summaryrefslogtreecommitdiff
path: root/common/motion_sense_fifo.c
blob: ec4c63b6deedae676efa0db72601f4e3cc2bd31b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/* Copyright 2019 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "console.h"
#include "hwtimer.h"
#include "mkbp_event.h"
#include "motion_sense_fifo.h"
#include "queue.h"
#include "tablet_mode.h"
#include "util.h"

#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ## args)

static inline int is_timestamp(struct ec_response_motion_sensor_data *data)
{
	return data->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP;
}

/* Need to wake up the AP */
int wake_up_needed;

/* Number of element the AP should collect */
int fifo_queue_count;
int fifo_int_enabled;

struct queue motion_sense_fifo = QUEUE_NULL(
	CONFIG_ACCEL_FIFO_SIZE, struct ec_response_motion_sensor_data);
int motion_sense_fifo_lost;

/**
 * Staged metadata for the motion_sense_fifo.
 * @read_ts: The timestamp at which the staged data was read. This value will
 *	serve as the upper bound for spreading
 * @count: The total number of motion_sense_fifo entries that are currently
 *	staged.
 * @sample_count: The total number of sensor readings per sensor that are
 *	currently staged.
 * @requires_spreading: Flag used to shortcut the commit process. This should be
 *	true iff at least one of sample_count[] > 1
 */
struct fifo_staged {
	uint32_t read_ts;
	uint16_t count;
	uint8_t sample_count[SENSOR_COUNT];
	uint8_t requires_spreading;
};
static struct fifo_staged fifo_staged;

static inline struct ec_response_motion_sensor_data *
get_motion_sense_fifo_head(void)
{
	return ((struct ec_response_motion_sensor_data *)
		motion_sense_fifo.buffer) +
	       (motion_sense_fifo.state->head &
		motion_sense_fifo.unit_bytes);
}

/**
 * Pop one entry from the motion sense fifo. Poping will give priority to
 * committed data (data residing between the head and tail of the queue). If no
 * committed data is available (all the data is staged), then this function will
 * remove the oldest staged data by moving both the head and tail.
 *
 * As a side-effect of this function, it'll updated any appropriate lost and
 * count variables.
 *
 * WARNING: This function MUST be called from within a locked context of
 * g_sensor_mutex.
 */
static void motion_sense_fifo_pop(void)
{
	struct ec_response_motion_sensor_data *head =
		get_motion_sense_fifo_head();
	const size_t initial_count = queue_count(&motion_sense_fifo);

	/* Check that we have something to pop. */
	if (!initial_count && !fifo_staged.count)
		return;

	/*
	 * If all the data is staged (nothing in the committed queue), we'll
	 * need to move the head and the tail over to simulate poping from the
	 * staged data.
	 */
	if (!initial_count)
		queue_advance_tail(&motion_sense_fifo, 1);

	/*
	 * By not using queue_remove_unit we're avoiding an un-necessary memcpy.
	 */
	queue_advance_head(&motion_sense_fifo, 1);
	motion_sense_fifo_lost++;

	/* Increment lost counter if we have valid data. */
	if (!is_timestamp(head))
		motion_sensors[head->sensor_num].lost++;

	/*
	 * We're done if the initial count was non-zero and we only advanced the
	 * head. Else, decrement the staged count and update staged metadata.
	 */
	if (initial_count)
		return;

	fifo_staged.count--;

	/* If we removed a timestamp there's nothing else for us to do. */
	if (is_timestamp(head))
		return;

	/*
	 * Decrement sample count, if the count was 2 before, we might not need
	 * to spread anymore. Loop through and check.
	 */
	if (--fifo_staged.sample_count[head->sensor_num] < 2) {
		int i;

		fifo_staged.requires_spreading = 0;
		for (i = 0; i < SENSOR_COUNT; i++) {
			if (fifo_staged.sample_count[i] > 1) {
				fifo_staged.requires_spreading = 1;
				break;
			}
		}
	}
}

static void motion_sense_fifo_ensure_space(void)
{
	/* If we already have space just bail. */
	if (queue_space(&motion_sense_fifo) > fifo_staged.count)
		return;

	/*
	 * Pop at least 1 spot, but if all the following conditions are met we
	 * will continue to pop:
	 * 1. We're operating with tight timestamps.
	 * 2. The new head isn't a timestamp.
	 * 3. We have data that we can possibly pop.
	 *
	 * Removing more than one entry is needed because if we are using tight
	 * timestamps and we pop a timestamp, then the next head is data, the AP
	 * would assign a bad timestamp to it.
	 */
	do {
		motion_sense_fifo_pop();
	} while (IS_ENABLED(CONFIG_SENSOR_TIGHT_TIMESTAMPS) &&
		 !is_timestamp(get_motion_sense_fifo_head()) &&
		 queue_count(&motion_sense_fifo) + fifo_staged.count);
}

/*
 * Do not use this function directly if you just want to add sensor data, use
 * motion_sense_fifo_stage_data instead to get a proper timestamp too.
 */
static void motion_sense_fifo_stage_unit(
	struct ec_response_motion_sensor_data *data,
	struct motion_sensor_t *sensor,
	int valid_data)
{
	struct queue_chunk chunk;
	int i;

	mutex_lock(&g_sensor_mutex);

	for (i = 0; i < valid_data; i++)
		sensor->xyz[i] = data->data[i];

	/* For valid sensors, check if AP really needs this data */
	if (valid_data) {
		int removed;

		if (sensor->oversampling_ratio == 0) {
			mutex_unlock(&g_sensor_mutex);
			return;
		}
		removed = sensor->oversampling++;
		sensor->oversampling %= sensor->oversampling_ratio;
		if (removed != 0) {
			mutex_unlock(&g_sensor_mutex);
			return;
		}
	}

	/* Make sure we have room for the data */
	motion_sense_fifo_ensure_space();
	mutex_unlock(&g_sensor_mutex);

	if (data->flags & MOTIONSENSE_SENSOR_FLAG_WAKEUP)
		wake_up_needed = 1;
	if (IS_ENABLED(CONFIG_TABLET_MODE))
		data->flags |= (tablet_get_mode() ?
			MOTIONSENSE_SENSOR_FLAG_TABLET_MODE : 0);

	/*
	 * Get the next writable block in the fifo. We don't need to lock this
	 * because it will always be past the tail and thus the AP will never
	 * read this until motion_sense_fifo_commit_data() is called.
	 */
	chunk = queue_get_write_chunk(
		&motion_sense_fifo, fifo_staged.count);

	if (!chunk.buffer) {
		/*
		 * This should never happen since we already ensured there was
		 * space, but if there was a bug, we don't want to write to
		 * address 0. Just don't add any data to the queue instead.
		 */
		CPRINTS("Failed to get write chunk for new fifo data!");
		return;
	}

	/*
	 * Save the data to the writable block and increment count. This data
	 * will now reside AFTER the tail of the queue and will not be visible
	 * to the AP until the motion_sense_fifo_commit_data() function is
	 * called. Because count is incremented, the following staged data will
	 * be written to the next available block and this one will remain
	 * staged.
	 */
	memcpy(chunk.buffer, data, motion_sense_fifo.unit_bytes);
	fifo_staged.count++;

	/*
	 * If we're using tight timestamps, and the current entry isn't a
	 * timestamp we'll increment the sample_count for the given sensor.
	 * If the new per-sensor sample count is greater than 1, we'll need to
	 * spread.
	 */
	if (IS_ENABLED(CONFIG_SENSOR_TIGHT_TIMESTAMPS) &&
	    !is_timestamp(data) &&
	    ++fifo_staged.sample_count[data->sensor_num] > 1)
		fifo_staged.requires_spreading = 1;
}

void motion_sense_insert_async_event(struct motion_sensor_t *sensor,
				     enum motion_sense_async_event evt)
{
	struct ec_response_motion_sensor_data vector;

	vector.flags = evt;
	vector.timestamp = __hw_clock_source_read();
	vector.sensor_num = sensor - motion_sensors;

	motion_sense_fifo_stage_unit(&vector, sensor, 0);
	motion_sense_fifo_commit_data();
}

void motion_sense_fifo_stage_timestamp(uint32_t timestamp)
{
	struct ec_response_motion_sensor_data vector;

	vector.flags = MOTIONSENSE_SENSOR_FLAG_TIMESTAMP;
	vector.timestamp = timestamp;
	vector.sensor_num = 0;
	motion_sense_fifo_stage_unit(&vector, NULL, 0);
}

void motion_sense_fifo_stage_data(struct ec_response_motion_sensor_data *data,
				  struct motion_sensor_t *sensor,
				  int valid_data,
				  uint32_t time)
{
	if (IS_ENABLED(CONFIG_SENSOR_TIGHT_TIMESTAMPS)) {
		/* First entry, save the time for spreading later. */
		if (!fifo_staged.count)
			fifo_staged.read_ts = __hw_clock_source_read();
		motion_sense_fifo_stage_timestamp(time);
	}
	motion_sense_fifo_stage_unit(data, sensor, valid_data);
}

/**
 * Peek into the staged data at a given offset. This function performs no bound
 * checking and is purely for convenience.
 */
static inline struct ec_response_motion_sensor_data *
motion_sense_peek_fifo_staged(size_t offset)
{
	return (struct ec_response_motion_sensor_data *)
	       queue_get_write_chunk(&motion_sense_fifo, offset).buffer;
}

void motion_sense_fifo_commit_data(void)
{
	/*
	 * Static data to use off stack. Note that next_timestamp should persist
	 * and is only updated if the timestamp from the sensor is greater.
	 */
	static uint32_t data_periods[SENSOR_COUNT];
	static uint32_t next_timestamp[SENSOR_COUNT];
	struct ec_response_motion_sensor_data *data;
	int i, window, sensor_num;

	/* Nothing staged, no work to do. */
	if (!fifo_staged.count)
		return;

	/*
	 * If per-sensor event counts are never more than 1, no spreading is
	 * needed. This will also catch cases where tight timestamps aren't
	 * used.
	 */
	if (!fifo_staged.requires_spreading)
		goto flush_data_end;

	data = motion_sense_peek_fifo_staged(0);

	/*
	 * Spreading only makes sense if tight timestamps are used. In such case
	 * entries are expected to be ordered: timestamp then data. If the first
	 * entry isn't a timestamp we must have gotten out of sync. Just commit
	 * all the data and skip the spreading.
	 */
	if (!is_timestamp(data)) {
		CPRINTS("Spreading skipped, first entry is not a timestamp");
		goto flush_data_end;
	}

	window = time_until(data->timestamp, fifo_staged.read_ts);

	/* Update the data_periods as needed for this flush. */
	for (i = 0; i < SENSOR_COUNT; i++) {
		int period;

		/* Skip empty sensors. */
		if (!fifo_staged.sample_count[i])
			continue;

		period = motion_sensors[i].collection_rate;
		/*
		 * Clamp the sample period to the MIN of collection_rate and the
		 * window length / sample counts.
		 */
		if (window)
			period = MIN(period,
				     window / fifo_staged.sample_count[i]);
		data_periods[i] = period;
	}

	/*
	 * Spread the timestamps.
	 *
	 * If we got this far that means that the tight timestamps config is
	 * enabled. This means that we can expect the staged entries to have 1
	 * or more timestamps followed by exactly 1 data entry. We'll loop
	 * through the timestamps until we get to data. We only need to update
	 * the timestamp right before it to keep things correct.
	 */
	for (i = 0; i < fifo_staged.count; i++) {
		data = motion_sense_peek_fifo_staged(i);

		/* Skip timestamp, we don't know the sensor number yet. */
		if (is_timestamp(data))
			continue;

		/* Get the sensor number and point to the timestamp entry. */
		sensor_num = data->sensor_num;
		data = motion_sense_peek_fifo_staged(i - 1);

		/* If the timestamp is after our computed next, skip ahead. */
		if (time_after(data->timestamp, next_timestamp[sensor_num]))
			next_timestamp[sensor_num] = data->timestamp;

		/* Spread the timestamp and compute the expected next. */
		data->timestamp = next_timestamp[sensor_num];
		next_timestamp[sensor_num] += data_periods[sensor_num];
	}

flush_data_end:
	/* Advance the tail and clear the staged metadata. */
	mutex_lock(&g_sensor_mutex);
	queue_advance_tail(&motion_sense_fifo, fifo_staged.count);
	mutex_unlock(&g_sensor_mutex);

	/* Reset metadata for next staging cycle. */
	memset(&fifo_staged, 0, sizeof(fifo_staged));
}

void motion_sense_get_fifo_info(
	struct ec_response_motion_sense_fifo_info *fifo_info)
{
	fifo_info->size = motion_sense_fifo.buffer_units;
	mutex_lock(&g_sensor_mutex);
	fifo_info->count = fifo_queue_count;
	fifo_info->total_lost = motion_sense_fifo_lost;
	mutex_unlock(&g_sensor_mutex);
	fifo_info->timestamp = mkbp_last_event_time;
}

static int motion_sense_get_next_event(uint8_t *out)
{
	union ec_response_get_next_data *data =
		(union ec_response_get_next_data *)out;
	/* out is not padded. It has one byte for the event type */
	motion_sense_get_fifo_info(&data->sensor_fifo.info);
	return sizeof(data->sensor_fifo);
}

DECLARE_EVENT_SOURCE(EC_MKBP_EVENT_SENSOR_FIFO, motion_sense_get_next_event);

inline int motion_sense_fifo_is_wake_up_needed(void)
{
	return queue_space(&motion_sense_fifo) < CONFIG_ACCEL_FIFO_THRES ||
		wake_up_needed;
}