summaryrefslogtreecommitdiff
path: root/common/mkbp_event.c
blob: 18843ef6bebe214ba770d0b3ca2d3bbbf62f29c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * Event handling in MKBP keyboard protocol
 */

#include "atomic.h"
#include "chipset.h"
#include "gpio.h"
#include "host_command.h"
#include "hwtimer.h"
#include "timer.h"
#include "link_defs.h"
#include "mkbp_event.h"
#include "power.h"
#include "util.h"

#define CPUTS(outstr) cputs(CC_COMMAND, outstr)
#define CPRINTS(format, args...) cprints(CC_COMMAND, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_COMMAND, format, ## args)

/*
 * Tracks the current state of the MKBP interrupt send from the EC to the AP.
 *
 * The inactive state is only valid when there are no events to set to the AP.
 * If the AP is asleep, then some events are not worth waking the AP up, so the
 * interrupt could remain in an inactive in that case.
 *
 * The transition state (INTERRUPT_INACTIVE_TO_ACTIVE) is used to track the
 * sometimes lock transition for a "rising edge" for platforms that send the
 * rising edge interrupt through a host communication layer
 *
 * The active state represents that a rising edge interrupt has already been
 * sent to the AP, and the EC is waiting for the AP to call get next event
 * host command to consume all of the events (at which point the state will
 * move to inactive).
 *
 * The transition from ACTIVE -> INACTIVE is considerer to be simple meaning
 * the operation can be performed within a blocking mutex (e.g. no-op or setting
 * a gpio).
 */
enum interrupt_state {
	INTERRUPT_INACTIVE,
	INTERRUPT_INACTIVE_TO_ACTIVE, /* Transitioning */
	INTERRUPT_ACTIVE,
};

struct mkbp_state {
	struct mutex lock;
	uint32_t events;
	enum interrupt_state interrupt;
	/*
	 * Tracks unique transitions to INTERRUPT_INACTIVE_TO_ACTIVE allowing
	 * only the most recent transition to finish the transition to a final
	 * state -- either active or inactive depending on the result of the
	 * operation.
	 */
	uint8_t interrupt_id;
	/*
	 * Tracks the number of consecutive failed attempts for the AP to poll
	 * get_next_events in order to limit the retry logic.
	 */
	uint8_t failed_attempts;
};

static struct mkbp_state state;
uint32_t mkbp_last_event_time;

#ifdef CONFIG_MKBP_USE_GPIO
static int mkbp_set_host_active_via_gpio(int active, uint32_t *timestamp)
{
	/*
	 * If we want to take a timestamp, then disable interrupts temporarily
	 * to ensure that the timestamp is as close as possible to the setting
	 * of the GPIO pin in hardware (i.e. we aren't interrupted between
	 * taking the timestamp and setting the gpio)
	 */
	if (timestamp) {
		interrupt_disable();
		*timestamp = __hw_clock_source_read();
	}

	gpio_set_level(GPIO_EC_INT_L, !active);

	if (timestamp)
		interrupt_enable();

	return EC_SUCCESS;
}
#endif

#ifdef CONFIG_MKBP_USE_HOST_EVENT
static int mkbp_set_host_active_via_event(int active, uint32_t *timestamp)
{
	/* This should be moved into host_set_single_event for more accuracy */
	if (timestamp)
		*timestamp = __hw_clock_source_read();
	if (active)
		host_set_single_event(EC_HOST_EVENT_MKBP);
	return EC_SUCCESS;
}
#endif

/*
 * This communicates to the AP whether an MKBP event is currently available
 * for processing.
 *
 * NOTE: When active is 0 this function CANNOT de-schedule. It must be very
 * simple like toggling a GPIO or no-op
 *
 * @param active  1 if there is an event, 0 otherwise
 * @param timestamp, if non-null this variable will be written as close to the
 *			hardware interrupt from EC->AP as possible.
 */
static int mkbp_set_host_active(int active, uint32_t *timestamp)
{
#if defined(CONFIG_MKBP_USE_CUSTOM)
	/*
	 * TODO change mkbp_set_host_active_via_custom declaration. Done in
	 * child CL to decouple changes
	 */
	if (timestamp)
		*timestamp = __hw_clock_source_read();
	mkbp_set_host_active_via_custom(active);
	return EC_SUCCESS;
#elif defined(CONFIG_MKBP_USE_HOST_EVENT)
	return mkbp_set_host_active_via_event(active, timestamp);
#elif defined(CONFIG_MKBP_USE_GPIO)
	return mkbp_set_host_active_via_gpio(active, timestamp);
#endif
}

#ifdef CONFIG_MKBP_WAKEUP_MASK
/**
 * Check if the host is sleeping. Check our power state in addition to the
 * self-reported sleep state of host (CONFIG_POWER_TRACK_HOST_SLEEP_STATE).
 */
static inline int host_is_sleeping(void)
{
	int is_sleeping = !chipset_in_state(CHIPSET_STATE_ON);

#ifdef CONFIG_POWER_TRACK_HOST_SLEEP_STATE
	enum host_sleep_event sleep_state = power_get_host_sleep_state();
	is_sleeping |=
		(sleep_state == HOST_SLEEP_EVENT_S3_SUSPEND ||
		 sleep_state == HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND);
#endif
	return is_sleeping;
}
#endif /* CONFIG_MKBP_WAKEUP_MASK */

/*
 * This is the deferred function that ensures that we attempt to set the MKBP
 * interrupt again if there was a failure in the system (EC or AP) and the AP
 * never called get_next_event.
 */
static void force_mkbp_if_events(void);
DECLARE_DEFERRED(force_mkbp_if_events);

static void activate_mkbp_with_events(uint32_t events_to_add)
{
	int interrupt_id = -1;
	int skip_interrupt = 0;
	int rv, schedule_deferred = 0;

#ifdef CONFIG_MKBP_WAKEUP_MASK
	/* Only assert interrupt for wake events if host is sleeping */
	skip_interrupt = host_is_sleeping() &&
			 !(host_get_events() & CONFIG_MKBP_WAKEUP_MASK);
#endif

	mutex_lock(&state.lock);
	state.events |= events_to_add;

	/* To skip the interrupt, we cannot have the EC_MKBP_EVENT_KEY_MATRIX */
	skip_interrupt = skip_interrupt &&
			 !(state.events & (1 << EC_MKBP_EVENT_KEY_MATRIX));

	if (state.events && state.interrupt == INTERRUPT_INACTIVE &&
	    !skip_interrupt) {
		state.interrupt = INTERRUPT_INACTIVE_TO_ACTIVE;
		interrupt_id = ++state.interrupt_id;
	}
	mutex_unlock(&state.lock);

	/* If we don't need to send an interrupt we are done */
	if (interrupt_id < 0)
		return;

	/* Send a rising edge MKBP interrupt */
	rv = mkbp_set_host_active(1, &mkbp_last_event_time);

	/*
	 * If this was the last interrupt to the AP, update state;
	 * otherwise the latest interrupt should update state.
	 */
	mutex_lock(&state.lock);
	if (state.interrupt == INTERRUPT_INACTIVE_TO_ACTIVE &&
	    interrupt_id == state.interrupt_id) {
		schedule_deferred = 1;
		state.interrupt = rv == EC_SUCCESS ? INTERRUPT_ACTIVE
						   : INTERRUPT_INACTIVE;
	}
	mutex_unlock(&state.lock);

	if (schedule_deferred) {
		hook_call_deferred(&force_mkbp_if_events_data, SECOND);
		if (rv != EC_SUCCESS)
			CPRINTS("Could not activate MKBP (%d). Deferring", rv);
	}
}

/*
 * This is the deferred function that ensures that we attempt to set the MKBP
 * interrupt again if there was a failure in the system (EC or AP) and the AP
 * never called get_next_event.
 */
static void force_mkbp_if_events(void)
{
	int toggled = 0;

	mutex_lock(&state.lock);
	if (state.interrupt == INTERRUPT_ACTIVE) {
		if (++state.failed_attempts < 3) {
			state.interrupt = INTERRUPT_INACTIVE;
			toggled = 1;
		}
	}
	mutex_unlock(&state.lock);

	if (toggled)
		CPRINTS("MKBP not cleared within threshold, toggling.");

	activate_mkbp_with_events(0);
}

int mkbp_send_event(uint8_t event_type)
{
	activate_mkbp_with_events(1 << event_type);

	return 1;
}

static int set_inactive_if_no_events(void)
{
	int interrupt_cleared;

	mutex_lock(&state.lock);
	interrupt_cleared = !state.events;
	if (interrupt_cleared) {
		state.interrupt = INTERRUPT_INACTIVE;
		state.failed_attempts = 0;
		/* Only simple tasks (i.e. gpio set or no-op) allowed here */
		mkbp_set_host_active(0, NULL);
	}
	mutex_unlock(&state.lock);

	/* Cancel our safety net since the events were cleared. */
	if (interrupt_cleared)
		hook_call_deferred(&force_mkbp_if_events_data, -1);

	return interrupt_cleared;
}

/* This can only be called when the state.lock mutex is held */
static int take_event_if_set(uint8_t event_type)
{
	int taken;

	taken = state.events & (1 << event_type);
	state.events &= ~(1 << event_type);

	return taken;
}

static int mkbp_get_next_event(struct host_cmd_handler_args *args)
{
	static int last;
	int i, data_size, evt;
	uint8_t *resp = args->response;
	const struct mkbp_event_source *src;

	do {
		/*
		 * Find the next event to service.  We do this in a round-robin
		 * way to make sure no event gets starved.
		 */
		mutex_lock(&state.lock);
		for (i = 0; i < EC_MKBP_EVENT_COUNT; ++i)
			if (take_event_if_set((last + i) % EC_MKBP_EVENT_COUNT))
				break;
		mutex_unlock(&state.lock);

		if (i == EC_MKBP_EVENT_COUNT) {
			if (set_inactive_if_no_events())
				return EC_RES_UNAVAILABLE;
			/* An event was set just now, restart loop. */
			continue;
		}

		evt = (i + last) % EC_MKBP_EVENT_COUNT;
		last = evt + 1;

		for (src = __mkbp_evt_srcs; src < __mkbp_evt_srcs_end; ++src)
			if (src->event_type == evt)
				break;

		if (src == __mkbp_evt_srcs_end)
			return EC_RES_ERROR;

		resp[0] = evt; /* Event type */

		/*
		 * get_data() can return -EC_ERROR_BUSY which indicates that the
		 * next element in the keyboard FIFO does not match what we were
		 * called with.  For example, get_data is expecting a keyboard
		 * matrix, however the next element in the FIFO is a button
		 * event instead.  Therefore, we have to service that button
		 * event first.
		 */
		data_size = src->get_data(resp + 1);
		if (data_size == -EC_ERROR_BUSY) {
			mutex_lock(&state.lock);
			state.events |= 1 << evt;
			mutex_unlock(&state.lock);
		}
	} while (data_size == -EC_ERROR_BUSY);

	/* If there are no more events and we support the "more" flag, set it */
	if (!set_inactive_if_no_events() && args->version >= 2)
		resp[0] |= EC_MKBP_HAS_MORE_EVENTS;

	if (data_size < 0)
		return EC_RES_ERROR;
	args->response_size = 1 + data_size;

	return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_NEXT_EVENT,
		     mkbp_get_next_event,
		     EC_VER_MASK(0) | EC_VER_MASK(1) | EC_VER_MASK(2));

#ifdef CONFIG_MKBP_WAKEUP_MASK
static int mkbp_get_wake_mask(struct host_cmd_handler_args *args)
{
	struct ec_response_host_event_mask *r = args->response;

	r->mask = CONFIG_MKBP_WAKEUP_MASK;
	args->response_size = sizeof(*r);

	return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_HOST_EVENT_GET_WAKE_MASK,
		     mkbp_get_wake_mask,
		     EC_VER_MASK(0));
#endif