1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
|
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* LED controls.
*/
#include "battery.h"
#include "battery_pack.h"
#include "charge_state.h"
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "lightbar.h"
#include "pwm.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_LIGHTBAR, outstr)
#define CPRINTF(format, args...) cprintf(CC_LIGHTBAR, format, ## args)
#define CONSOLE_COMMAND_LIGHTBAR_HELP
/******************************************************************************/
/* How to talk to the controller */
/******************************************************************************/
/* Since there's absolutely nothing we can do about it if an I2C access
* isn't working, we're completely ignoring any failures. */
static const uint8_t i2c_addr[] = { 0x54, 0x56 };
static inline void controller_write(int ctrl_num, uint8_t reg, uint8_t val)
{
ctrl_num = ctrl_num % ARRAY_SIZE(i2c_addr);
i2c_write8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, val);
}
static inline uint8_t controller_read(int ctrl_num, uint8_t reg)
{
int val = 0;
ctrl_num = ctrl_num % ARRAY_SIZE(i2c_addr);
i2c_read8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, &val);
return val;
}
/******************************************************************************/
/* Controller details. We have an ADP8861 and and ADP8863, but we can treat
* them identically for our purposes */
/******************************************************************************/
/* We need to limit the total current per ISC to no more than 20mA (5mA per
* color LED, but we have four LEDs in parallel on each ISC). Any more than
* that runs the risk of damaging the LED component. A value of 0x67 is as high
* as we want (assuming Square Law), but the blue LED is the least bright, so
* I've lowered the other colors until they all appear approximately equal
* brightness when full on. That's still pretty bright and a lot of current
* drain on the battery, so we'll probably rarely go that high. */
#define MAX_RED 0x5c
#define MAX_GREEN 0x30
#define MAX_BLUE 0x67
/* How many LEDs do we have? */
#define NUM_LEDS 4
/* How we'd like to see the driver chips initialized. The controllers have some
* auto-cycling capability, but it's not much use for our purposes. For now,
* we'll just control all color changes actively. */
struct initdata_s {
uint8_t reg;
uint8_t val;
};
static const struct initdata_s init_vals[] = {
{0x04, 0x00}, /* no backlight function */
{0x05, 0x3f}, /* xRGBRGB per chip */
{0x0f, 0x01}, /* square law looks better */
{0x10, 0x3f}, /* enable independent LEDs */
{0x11, 0x00}, /* no auto cycling */
{0x12, 0x00}, /* no auto cycling */
{0x13, 0x00}, /* instant fade in/out */
{0x14, 0x00}, /* not using LED 7 */
{0x15, 0x00}, /* current for LED 6 (blue) */
{0x16, 0x00}, /* current for LED 5 (red) */
{0x17, 0x00}, /* current for LED 4 (green) */
{0x18, 0x00}, /* current for LED 3 (blue) */
{0x19, 0x00}, /* current for LED 2 (red) */
{0x1a, 0x00}, /* current for LED 1 (green) */
};
static void set_from_array(const struct initdata_s *data, int count)
{
int i;
for (i = 0; i < count; i++) {
controller_write(0, data[i].reg, data[i].val);
controller_write(1, data[i].reg, data[i].val);
}
}
/* Controller register lookup tables. */
static const uint8_t led_to_ctrl[] = { 0, 0, 1, 1 };
static const uint8_t led_to_isc[] = { 0x15, 0x18, 0x15, 0x18 };
/* Scale 0-255 into max value */
static inline uint8_t scale_abs(int val, int max)
{
return (val * max)/255 + max/256;
}
/* It will often be simpler to provide an overall brightness control. */
static int brightness = 0x80;
/* So that we can make brightness changes happen instantly, we need to track
* the current values. The values in the controllers aren't very helpful. */
static uint8_t current[NUM_LEDS][3];
/* Scale 0-255 by brightness */
static inline uint8_t scale(int val, int max)
{
return scale_abs((val * brightness)/255, max);
}
static void lightbar_init_vals(void)
{
CPRINTF("[%T LB_init_vals]\n");
set_from_array(init_vals, ARRAY_SIZE(init_vals));
memset(current, 0, sizeof(current));
}
/* Helper function. */
static void setrgb(int led, int red, int green, int blue)
{
int ctrl, bank;
current[led][0] = red;
current[led][1] = green;
current[led][2] = blue;
ctrl = led_to_ctrl[led];
bank = led_to_isc[led];
controller_write(ctrl, bank, scale(blue, MAX_BLUE));
controller_write(ctrl, bank+1, scale(red, MAX_RED));
controller_write(ctrl, bank+2, scale(green, MAX_GREEN));
}
/******************************************************************************/
/* Basic LED control functions. */
/******************************************************************************/
static void lightbar_off(void)
{
CPRINTF("[%T LB_off]\n");
/* Just go into standby mode. No register values should change. */
controller_write(0, 0x01, 0x00);
controller_write(1, 0x01, 0x00);
}
static void lightbar_on(void)
{
CPRINTF("[%T LB_on]\n");
/* Come out of standby mode. */
controller_write(0, 0x01, 0x20);
controller_write(1, 0x01, 0x20);
}
/* LEDs are numbered 0-3, RGB values should be in 0-255.
* If you specify too large an LED, it sets them all. */
static void lightbar_setrgb(int led, int red, int green, int blue)
{
int i;
if (led >= NUM_LEDS)
for (i = 0; i < NUM_LEDS; i++)
setrgb(i, red, green, blue);
else
setrgb(led, red, green, blue);
}
static void lightbar_brightness(int newval)
{
int i;
CPRINTF("[%T LB_bright 0x%02x]\n", newval);
brightness = newval;
for (i = 0; i < NUM_LEDS; i++)
lightbar_setrgb(i, current[i][0],
current[i][1], current[i][2]);
}
/******************************************************************************/
/* Major colors */
static const struct {
uint8_t r, g, b;
} testy[] = {
{0xff, 0x00, 0x00},
{0x00, 0xff, 0x00},
{0x00, 0x00, 0xff},
{0xff, 0xff, 0x00}, /* The first four are Google colors */
{0x00, 0xff, 0xff},
{0xff, 0x00, 0xff},
{0xff, 0xff, 0xff},
};
/******************************************************************************/
/* Now for the pretty patterns */
/******************************************************************************/
/* Here's some state that we might want to maintain across sysjumps, just to
* prevent the lightbar from flashing during normal boot as the EC jumps from
* RO to RW. FIXME: This doesn't quite stop the problems. */
static struct {
/* What patterns are we showing? */
enum lightbar_sequence cur_seq;
enum lightbar_sequence prev_seq;
/* Quantized battery charge level: 0=low 1=med 2=high 3=full. */
int battery_level;
/* We'll pulse slightly faster when charging */
int battery_is_charging;
} st;
#define LB_SYSJUMP_TAG 0x4c42 /* "LB" */
static int lb_preserve_state(void)
{
system_add_jump_tag(LB_SYSJUMP_TAG, 0, sizeof(st), &st);
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_SYSJUMP, lb_preserve_state, HOOK_PRIO_DEFAULT);
static void lb_restore_state(void)
{
const uint8_t *old_state = 0;
int size;
old_state = system_get_jump_tag(LB_SYSJUMP_TAG, 0, &size);
if (old_state && size == sizeof(st)) {
memcpy(&st, old_state, size);
} else {
st.cur_seq = st.prev_seq = LIGHTBAR_S5;
st.battery_level = 3;
}
CPRINTF("[%T LB state: %d %d - %d/%d]\n",
st.cur_seq, st.prev_seq,
st.battery_is_charging, st.battery_level);
}
/* Here's where we keep messages waiting to be delivered to lightbar task. If
* more than one is sent before the task responds, we only want to deliver the
* latest one. */
static uint32_t pending_msg;
/* And here's the task event that we use to trigger delivery. */
#define PENDING_MSG 1
/* Interruptible delay */
#define WAIT_OR_RET(A) do { \
uint32_t msg = task_wait_event(A); \
if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG) \
return PENDING_MSG; } while (0)
/****************************************************************************/
/* Demo sequence */
struct rgb_s {
uint8_t r, g, b;
};
enum {
COLOR_LOW, COLOR_MEDIUM, COLOR_HIGH, COLOR_FULL, COLOR_BLACK,
};
static const struct rgb_s colors[] = {
{0xff, 0x00, 0x00}, /* low = red */
{0xff, 0xff, 0x00}, /* med = yellow */
{0x00, 0xff, 0x00}, /* high = green */
{0x00, 0x00, 0xff}, /* full = blue */
{0x00, 0x00, 0x00}, /* black */
};
static int demo_mode;
void demo_battery_level(int inc)
{
/* Only using two colors */
if (!demo_mode)
return;
if (inc > 0)
st.battery_level = 3;
else
st.battery_level = 0;
CPRINTF("[%T LB demo: battery_level=%d]\n", st.battery_level);
}
void demo_is_charging(int ischarge)
{
if (!demo_mode)
return;
st.battery_is_charging = ischarge;
CPRINTF("[%T LB demo: battery_is_charging=%d]\n",
st.battery_is_charging);
}
void demo_brightness(int inc)
{
int b;
if (!demo_mode)
return;
b = brightness + (inc * 16);
if (b > 0xff)
b = 0xff;
else if (b < 0)
b = 0;
lightbar_brightness(b);
}
static int last_battery_is_charging;
static int last_battery_level;
#ifdef CONFIG_TASK_PWM
static int last_backlight_level;
#endif
static void get_battery_level(void)
{
int pct = 0;
if (demo_mode)
return;
#ifdef CONFIG_TASK_PWM
/* With nothing else to go on, use the keyboard backlight level to
* set the brightness. If the keyboard backlight is OFF (which it is
* when ambient is bright), use max brightness for lightbar. If
* keyboard backlight is ON, use keyboard backlight brightness.
*/
if (pwm_get_keyboard_backlight_enabled()) {
pct = pwm_get_keyboard_backlight();
if (pct != last_backlight_level) {
last_backlight_level = pct;
pct = (255 * pct) / 100;
lightbar_brightness(pct);
}
} else
lightbar_brightness(255);
#endif
#ifdef CONFIG_TASK_POWERSTATE
pct = charge_get_percent();
st.battery_is_charging = (PWR_STATE_DISCHARGE != charge_get_state());
#endif
/* We're only using two of the four levels at the moment. */
if (pct > LIGHTBAR_POWER_THRESHOLD_MEDIUM)
st.battery_level = COLOR_FULL;
else
st.battery_level = COLOR_LOW;
}
static struct {
timestamp_t start_time;
timestamp_t end_time;
struct rgb_s prev;
struct rgb_s next;
} led_state[NUM_LEDS];
#define MSECS(a) (a * 1000)
#define SEC(a) (a * 1000000)
static const uint64_t transition_time = SEC(3);
static const uint64_t transition_stagger[NUM_LEDS] = {
MSECS(0), MSECS(200), MSECS(733), MSECS(450),
};
static const int pulse_period[2] = { SEC(20), /* discharging */
SEC(10) }; /* charging */
static const int pulse_stagger[2][NUM_LEDS] = {
{ MSECS(0), MSECS(4800), MSECS(16000), MSECS(11000) }, /* discharging */
{ MSECS(0), MSECS(2400), MSECS(8000), MSECS(5500) } /* charging */
};
static struct rgb_s tmp_color;
static int tmp_percent;
static void interpolate(timestamp_t now, int i)
{
int range, sofar;
if (now.val <= led_state[i].start_time.val) {
tmp_color = led_state[i].prev;
tmp_percent = 0;
return;
}
if (now.val >= led_state[i].end_time.val) {
tmp_percent = 100;
tmp_color = led_state[i].next;
return;
}
range = (int)(led_state[i].end_time.val - led_state[i].start_time.val);
sofar = (int)(now.val - led_state[i].start_time.val);
tmp_percent = (sofar * 100) / range;
tmp_color.r = ((100 - tmp_percent) * led_state[i].prev.r) / 100 +
(tmp_percent * led_state[i].next.r) / 100;
tmp_color.g = ((100 - tmp_percent) * led_state[i].prev.g) / 100 +
(tmp_percent * led_state[i].next.g) / 100;
tmp_color.b = ((100 - tmp_percent) * led_state[i].prev.b) / 100 +
(tmp_percent * led_state[i].next.b) / 100;
}
/* 8-bit fixed-point sin(x). domain 0-PI == 0-127, range 0-1 == 0-255.
* This is just the first half cycle. */
const uint8_t sin_table[] = {
0, 6, 13, 19, 25, 31, 37, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98,
103, 109, 115, 120, 126, 131, 136, 142, 147, 152, 157, 162, 167,
171, 176, 180, 185, 189, 193, 197, 201, 205, 208, 212, 215, 219,
222, 225, 228, 231, 233, 236, 238, 240, 242, 244, 246, 247, 249,
250, 251, 252, 253, 254, 254, 255, 255, 255, 255, 255, 254, 254,
253, 252, 251, 250, 249, 247, 246, 244, 242, 240, 238, 236, 233,
231, 228, 225, 222, 219, 215, 212, 208, 205, 201, 197, 193, 189,
185, 180, 176, 171, 167, 162, 157, 152, 147, 142, 136, 131, 126,
120, 115, 109, 103, 98, 92, 86, 80, 74, 68, 62, 56, 50, 44, 37, 31,
25, 19, 13, 6
};
/* This provides the other half. */
int sini(uint8_t i)
{
if (i < 128)
return sin_table[i];
return -sin_table[i-128];
}
static void pulse(timestamp_t now, int period_offset)
{
int t;
uint8_t i;
int j;
/* Bound time to one cycle */
t = (now.le.lo + period_offset) % pulse_period[st.battery_is_charging];
/* Convert phase to 0-255 */
i = ((t >> 8) / (pulse_period[st.battery_is_charging] >> 16));
/* Compute sinusoidal for phase, as [-255:255] */
j = sini(i);
j = j * sini((int)i * 3 / 2) / 255;
j = j * sini((int)i * 16 / 10) / 255;
/* Cut it down a bit if we're plugged in. */
j = j / (1 + st.battery_is_charging);
/* Luminize current color using sinusoidal */
t = j + tmp_color.r;
if (t > 255)
tmp_color.r = 255;
else if (t < 0)
tmp_color.r = 0;
else
tmp_color.r = t;
t = j + tmp_color.g;
if (t > 255)
tmp_color.g = 255;
else if (t < 0)
tmp_color.g = 0;
else
tmp_color.g = t;
t = j + tmp_color.b;
if (t > 255)
tmp_color.b = 255;
else if (t < 0)
tmp_color.b = 0;
else
tmp_color.b = t;
}
/* CPU is fully on */
static uint32_t sequence_S0(void)
{
int i, tick, last_tick;
timestamp_t start, now;
start = get_time();
tick = last_tick = 0;
lightbar_on();
/* start black, we'll fade in first thing */
lightbar_setrgb(NUM_LEDS, 0, 0, 0);
for (i = 0; i < NUM_LEDS; i++)
led_state[i].prev = colors[COLOR_BLACK];
last_battery_is_charging = !st.battery_is_charging; /* force update */
while (1) {
now = get_time();
/* Only check the battery state every so often. The battery
* charging task doesn't update as quickly as we do, and isn't
* always valid for a bit after jumping from RO->RW. */
tick = (now.le.lo - start.le.lo) / SEC(1);
if (tick % 4 == 3 && tick != last_tick) {
get_battery_level();
last_tick = tick;
}
/* Has something changed? */
if (st.battery_is_charging != last_battery_is_charging ||
st.battery_level != last_battery_level) {
/* yes */
for (i = 0; i < NUM_LEDS; i++) {
led_state[i].start_time.val = now.val +
transition_stagger[i];
led_state[i].end_time.val =
led_state[i]. start_time.val +
transition_time;
led_state[i].prev = led_state[i].next;
led_state[i].next = colors[st.battery_level];
}
last_battery_is_charging = st.battery_is_charging;
last_battery_level = st.battery_level;
}
/* Figure out what colors to show now */
for (i = 0; i < NUM_LEDS; i++) {
/* Compute transition between prev and next colors. */
interpolate(now, i);
/* Pulse sinusoidally */
pulse(now, pulse_stagger[st.battery_is_charging][i]);
/* Show it */
lightbar_setrgb(i, tmp_color.r, tmp_color.g,
tmp_color.b);
}
WAIT_OR_RET(MSECS(15));
}
return 0;
}
/* CPU is off */
static uint32_t sequence_S5(void)
{
/* Just wait forever. */
lightbar_off();
WAIT_OR_RET(-1);
return 0;
}
/* CPU is powering up. The lightbar loses power when the CPU is in S5, so this
* might not be useful. */
static uint32_t sequence_S5S3(void)
{
/* The controllers need 100us after power is applied before they'll
* respond. Don't return early, because we still want to initialize the
* lightbar even if another message comes along while we're waiting. */
usleep(100);
lightbar_init_vals();
/* For now, do something to indicate this transition.
* We might see it. */
lightbar_on();
lightbar_setrgb(NUM_LEDS, 0, 0, 0);
WAIT_OR_RET(500000);
return 0;
}
/* CPU is going to sleep */
static uint32_t sequence_S0S3(void)
{
int i;
for (i = 0; i < NUM_LEDS; i++)
lightbar_setrgb(i, testy[i].r, testy[i].g, testy[i].b);
WAIT_OR_RET(200000);
for (i = 0; i < NUM_LEDS; i++) {
lightbar_setrgb(i, 0, 0, 0);
WAIT_OR_RET(200000);
}
return 0;
}
/* CPU is sleeping */
static uint32_t sequence_S3(void)
{
int r, g, b;
int i;
lightbar_off();
lightbar_init_vals();
lightbar_setrgb(NUM_LEDS, 0, 0, 0);
while (1) {
WAIT_OR_RET(SEC(15));
get_battery_level();
lightbar_on();
r = colors[st.battery_level].r;
g = colors[st.battery_level].g;
b = colors[st.battery_level].b;
for (i = 0; i < 255; i += 5) {
lightbar_setrgb(NUM_LEDS,
(r * i) / 255,
(g * i) / 255,
(b * i) / 255);
WAIT_OR_RET(15000);
}
for (i = 255; i > 0; i -= 5) {
lightbar_setrgb(NUM_LEDS,
(r * i) / 255,
(g * i) / 255,
(b * i) / 255);
WAIT_OR_RET(15000);
}
lightbar_setrgb(NUM_LEDS, 0, 0, 0);
lightbar_off();
}
return 0;
}
/* CPU is waking from sleep */
static uint32_t sequence_S3S0(void)
{
int i;
lightbar_init_vals();
lightbar_on();
for (i = 0; i < NUM_LEDS; i++) {
lightbar_setrgb(i, testy[i].r, testy[i].g, testy[i].b);
WAIT_OR_RET(200000);
}
return 0;
}
/* Sleep to off. */
static uint32_t sequence_S3S5(void)
{
int i;
/* Go ahead and do something to indicate this transition.
* We might see it. */
for (i = 0; i < NUM_LEDS; i++)
lightbar_setrgb(i, testy[i].r, testy[i].g, testy[i].b);
WAIT_OR_RET(200000);
for (i = 0; i < NUM_LEDS; i++) {
lightbar_setrgb(i, 0, 0, 0);
WAIT_OR_RET(200000);
}
return 0;
}
/* Used by factory. */
static uint32_t sequence_TEST_inner(void)
{
int i, j, k, r, g, b;
int kmax = 254;
int kstep = 8;
lightbar_init_vals();
lightbar_on();
for (i = 0; i < ARRAY_SIZE(testy); i++) {
for (k = 0; k <= kmax; k += kstep) {
for (j = 0; j < NUM_LEDS; j++) {
r = testy[i].r ? k : 0;
g = testy[i].g ? k : 0;
b = testy[i].b ? k : 0;
lightbar_setrgb(j, r, g, b);
}
WAIT_OR_RET(10000);
}
for (k = kmax; k >= 0; k -= kstep) {
for (j = 0; j < NUM_LEDS; j++) {
r = testy[i].r ? k : 0;
g = testy[i].g ? k : 0;
b = testy[i].b ? k : 0;
lightbar_setrgb(j, r, g, b);
}
WAIT_OR_RET(10000);
}
}
return 0;
}
static uint32_t sequence_TEST(void)
{
int tmp;
uint32_t r;
tmp = brightness;
brightness = 255;
r = sequence_TEST_inner();
brightness = tmp;
return r;
}
/* This uses the auto-cycling features of the controllers to make a semi-random
* pattern of slowly fading colors. This is interesting only because it doesn't
* require any effort from the EC. */
static uint32_t sequence_PULSE(void)
{
uint32_t msg;
int r = scale(255, MAX_RED);
int g = scale(255, MAX_BLUE);
int b = scale(255, MAX_GREEN);
struct initdata_s pulse_vals[] = {
{0x11, 0xce},
{0x12, 0x67},
{0x13, 0xef},
{0x15, b},
{0x16, r},
{0x17, g},
{0x18, b},
{0x19, r},
{0x1a, g},
};
lightbar_init_vals();
lightbar_on();
set_from_array(pulse_vals, ARRAY_SIZE(pulse_vals));
controller_write(1, 0x13, 0xcd); /* this one's different */
/* Not using WAIT_OR_RET() here, because we want to clean up when we're
* done. The only way out is to get a message. */
msg = task_wait_event(-1);
lightbar_init_vals();
return TASK_EVENT_CUSTOM(msg);
}
/* The host CPU (or someone) is going to poke at the lightbar directly, so we
* don't want the EC messing with it. We'll just sit here and ignore all
* other messages until we're told to continue. */
static uint32_t sequence_STOP(void)
{
uint32_t msg;
do {
msg = TASK_EVENT_CUSTOM(task_wait_event(-1));
CPRINTF("[%T LB_stop got pending_msg %d]\n", pending_msg);
} while (msg != PENDING_MSG || pending_msg != LIGHTBAR_RUN);
/* FIXME: What should we do if the host shuts down? */
CPRINTF("[%T LB_stop->running]\n");
return 0;
}
/* Telling us to run when we're already running should do nothing. */
static uint32_t sequence_RUN(void)
{
return 0;
}
/* We shouldn't come here, but if we do it shouldn't hurt anything */
static uint32_t sequence_ERROR(void)
{
lightbar_init_vals();
lightbar_on();
lightbar_setrgb(0, 255, 255, 255);
lightbar_setrgb(1, 255, 0, 255);
lightbar_setrgb(2, 0, 255, 255);
lightbar_setrgb(3, 255, 255, 255);
WAIT_OR_RET(10000000);
return 0;
}
static const struct {
uint8_t led;
uint8_t r, g, b;
unsigned int delay;
} konami[] = {
{1, 0xff, 0xff, 0x00, 0},
{2, 0xff, 0xff, 0x00, 100000},
{1, 0x00, 0x00, 0x00, 0},
{2, 0x00, 0x00, 0x00, 100000},
{1, 0xff, 0xff, 0x00, 0},
{2, 0xff, 0xff, 0x00, 100000},
{1, 0x00, 0x00, 0x00, 0},
{2, 0x00, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0xff, 0},
{3, 0x00, 0x00, 0xff, 100000},
{0, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0xff, 0},
{3, 0x00, 0x00, 0xff, 100000},
{0, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0xff, 0x00, 0x00, 0},
{1, 0xff, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0x00, 0},
{1, 0x00, 0x00, 0x00, 100000},
{2, 0x00, 0xff, 0x00, 0},
{3, 0x00, 0xff, 0x00, 100000},
{2, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0xff, 0x00, 0x00, 0},
{1, 0xff, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0x00, 0},
{1, 0x00, 0x00, 0x00, 100000},
{2, 0x00, 0xff, 0x00, 0},
{3, 0x00, 0xff, 0x00, 100000},
{2, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0x00, 0xff, 0xff, 0},
{2, 0x00, 0xff, 0xff, 100000},
{0, 0x00, 0x00, 0x00, 0},
{2, 0x00, 0x00, 0x00, 150000},
{1, 0xff, 0x00, 0xff, 0},
{3, 0xff, 0x00, 0xff, 100000},
{1, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 250000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
};
static uint32_t sequence_KONAMI(void)
{
int i;
int tmp;
lightbar_init_vals();
lightbar_on();
tmp = brightness;
brightness = 255;
for (i = 0; i < ARRAY_SIZE(konami); i++) {
lightbar_setrgb(konami[i].led,
konami[i].r, konami[i].g, konami[i].b);
if (konami[i].delay)
usleep(konami[i].delay);
}
brightness = tmp;
return 0;
}
/****************************************************************************/
/* The main lightbar task. It just cycles between various pretty patterns. */
/****************************************************************************/
/* Link each sequence with a command to invoke it. */
struct lightbar_cmd_t {
const char * const string;
uint32_t (*sequence)(void);
};
#define LBMSG(state) { #state, sequence_##state }
#include "lightbar_msg_list.h"
static struct lightbar_cmd_t lightbar_cmds[] = {
LIGHTBAR_MSG_LIST
};
#undef LBMSG
void lightbar_task(void)
{
uint32_t msg;
CPRINTF("[%T LB task starting]\n");
lb_restore_state();
while (1) {
CPRINTF("[%T LB task %d = %s]\n",
st.cur_seq, lightbar_cmds[st.cur_seq].string);
msg = lightbar_cmds[st.cur_seq].sequence();
if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG) {
CPRINTF("[%T LB msg %d = %s]\n", pending_msg,
lightbar_cmds[pending_msg].string);
st.prev_seq = st.cur_seq;
st.cur_seq = pending_msg;
} else {
CPRINTF("[%T LB msg 0x%x]\n", msg);
switch (st.cur_seq) {
case LIGHTBAR_S5S3:
st.cur_seq = LIGHTBAR_S3;
break;
case LIGHTBAR_S3S0:
st.cur_seq = LIGHTBAR_S0;
break;
case LIGHTBAR_S0S3:
st.cur_seq = LIGHTBAR_S3;
break;
case LIGHTBAR_S3S5:
st.cur_seq = LIGHTBAR_S5;
break;
case LIGHTBAR_TEST:
case LIGHTBAR_STOP:
case LIGHTBAR_RUN:
case LIGHTBAR_ERROR:
case LIGHTBAR_KONAMI:
st.cur_seq = st.prev_seq;
default:
break;
}
}
}
}
/* Function to request a preset sequence from the lightbar task. */
void lightbar_sequence(enum lightbar_sequence num)
{
if (num > 0 && num < LIGHTBAR_NUM_SEQUENCES) {
CPRINTF("[%T LB_seq %d = %s]\n", num,
lightbar_cmds[num].string);
pending_msg = num;
task_set_event(TASK_ID_LIGHTBAR,
TASK_EVENT_WAKE | TASK_EVENT_CUSTOM(PENDING_MSG),
0);
} else
CPRINTF("[%T LB_seq %d - ignored]\n", num);
}
/****************************************************************************/
/* Get notifications from other parts of the system */
static int lightbar_startup(void)
{
lightbar_sequence(LIGHTBAR_S5S3);
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, lightbar_startup, HOOK_PRIO_DEFAULT);
static int lightbar_resume(void)
{
lightbar_sequence(LIGHTBAR_S3S0);
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, lightbar_resume, HOOK_PRIO_DEFAULT);
static int lightbar_suspend(void)
{
lightbar_sequence(LIGHTBAR_S0S3);
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, lightbar_suspend, HOOK_PRIO_DEFAULT);
static int lightbar_shutdown(void)
{
lightbar_sequence(LIGHTBAR_S3S5);
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, lightbar_shutdown, HOOK_PRIO_DEFAULT);
/****************************************************************************/
/* Generic command-handling (should work the same for both console & LPC) */
/****************************************************************************/
static const uint8_t dump_reglist[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a
};
static void do_cmd_dump(struct ec_response_lightbar *out)
{
int i;
uint8_t reg;
BUILD_ASSERT(ARRAY_SIZE(dump_reglist) ==
ARRAY_SIZE(out->dump.vals));
for (i = 0; i < ARRAY_SIZE(dump_reglist); i++) {
reg = dump_reglist[i];
out->dump.vals[i].reg = reg;
out->dump.vals[i].ic0 = controller_read(0, reg);
out->dump.vals[i].ic1 = controller_read(1, reg);
}
}
static void do_cmd_rgb(uint8_t led,
uint8_t red, uint8_t green, uint8_t blue)
{
int i;
if (led >= NUM_LEDS)
for (i = 0; i < NUM_LEDS; i++)
lightbar_setrgb(i, red, green, blue);
else
lightbar_setrgb(led, red, green, blue);
}
/****************************************************************************/
/* Host commands via LPC bus */
/****************************************************************************/
static int lpc_cmd_lightbar(struct host_cmd_handler_args *args)
{
const struct ec_params_lightbar *in = args->params;
struct ec_response_lightbar *out = args->response;
switch (in->cmd) {
case LIGHTBAR_CMD_DUMP:
do_cmd_dump(out);
args->response_size = sizeof(out->dump);
break;
case LIGHTBAR_CMD_OFF:
lightbar_off();
break;
case LIGHTBAR_CMD_ON:
lightbar_on();
break;
case LIGHTBAR_CMD_INIT:
lightbar_init_vals();
break;
case LIGHTBAR_CMD_BRIGHTNESS:
lightbar_brightness(in->brightness.num);
break;
case LIGHTBAR_CMD_SEQ:
lightbar_sequence(in->seq.num);
break;
case LIGHTBAR_CMD_REG:
controller_write(in->reg.ctrl,
in->reg.reg,
in->reg.value);
break;
case LIGHTBAR_CMD_RGB:
do_cmd_rgb(in->rgb.led,
in->rgb.red,
in->rgb.green,
in->rgb.blue);
break;
case LIGHTBAR_CMD_GET_SEQ:
out->get_seq.num = st.cur_seq;
args->response_size = sizeof(out->get_seq);
break;
case LIGHTBAR_CMD_DEMO:
demo_mode = in->demo.num ? 1 : 0;
CPRINTF("[%T LB_demo %d]\n", demo_mode);
break;
default:
CPRINTF("[%T LB bad cmd 0x%x]\n", in->cmd);
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_LIGHTBAR_CMD,
lpc_cmd_lightbar,
EC_VER_MASK(0));
/****************************************************************************/
/* EC console commands */
/****************************************************************************/
#ifdef CONSOLE_COMMAND_LIGHTBAR_HELP
static int help(const char *cmd)
{
ccprintf("Usage:\n");
ccprintf(" %s - dump all regs\n", cmd);
ccprintf(" %s off - enter standby\n", cmd);
ccprintf(" %s on - leave standby\n", cmd);
ccprintf(" %s init - load default vals\n", cmd);
ccprintf(" %s brightness NUM - set intensity (0-ff)\n", cmd);
ccprintf(" %s seq [NUM|SEQUENCE] - run given pattern"
" (no arg for list)\n", cmd);
ccprintf(" %s CTRL REG VAL - set LED controller regs\n", cmd);
ccprintf(" %s LED RED GREEN BLUE - set color manually"
" (LED=4 for all)\n", cmd);
ccprintf(" %s demo [0|1] - turn demo mode on & off\n", cmd);
return EC_SUCCESS;
}
#endif
static uint8_t find_msg_by_name(const char *str)
{
uint8_t i;
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
if (!strcasecmp(str, lightbar_cmds[i].string))
return i;
return LIGHTBAR_NUM_SEQUENCES;
}
static void show_msg_names(void)
{
int i;
ccprintf("Sequences:");
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
ccprintf(" %s", lightbar_cmds[i].string);
ccprintf("\nCurrent = 0x%x %s\n", st.cur_seq,
lightbar_cmds[st.cur_seq].string);
}
static int command_lightbar(int argc, char **argv)
{
int i;
uint8_t num;
struct ec_response_lightbar out;
if (1 == argc) { /* no args = dump 'em all */
do_cmd_dump(&out);
for (i = 0; i < ARRAY_SIZE(dump_reglist); i++)
ccprintf(" %02x %02x %02x\n",
out.dump.vals[i].reg,
out.dump.vals[i].ic0,
out.dump.vals[i].ic1);
return EC_SUCCESS;
}
if (argc == 2 && !strcasecmp(argv[1], "init")) {
lightbar_init_vals();
return EC_SUCCESS;
}
if (argc == 2 && !strcasecmp(argv[1], "off")) {
lightbar_off();
return EC_SUCCESS;
}
if (argc == 2 && !strcasecmp(argv[1], "on")) {
lightbar_on();
return EC_SUCCESS;
}
if (argc == 3 && !strcasecmp(argv[1], "brightness")) {
char *e;
num = 0xff & strtoi(argv[2], &e, 16);
lightbar_brightness(num);
return EC_SUCCESS;
}
if (argc == 3 && !strcasecmp(argv[1], "demo")) {
if (!strcasecmp(argv[2], "on") || argv[2][0] == '1')
demo_mode = 1;
else if (!strcasecmp(argv[2], "off") || argv[2][0] == '0')
demo_mode = 0;
else
return EC_ERROR_PARAM1;
ccprintf("demo mode is %s\n", demo_mode ? "on" : "off");
return EC_SUCCESS;
}
if (argc >= 2 && !strcasecmp(argv[1], "seq")) {
char *e;
uint8_t num;
if (argc == 2) {
show_msg_names();
return 0;
}
num = 0xff & strtoi(argv[2], &e, 16);
if (*e)
num = find_msg_by_name(argv[2]);
if (num >= LIGHTBAR_NUM_SEQUENCES)
return EC_ERROR_PARAM2;
lightbar_sequence(num);
return EC_SUCCESS;
}
if (argc == 4) {
char *e;
uint8_t ctrl, reg, val;
ctrl = 0xff & strtoi(argv[1], &e, 16);
reg = 0xff & strtoi(argv[2], &e, 16);
val = 0xff & strtoi(argv[3], &e, 16);
controller_write(ctrl, reg, val);
return EC_SUCCESS;
}
if (argc == 5) {
char *e;
uint8_t led, r, g, b;
led = strtoi(argv[1], &e, 16);
r = strtoi(argv[2], &e, 16);
g = strtoi(argv[3], &e, 16);
b = strtoi(argv[4], &e, 16);
do_cmd_rgb(led, r, g, b);
return EC_SUCCESS;
}
#ifdef CONSOLE_COMMAND_LIGHTBAR_HELP
help(argv[0]);
#endif
return EC_ERROR_INVAL;
}
DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar,
"[on | off | init | brightness | seq] | [ctrl reg val]",
"Get/set lightbar state",
NULL);
|