizeof(PW_TREE_VAR) - 1,
			     (uint8_t *)&data, sizeof(data));
		if (ret != EC_SUCCESS)
			return ret;
	}

	/* Handle the root hash. */
	{
		struct pw_log_storage_t log = {};
		struct pw_get_log_entry_t *entry = log.entries;

		log.storage_version = PW_STORAGE_VERSION;
		entry->type.v = PW_RESET_TREE;
		memcpy(entry->root, merkle_tree->root,
		       sizeof(merkle_tree->root));

		ret = store_log_data(&log);
		if (ret == EC_SUCCESS)
			pw_restart_count = 0;
		return ret;
	}

}

static int log_roll_for_append(struct pw_log_storage_t *log)
{
	int ret;

	ret = load_log_data(log);
	if (ret != EC_SUCCESS)
		return ret;

	memmove(&log->entries[1], &log->entries[0],
		sizeof(log->entries[0]) * (PW_LOG_ENTRY_COUNT - 1));
	memset(&log->entries[0], 0, sizeof(log->entries[0]));
	return EC_SUCCESS;
}

int log_insert_leaf(struct label_t label, const uint8_t root[PW_HASH_SIZE],
		    const uint8_t hmac[PW_HASH_SIZE])
{
	int ret;
	struct pw_log_storage_t log;
	struct pw_get_log_entry_t *entry = log.entries;

	ret = log_roll_for_append(&log);
	if (ret != EC_SUCCESS)
		return ret;

	entry->type.v = PW_INSERT_LEAF;
	entry->label.v = label.v;
	memcpy(entry->root, root, sizeof(entry->root));
	memcpy(entry->leaf_hmac, hmac, sizeof(entry->leaf_hmac));

	return store_log_data(&log);
}

int log_remove_leaf(struct label_t label, const uint8_t root[PW_HASH_SIZE])
{
	int ret;
	struct pw_log_storage_t log;
	struct pw_get_log_entry_t *entry = log.entries;

	ret = log_roll_for_append(&log);
	if (ret != EC_SUCCESS)
		return ret;

	entry->type.v = PW_REMOVE_LEAF;
	entry->label.v = label.v;
	memcpy(entry->root, root, sizeof(entry->root));

	return store_log_data(&log);
}

int log_auth(struct label_t label, const uint8_t root[PW_HASH_SIZE], int code,
	     struct pw_timestamp_t timestamp)
{
	int ret;
	struct pw_log_storage_t log;
	struct pw_get_log_entry_t *entry = log.entries;

	ret = log_roll_for_append(&log);
	if (ret != EC_SUCCESS)
		return ret;

	entry->type.v = PW_TRY_AUTH;
	entry->label.v = label.v;
	memcpy(entry->root, root, sizeof(entry->root));
	entry->return_code = code;
	memcpy(&entry->timestamp, &timestamp, sizeof(entry->timestamp));

	return store_log_data(&log);
}

/******************************************************************************/
/* Per-request-type handler implementations.
 */

static int pw_handle_reset_tree(struct merkle_tree_t *merkle_tree,
				const struct pw_request_reset_tree_t *request,
				uint16_t req_size)
{
	struct merkle_tree_t new_tree = {};
	int ret;

	if (req_size != sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_tree_parameters(request->bits_per_level,
				       request->height);
	if (ret != EC_SUCCESS)
		return ret;

	ret = create_merkle_tree(request->bits_per_level, request->height,
				 &new_tree);
	if (ret != EC_SUCCESS)
		return ret;

	ret = store_merkle_tree(&new_tree);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree, &new_tree, sizeof(new_tree));
	return EC_SUCCESS;
}

static int pw_handle_insert_leaf(struct merkle_tree_t *merkle_tree,
				 const struct pw_request_insert_leaf_t *request,
				 uint16_t req_size,
				 struct pw_response_insert_leaf_t *response,
				 uint16_t *response_size)
{
	int ret = EC_SUCCESS;
	struct leaf_data_t leaf_data = {};
	struct wrapped_leaf_data_t wrapped_leaf_data;
	const uint8_t empty_hash[PW_HASH_SIZE] = {};
	uint8_t new_root[PW_HASH_SIZE];

	if (req_size != sizeof(*request) +
			get_path_auxiliary_hash_count(merkle_tree) *
			PW_HASH_SIZE)
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_path(merkle_tree, request->label,
					 request->path_hashes, empty_hash);
	if (ret != EC_SUCCESS)
		return ret;

	ret = validate_delay_schedule(request->delay_schedule);
	if (ret != EC_SUCCESS)
		return ret;

	memset(&leaf_data, 0, sizeof(leaf_data));
	leaf_data.pub.label.v = request->label.v;
	memcpy(&leaf_data.pub.valid_pcr_criteria, request->valid_pcr_criteria,
	       sizeof(request->valid_pcr_criteria));
	memcpy(&leaf_data.pub.delay_schedule, &request->delay_schedule,
	       sizeof(request->delay_schedule));
	memcpy(&leaf_data.sec.low_entropy_secret, &request->low_entropy_secret,
	       sizeof(request->low_entropy_secret));
	memcpy(&leaf_data.sec.high_entropy_secret,
	       &request->high_entropy_secret,
	       sizeof(request->high_entropy_secret));
	memcpy(&leaf_data.sec.reset_secret, &request->reset_secret,
	       sizeof(request->reset_secret));

	ret = handle_leaf_update(merkle_tree, &leaf_data, request->path_hashes,
				 &wrapped_leaf_data, new_root, NULL);
	if (ret != EC_SUCCESS)
		return ret;

	ret = log_insert_leaf(request->label, new_root,
			      wrapped_leaf_data.hmac);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;

	return ret;
}

static int pw_handle_remove_leaf(struct merkle_tree_t *merkle_tree,
				 const struct pw_request_remove_leaf_t *request,
				 uint16_t req_size)
{
	int ret = EC_SUCCESS;
	const uint8_t empty_hash[PW_HASH_SIZE] = {};
	uint8_t new_root[PW_HASH_SIZE];

	if (req_size != sizeof(*request) +
			get_path_auxiliary_hash_count(merkle_tree) *
			PW_HASH_SIZE)
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_path(merkle_tree, request->leaf_location,
					 request->path_hashes,
					 request->leaf_hmac);
	if (ret != EC_SUCCESS)
		return ret;

	compute_root_hash(merkle_tree, request->leaf_location,
			  request->path_hashes, empty_hash, new_root);

	ret = log_remove_leaf(request->leaf_location, new_root);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree->root, new_root, sizeof(new_root));
	return ret;
}

/* Processes a try_auth request.
 *
 * The valid fields in response based on return code are:
 *   EC_SUCCESS                 ->  unimported_leaf_data and high_entropy_secret
 *   PW_ERR_RATE_LIMIT_REACHED  ->  seconds_to_wait
 *   PW_ERR_LOWENT_AUTH_FAILED  ->  unimported_leaf_data
 */
static int pw_handle_try_auth(struct merkle_tree_t *merkle_tree,
			      const struct pw_request_try_auth_t *request,
			      uint16_t req_size,
			      struct pw_response_try_auth_t *response,
			      uint16_t *data_length)
{
	int ret = EC_SUCCESS;
	struct leaf_data_t leaf_data = {};
	struct imported_leaf_data_t imported_leaf_data;
	struct wrapped_leaf_data_t wrapped_leaf_data;
	struct time_diff_t seconds_to_wait;
	uint8_t zeros[PW_SECRET_SIZE] = {};
	uint8_t new_root[PW_HASH_SIZE];

	/* These variables help eliminate the possibility of a timing side
	 * channel that would allow an attacker to prevent the log write.
	 */
	volatile int auth_result;

	volatile struct {
		uint32_t attempts;
		int ret;
		uint8_t *secret;
		uint8_t *reset_secret;
	} results_table[2] = {
			{ 0, PW_ERR_LOWENT_AUTH_FAILED, zeros, zeros },
			{ 0, EC_SUCCESS, leaf_data.sec.high_entropy_secret,
			  leaf_data.sec.reset_secret },
	};

	if (req_size < sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_wrapped_leaf(
			merkle_tree, req_size - sizeof(*request),
			&request->unimported_leaf_data, &imported_leaf_data,
			&leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	/* Check if at least one PCR criteria is satisfied if the leaf is
	 * bound to PCR.
	 */
	ret = validate_pcr_value(leaf_data.pub.valid_pcr_criteria);
	if (ret != EC_SUCCESS)
		return ret;

	ret = test_rate_limit(&leaf_data, &seconds_to_wait);
	if (ret != EC_SUCCESS) {
		*data_length = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
		memset(response, 0, *data_length);
		memcpy(&response->seconds_to_wait, &seconds_to_wait,
		       sizeof(seconds_to_wait));
		return ret;
	}

	update_timestamp(&leaf_data.pub.timestamp);

	/* Precompute the failed attempts. */
	results_table[0].attempts = leaf_data.pub.attempt_count.v;
	if (results_table[0].attempts != UINT32_MAX)
		++results_table[0].attempts;

	/**********************************************************************/
	/* After this:
	 * 1) results_table should not be changed;
	 * 2) the runtime of the code paths for failed and successful
	 *    authentication attempts should not diverge.
	 */
	auth_result = safe_memcmp(request->low_entropy_secret,
				  leaf_data.sec.low_entropy_secret,
				  sizeof(request->low_entropy_secret)) == 0;
	leaf_data.pub.attempt_count.v = results_table[auth_result].attempts;

	/* This has a non-constant time path, but it doesn't convey information
	 * about whether a PW_ERR_LOWENT_AUTH_FAILED happened or not.
	 */
	ret = handle_leaf_update(merkle_tree, &leaf_data,
				 imported_leaf_data.hashes, &wrapped_leaf_data,
				 new_root, &imported_leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	ret = log_auth(wrapped_leaf_data.pub.label, new_root,
		       results_table[auth_result].ret, leaf_data.pub.timestamp);
	if (ret != EC_SUCCESS) {
		memcpy(new_root, merkle_tree->root, sizeof(merkle_tree->root));
		return ret;
	}
	/**********************************************************************/
	/* At this point the log should be written so it should be safe for the
	 * runtime of the code paths to diverge.
	 */

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	*data_length = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
	memset(response, 0, *data_length);

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	memcpy(&response->high_entropy_secret,
	       results_table[auth_result].secret,
	       sizeof(response->high_entropy_secret));

	memcpy(&response->reset_secret,
	       results_table[auth_result].reset_secret,
	       sizeof(response->reset_secret));

	return results_table[auth_result].ret;
}

static int pw_handle_reset_auth(struct merkle_tree_t *merkle_tree,
				const struct pw_request_reset_auth_t *request,
				uint16_t req_size,
				struct pw_response_reset_auth_t *response,
				uint16_t *response_size)
{
	int ret = EC_SUCCESS;
	struct leaf_data_t leaf_data = {};
	struct imported_leaf_data_t imported_leaf_data;
	struct wrapped_leaf_data_t wrapped_leaf_data;
	uint8_t new_root[PW_HASH_SIZE];

	if (req_size < sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_wrapped_leaf(
			merkle_tree, req_size - sizeof(*request),
			&request->unimported_leaf_data, &imported_leaf_data,
			&leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	/* Safe memcmp is used here to prevent an attacker from being able to
	 * brute force the reset secret and use it to unlock the leaf.
	 * memcmp provides an attacker a timing side-channel they can use to
	 * determine how much of a prefix is correct.
	 */
	if (safe_memcmp(request->reset_secret,
			leaf_data.sec.reset_secret,
			sizeof(request->reset_secret)) != 0)
		return PW_ERR_RESET_AUTH_FAILED;

	leaf_data.pub.attempt_count.v = 0;

	ret = handle_leaf_update(merkle_tree, &leaf_data,
				 imported_leaf_data.hashes, &wrapped_leaf_data,
				 new_root, &imported_leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	ret = log_auth(leaf_data.pub.label, new_root, ret,
		       leaf_data.pub.timestamp);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	memcpy(response->high_entropy_secret,
	       leaf_data.sec.high_entropy_secret,
	       sizeof(response->high_entropy_secret));

	*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;

	return ret;
}

static int pw_handle_get_log(const struct merkle_tree_t *merkle_tree,
			     const struct pw_request_get_log_t *request,
			     uint16_t req_size,
			     struct pw_get_log_entry_t response[],
			     uint16_t *response_size)
{
	int ret;
	int x;
	struct pw_log_storage_t log;

	if (req_size != sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_tree(merkle_tree);
	if (ret != EC_SUCCESS)
		return ret;

	ret = load_log_data(&log);
	if (ret != EC_SUCCESS)
		return ret;

	/* Find the relevant log entry. The return value isn't used because if
	 * the entry isn't found the entire log is returned. This makes it
	 * easier to recover when the log is too short.
	 *
	 * Here is an example:
	 * 50 attempts have been made against a leaf that becomes out of sync
	 * because of a disk flush failing. The copy of the leaf on disk is
	 * behind by 50 and the log contains less than 50 entries. The CrOS
	 * implementation can check the public parameters of the local copy with
	 * the log entry to determine that leaf is out of sync. It can then send
	 * any valid copy of that leaf with a log replay request that will only
	 * succeed if the HMAC of the resulting leaf matches the log entry.
	 */
	find_relevant_entry(&log, request->root, &x);
	/* If there are no valid entries, return. */
	if (x < 0)
		return EC_SUCCESS;

	/* Copy the entries in reverse order. */
	while (1) {
		memcpy(&response[x], &log.entries[x], sizeof(log.entries[x]));
		*response_size += sizeof(log.entries[x]);
		if (x == 0)
			break;
		--x;
	}

	return EC_SUCCESS;
}

static int pw_handle_log_replay(const struct merkle_tree_t *merkle_tree,
				const struct pw_request_log_replay_t *request,
				uint16_t req_size,
				struct pw_response_log_replay_t *response,
				uint16_t *response_size)
{
	int ret;
	int x;
	struct pw_log_storage_t log;
	struct leaf_data_t leaf_data = {};
	struct imported_leaf_data_t imported_leaf_data;
	struct wrapped_leaf_data_t wrapped_leaf_data;
	uint8_t hmac[PW_HASH_SIZE];
	uint8_t root[PW_HASH_SIZE];

	if (req_size < sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_tree(merkle_tree);
	if (ret != EC_SUCCESS)
		return ret;

	/* validate_request_with_wrapped_leaf() isn't used here because the
	 * path validation is delayed to allow any valid copy of the same leaf
	 * to be used in the replay operation as long as the result passes path
	 * validation.
	 */
	ret = validate_leaf_header(&request->unimported_leaf_data.head,
				   req_size - sizeof(*request),
				   get_path_auxiliary_hash_count(merkle_tree));
	if (ret != EC_SUCCESS)
		return ret;

	import_leaf(&request->unimported_leaf_data, &imported_leaf_data);

	ret = load_log_data(&log);
	if (ret != EC_SUCCESS)
		return ret;

	/* Find the relevant log entry. */
	ret = find_relevant_entry(&log, request->log_root, &x);
	if (ret != EC_SUCCESS)
		return ret;

	/* The other message types don't need to be handled by Cr50. */
	if (log.entries[x].type.v != PW_TRY_AUTH)
		return PW_ERR_TYPE_INVALID;

	compute_hmac(merkle_tree, &imported_leaf_data, hmac);
	if (safe_memcmp(hmac, request->unimported_leaf_data.hmac, sizeof(hmac)))
		return PW_ERR_HMAC_AUTH_FAILED;

	ret = decrypt_leaf_data(merkle_tree, &imported_leaf_data, &leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	if (leaf_data.pub.label.v != log.entries[x].label.v)
		return PW_ERR_LABEL_INVALID;

	/* Update the metadata to match the log. */
	if (log.entries[x].return_code == EC_SUCCESS)
		leaf_data.pub.attempt_count.v = 0;
	else
		++leaf_data.pub.attempt_count.v;
	memcpy(&leaf_data.pub.timestamp, &log.entries[x].timestamp,
	       sizeof(leaf_data.pub.timestamp));

	ret = handle_leaf_update(merkle_tree, &leaf_data,
				 imported_leaf_data.hashes, &wrapped_leaf_data,
				 root, &imported_leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	if (memcmp(root, log.entries[x].root, PW_HASH_SIZE))
		return PW_ERR_PATH_AUTH_FAILED;

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;

	return EC_SUCCESS;
}

struct merkle_tree_t pw_merkle_tree;

/*
 * Handle the VENDOR_CC_PINWEAVER command.
 */
static enum vendor_cmd_rc pw_vendor_specific_command(enum vendor_cmd_cc code,
						     void *buf,
						     size_t input_size,
						     size_t *response_size)
{
	struct pw_request_t *request = buf;
	struct pw_response_t *response = buf;

	if (input_size < sizeof(request->header)) {
		ccprintf("PinWeaver: message smaller than a header (%zd).\n",
			 input_size);
		return VENDOR_RC_INTERNAL_ERROR;
	}

	if (input_size != request->header.data_length +
			  sizeof(request->header)) {
		ccprintf("PinWeaver: header size mismatch %zd != %zd.\n",
			 input_size, request->header.data_length +
				     sizeof(request->header));
		return VENDOR_RC_REQUEST_TOO_BIG;
	}

	/* The response_size is validated by compile time checks. */

	/* The return value of this function call is intentionally unused. */
	pw_handle_request(&pw_merkle_tree, request, response);

	*response_size = response->header.data_length +
			 sizeof(response->header);

	/* The response is only sent for EC_SUCCESS so it is used even for
	 * errors which are reported through header.return_code.
	 */
	return VENDOR_RC_SUCCESS;
}
DECLARE_VENDOR_COMMAND(VENDOR_CC_PINWEAVER,
		pw_vendor_specific_command);

/******************************************************************************/
/* Non-static functions.
 */

void pinweaver_init(void)
{
	load_merkle_tree(&pw_merkle_tree);
}

int get_path_auxiliary_hash_count(const struct merkle_tree_t *merkle_tree)
{
	return ((1 << merkle_tree->bits_per_level.v) - 1) *
			merkle_tree->height.v;
}

/* Computes the SHA256 parent hash of a set of child hashes given num_hashes
 * sibling hashes in hashes[] and the index of child_hash.
 *
 * Assumptions:
 * num_hashes == fan_out - 1
 * ARRAY_SIZE(hashes) == num_hashes
 * 0 <= location <= num_hashes
 */
void compute_hash(const uint8_t hashes[][PW_HASH_SIZE], uint16_t num_hashes,
		  struct index_t location,
		  const uint8_t child_hash[PW_HASH_SIZE],
		  uint8_t result[PW_HASH_SIZE])
{
	struct sha256_ctx ctx;

	SHA256_hw_init(&ctx);
	if (location.v > 0)
		HASH_update((union hash_ctx *)&ctx, hashes[0],
			    PW_HASH_SIZE * location.v);
	HASH_update((union hash_ctx *)&ctx, child_hash, PW_HASH_SIZE);
	if (location.v < num_hashes)
		HASH_update((union hash_ctx *)&ctx, hashes[location.v],
			    PW_HASH_SIZE * (num_hashes - location.v));
	memcpy(result, HASH_final((union hash_ctx *)&ctx), PW_HASH_SIZE);
}

/* If a request from older protocol comes, this method should make it
 * compatible with the current request structure.
 */
int make_compatible_request(struct merkle_tree_t *merkle_tree,
			    struct pw_request_t *request)
{
	switch (request->header.version) {
	case 0:
		/* The switch from protocol version 0 to 1 means all the
		 * requests have the same format, except insert_leaf.
		 * Update the request in that case.
		 */
		if (request->header.type.v == PW_INSERT_LEAF) {
			unsigned char *src = (unsigned char *)
				(&request->data.insert_leaf00.path_hashes);
			unsigned char *dest = (unsigned char *)
				(&request->data.insert_leaf.path_hashes);
			const int hash_count =
				get_path_auxiliary_hash_count(merkle_tree);
			const uint16_t hashes_size = hash_count * PW_HASH_SIZE;

			memmove(dest, src, hashes_size);
			memset(&request->data.insert_leaf.valid_pcr_criteria,
				0, PW_VALID_PCR_CRITERIA_SIZE);
			request->header.data_length +=
				PW_VALID_PCR_CRITERIA_SIZE;
		}
		/* Fallthrough to make compatible from next version */
	case PW_PROTOCOL_VERSION:
		return 1;
	}
	/* Unsupported version. */
	return 0;
}

/* Converts the response to be understandable by an older protocol.
 */
void make_compatible_response(int version, int req_type,
			      struct pw_response_t *response)
{
	if (version >= PW_PROTOCOL_VERSION)
		return;

	response->header.version = version;
	if (version == 0) {
		if (req_type == PW_TRY_AUTH) {
			unsigned char *src = (unsigned char *)
			    (&response->data.try_auth.unimported_leaf_data);
			unsigned char *dest = (unsigned char *)
			    (&response->data.try_auth00.unimported_leaf_data);
			memmove(dest, src,
				PW_LEAF_PAYLOAD_SIZE +
				sizeof(struct unimported_leaf_data_t));
			response->header.data_length -= PW_SECRET_SIZE;
		}
	}
}

/* Handles the message in request using the context in merkle_tree and writes
 * the results to response. The return value captures any error conditions that
 * occurred or EC_SUCCESS if there were no errors.
 *
 * This implementation is written to handle the case where request and response
 * exist at the same memory location---are backed by the same buffer. This means
 * the implementation requires that no reads are made to request after response
 * has been written to.
 */
int pw_handle_request(struct merkle_tree_t *merkle_tree,
		      struct pw_request_t *request,
		      struct pw_response_t *response)
{
	int32_t ret;
	uint16_t resp_length;
	/* Store the message type of the request since it may be overwritten
	 * inside the switch whenever response and request overlap in memory.
	 */
	struct pw_message_type_t type = request->header.type;
	int version = request->header.version;

	resp_length = 0;

	if (!make_compatible_request(merkle_tree, request)) {
		ret = PW_ERR_VERSION_MISMATCH;
		goto cleanup;
	}
	switch (type.v) {
	case PW_RESET_TREE:
		ret = pw_handle_reset_tree(merkle_tree,
					   &request->data.reset_tree,
					   request->header.data_length);
		break;
	case PW_INSERT_LEAF:
		ret = pw_handle_insert_leaf(merkle_tree,
					    &request->data.insert_leaf,
					    request->header.data_length,
					    &response->data.insert_leaf,
					    &resp_length);
		break;
	case PW_REMOVE_LEAF:
		ret = pw_handle_remove_leaf(merkle_tree,
					    &request->data.remove_leaf,
					    request->header.data_length);
		break;
	case PW_TRY_AUTH:
		ret = pw_handle_try_auth(merkle_tree, &request->data.try_auth,
					 request->header.data_length,
					 &response->data.try_auth,
					 &resp_length);
		break;
	case PW_RESET_AUTH:
		ret = pw_handle_reset_auth(merkle_tree,
					   &request->data.reset_auth,
					   request->header.data_length,
					   &response->data.reset_auth,
					   &resp_length);
		break;
	case PW_GET_LOG:
		ret = pw_handle_get_log(merkle_tree, &request->data.get_log,
					request->header.data_length,
					(void *)&response->data, &resp_length);
		break;
	case PW_LOG_REPLAY:
		ret = pw_handle_log_replay(merkle_tree,
					   &request->data.log_replay,
					   request->header.data_length,
					   &response->data.log_replay,
					   &resp_length);
		break;
	default:
		ret = PW_ERR_TYPE_INVALID;
		break;
	}
cleanup:
	response->header.version = PW_PROTOCOL_VERSION;
	response->header.data_length = resp_length;
	response->header.result_code = ret;
	memcpy(&response->header.root, merkle_tree->root,
	       sizeof(merkle_tree->root));

	make_compatible_response(version, type.v, response);

	return ret;
};