summaryrefslogtreecommitdiff
path: root/common/mag_cal.c
blob: f7b1945933806306d2ad3d200b123a1bc792d90e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "common.h"
#include "console.h"
#include "mag_cal.h"
#include "mat33.h"
#include "mat44.h"

#include "math.h"
#include "math_util.h"
#include "util.h"

/* Data from sensor is in 16th of uT, 0.0625 uT/LSB */
#define MAG_CAL_RAW_UT      16

#define MAX_EIGEN_RATIO     FLOAT_TO_FP(25.0f)
#define MAX_EIGEN_MAG       FLOAT_TO_FP(80.0f * MAG_CAL_RAW_UT)
#define MIN_EIGEN_MAG       FLOAT_TO_FP(10.0f * MAG_CAL_RAW_UT)

#define MAX_FIT_MAG         MAX_EIGEN_MAG
#define MIN_FIT_MAG         MIN_EIGEN_MAG

#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
#define PRINTF_FLOAT(x)  ((int)((x) * 100.0f))

/**
 * Compute the covariance element: (avg(ab) - avg(a)*avg(b))
 *
 * @param sq The accumulated sum of a*b
 * @param a The accumulated sum of a
 * @param b The accumulated sum of b
 * @return (sq - ((a * b) * inv)) * inv
 */
static inline fp_t covariance_element(fp_t sq, fp_t a, fp_t b, fp_t inv)
{
	return fp_mul(sq - fp_mul(fp_mul(a, b), inv), inv);
}
/*
 * eigen value magnitude and ratio test
 *
 * Using the magnetometer information, caculate the 3 eigen values/vectors
 * for the transformation. Check the eigen values are sane.
 */
static int moc_eigen_test(struct mag_cal_t *moc)
{
	mat33_fp_t S;
	fpv3_t eigenvals;
	mat33_fp_t eigenvecs;
	fp_t evmax, evmin, evmag;
	fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f),
			      INT_TO_FP((int) moc->kasa_fit.nsamples));
	int eigen_pass;

	/* covariance matrix */
	S[0][0] = covariance_element(moc->kasa_fit.acc_xx,
				     moc->kasa_fit.acc_x,
				     moc->kasa_fit.acc_x,
				     inv);
	S[0][1] = S[1][0] = covariance_element(moc->kasa_fit.acc_xy,
					       moc->kasa_fit.acc_x,
					       moc->kasa_fit.acc_y,
					       inv);
	S[0][2] = S[2][0] = covariance_element(moc->kasa_fit.acc_xz,
					       moc->kasa_fit.acc_x,
					       moc->kasa_fit.acc_z,
					       inv);
	S[1][1] = covariance_element(moc->kasa_fit.acc_yy,
				     moc->kasa_fit.acc_y,
				     moc->kasa_fit.acc_y,
				     inv);
	S[1][2] = S[2][1] = covariance_element(moc->kasa_fit.acc_yz,
					       moc->kasa_fit.acc_y,
					       moc->kasa_fit.acc_z,
					       inv);
	S[2][2] = covariance_element(moc->kasa_fit.acc_zz,
				     moc->kasa_fit.acc_z,
				     moc->kasa_fit.acc_z,
				     inv);

	mat33_fp_get_eigenbasis(S, eigenvals, eigenvecs);

	evmax = (eigenvals[X] > eigenvals[Y]) ? eigenvals[X] : eigenvals[Y];
	evmax = (eigenvals[Z] > evmax) ? eigenvals[Z] : evmax;

	evmin = (eigenvals[X] < eigenvals[Y]) ? eigenvals[X] : eigenvals[Y];
	evmin = (eigenvals[Z] < evmin) ? eigenvals[Z] : evmin;

	evmag = fp_sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]);

	eigen_pass = (fp_mul(evmin, MAX_EIGEN_RATIO) > evmax)
		&& (evmag > MIN_EIGEN_MAG)
		&& (evmag < MAX_EIGEN_MAG);

#if 0
	CPRINTF("mag eigenvalues: (%.02d %.02d %.02d), ",
		PRINTF_FLOAT(eigenvals[X]),
		PRINTF_FLOAT(eigenvals[Y]),
		PRINTF_FLOAT(eigenvals[Z]));

	CPRINTF("ratio %.02d, mag %.02d: pass %d\r\n",
		PRINTF_FLOAT(evmax / evmin),
		PRINTF_FLOAT(evmag),
		eigen_pass);
#endif

	return eigen_pass;
}

void init_mag_cal(struct mag_cal_t *moc)
{
	kasa_reset(&moc->kasa_fit);
}

int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
{
	int new_bias = 0;

	/* 1. run accumulators */
	kasa_accumulate(&moc->kasa_fit, INT_TO_FP(v[X]), INT_TO_FP(v[Y]),
			INT_TO_FP(v[Z]));

	/* 2. batch has enough samples? */
	if (moc->batch_size > 0 && moc->kasa_fit.nsamples >= moc->batch_size) {
		/* 3. eigen test */
		if (moc_eigen_test(moc)) {
			fpv3_t bias;
			fp_t radius;

			/* 4. Kasa sphere fitting */
			kasa_compute(&moc->kasa_fit, bias, &radius);
			if (radius > MIN_FIT_MAG && radius < MAX_FIT_MAG) {
				moc->bias[X] = -FP_TO_INT(bias[X]);
				moc->bias[Y] = -FP_TO_INT(bias[Y]);
				moc->bias[Z] = -FP_TO_INT(bias[Z]);

				moc->radius = radius;

				new_bias = 1;
			}
		}
		/* 5. reset for next batch */
		init_mag_cal(moc);
	}

	return new_bias;
}