summaryrefslogtreecommitdiff
path: root/common/btle_ll.c
blob: eea9534fe3e6abf3a81afbbd3c012c200b2f6c57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/* Copyright 2016 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "bluetooth_le.h"
#include "bluetooth_le_ll.h"
#include "btle_hci_int.h"
#include "console.h"
#include "radio.h"
#include "radio_test.h"
#include "task.h"
#include "timer.h"
#include "util.h"

#ifdef CONFIG_BLUETOOTH_LL_DEBUG

#define CPUTS(outstr) cputs(CC_BLUETOOTH_LL, outstr)
#define CPRINTS(format, args...) cprints(CC_BLUETOOTH_LL, format, ##args)
#define CPRINTF(format, args...) cprintf(CC_BLUETOOTH_LL, format, ##args)

#else /* CONFIG_BLUETOOTH_LL_DEBUG */

#define CPUTS(outstr)
#define CPRINTS(format, args...)
#define CPRINTF(format, args...)

#endif /* CONFIG_BLUETOOTH_LL_DEBUG */

/* Link Layer */

enum ll_state_t ll_state = UNINITIALIZED;

static struct hciLeSetAdvParams ll_adv_params;
static struct hciLeSetScanParams ll_scan_params;
static int ll_adv_interval_us;
static int ll_adv_timeout_us;

static struct ble_pdu ll_adv_pdu;
static struct ble_pdu ll_scan_rsp_pdu;
static struct ble_pdu tx_packet_1;
static struct ble_pdu *packet_tb_sent;
static struct ble_connection_params conn_params;
static int connection_initialized;
static struct remapping_table remap_table;

static uint64_t receive_time, last_receive_time;
static uint8_t num_consecutive_failures;

static uint32_t tx_end, tx_rsp_end, time_of_connect_req;
struct ble_pdu ll_rcv_packet;
static uint32_t ll_conn_events;
static uint32_t errors_recovered;

int ll_power;
uint8_t is_first_data_packet;

static uint64_t ll_random_address = 0xC5BADBADBAD1; /* Uninitialized */
static uint64_t ll_public_address = 0xC5BADBADBADF; /* Uninitialized */
static uint8_t ll_channel_map[5] = { 0xff, 0xff, 0xff, 0xff, 0x1f };

static uint8_t ll_filter_duplicates;

int ll_pseudo_rand(int max_plus_one)
{
	static uint32_t lfsr = 0x55555;
	int lsb = lfsr & 1;

	lfsr = lfsr >> 1;
	if (lsb)
		lfsr ^= 0x80020003; /* Bits 32, 22, 2, 1 */
	return lfsr % max_plus_one;
}

uint8_t ll_set_tx_power(uint8_t *params)
{
	/* Add checking */
	ll_power = params[0];
	return HCI_SUCCESS;
}

uint8_t ll_read_tx_power(void)
{
	return ll_power;
}

/* LE Information */
uint8_t ll_read_buffer_size(uint8_t *return_params)
{
	return_params[0] = LL_MAX_DATA_PACKET_LENGTH & 0xff;
	return_params[1] = (LL_MAX_DATA_PACKET_LENGTH >> 8) & 0xff;
	return_params[2] = LL_MAX_DATA_PACKETS;
	return HCI_SUCCESS;
}

uint8_t ll_read_local_supported_features(uint8_t *return_params)
{
	uint64_t supported_features = LL_SUPPORTED_FEATURES;

	memcpy(return_params, &supported_features, sizeof(supported_features));
	return HCI_SUCCESS;
}

uint8_t ll_read_supported_states(uint8_t *return_params)
{
	uint64_t supported_states = LL_SUPPORTED_STATES;

	memcpy(return_params, &supported_states, sizeof(supported_states));
	return HCI_SUCCESS;
}

uint8_t ll_set_host_channel_classification(uint8_t *params)
{
	memcpy(ll_channel_map, params, sizeof(ll_channel_map));
	return HCI_SUCCESS;
}

/* Advertising */
uint8_t ll_set_scan_response_data(uint8_t *params)
{
	if (params[0] > BLE_MAX_ADV_PAYLOAD_OCTETS)
		return HCI_ERR_Invalid_HCI_Command_Parameters;

	if (ll_state == ADVERTISING)
		return HCI_ERR_Controller_Busy;

	memcpy(&ll_scan_rsp_pdu.payload[BLUETOOTH_ADDR_OCTETS], &params[1],
	       params[0]);
	ll_scan_rsp_pdu.header.adv.length = params[0] + BLUETOOTH_ADDR_OCTETS;

	return HCI_SUCCESS;
}

uint8_t ll_set_adv_data(uint8_t *params)
{
	if (params[0] > BLE_MAX_ADV_PAYLOAD_OCTETS)
		return HCI_ERR_Invalid_HCI_Command_Parameters;

	if (ll_state == ADVERTISING)
		return HCI_ERR_Controller_Busy;

	/* Skip the address */
	memcpy(&ll_adv_pdu.payload[BLUETOOTH_ADDR_OCTETS], &params[1],
	       params[0]);
	ll_adv_pdu.header.adv.length = params[0] + BLUETOOTH_ADDR_OCTETS;

	return HCI_SUCCESS;
}

uint8_t ll_reset(void)
{
	ll_state = UNINITIALIZED;
	radio_disable();

	ble_radio_clear_allow_list();

	return HCI_SUCCESS;
}

static uint8_t ll_state_change_request(enum ll_state_t next_state)
{
	/* Initialize the radio if it hasn't been initialized */
	if (ll_state == UNINITIALIZED) {
		if (ble_radio_init(BLE_ADV_ACCESS_ADDRESS, BLE_ADV_CRCINIT) !=
		    EC_SUCCESS)
			return HCI_ERR_Hardware_Failure;
		ll_state = STANDBY;
	}

	/* Only change states when the link layer is in STANDBY */
	if (next_state != STANDBY && ll_state != STANDBY)
		return HCI_ERR_Controller_Busy;

	ll_state = next_state;

	return HCI_SUCCESS;
}

uint8_t ll_set_advertising_enable(uint8_t *params)
{
	uint8_t rv;

	if (params[0]) {
		rv = ll_state_change_request(ADVERTISING);
		if (rv == HCI_SUCCESS)
			task_wake(TASK_ID_BLE_LL);
	} else {
		rv = ll_state_change_request(STANDBY);
	}

	return rv;
}

uint8_t ll_set_scan_enable(uint8_t *params)
{
	uint8_t rv;

	if (params[0]) {
		ll_filter_duplicates = params[1];
		rv = ll_state_change_request(SCANNING);
		if (rv == HCI_SUCCESS)
			task_wake(TASK_ID_BLE_LL);
	} else {
		rv = ll_state_change_request(STANDBY);
	}

	return HCI_SUCCESS;
}

void set_empty_data_packet(struct ble_pdu *pdu)
{
	/* LLID == 1 means incomplete or empty data packet */
	pdu->header.data.llid = 1;
	pdu->header.data.nesn = 1;
	pdu->header.data.sn = 0;
	pdu->header.data.md = 0;
	pdu->header.data.length = 0;
	pdu->header_type_adv = 0;
}

/* Connection state */

/**
 * This function serves to take data from a CONNECT_REQ packet and copy it
 * into a struct, conn_params, which defines the parameter of the connection.
 * It also fills a remapping table, another essential element of the link
 * layer connection.
 */
uint8_t initialize_connection(void)
{
	int cur_offset = 0, i = 0;
	uint8_t final_octet = 0;
	uint8_t remap_arr[5];
	uint8_t *payload_start = (uint8_t *)(ll_rcv_packet.payload);

	num_consecutive_failures = 0;

	/* Copy data into the appropriate portions of memory */
	memcpy((uint8_t *)&(conn_params.init_a), payload_start,
	       CONNECT_REQ_INITA_LEN);
	cur_offset += CONNECT_REQ_INITA_LEN;

	memcpy((uint8_t *)&(conn_params.adv_a), payload_start + cur_offset,
	       CONNECT_REQ_ADVA_LEN);
	cur_offset += CONNECT_REQ_ADVA_LEN;

	memcpy(&(conn_params.access_addr), payload_start + cur_offset,
	       CONNECT_REQ_ACCESS_ADDR_LEN);
	cur_offset += CONNECT_REQ_ACCESS_ADDR_LEN;

	conn_params.crc_init_val = 0;
	memcpy(&(conn_params.crc_init_val), payload_start + cur_offset,
	       CONNECT_REQ_CRC_INIT_VAL_LEN);
	cur_offset += CONNECT_REQ_CRC_INIT_VAL_LEN;

	memcpy(&(conn_params.win_size), payload_start + cur_offset,
	       CONNECT_REQ_WIN_SIZE_LEN);
	cur_offset += CONNECT_REQ_WIN_SIZE_LEN;

	memcpy(&(conn_params.win_offset), payload_start + cur_offset,
	       CONNECT_REQ_WIN_OFFSET_LEN);
	cur_offset += CONNECT_REQ_WIN_OFFSET_LEN;

	memcpy(&(conn_params.interval), payload_start + cur_offset,
	       CONNECT_REQ_INTERVAL_LEN);
	cur_offset += CONNECT_REQ_INTERVAL_LEN;

	memcpy(&(conn_params.latency), payload_start + cur_offset,
	       CONNECT_REQ_LATENCY_LEN);
	cur_offset += CONNECT_REQ_LATENCY_LEN;

	memcpy(&(conn_params.timeout), payload_start + cur_offset,
	       CONNECT_REQ_TIMEOUT_LEN);
	cur_offset += CONNECT_REQ_TIMEOUT_LEN;

	conn_params.channel_map = 0;
	memcpy(&(conn_params.channel_map), payload_start + cur_offset,
	       CONNECT_REQ_CHANNEL_MAP_LEN);
	cur_offset += CONNECT_REQ_CHANNEL_MAP_LEN;

	memcpy(&final_octet, payload_start + cur_offset,
	       CONNECT_REQ_HOP_INCREMENT_AND_SCA_LEN);

	/* last  5 bits of final_octet: */
	conn_params.hop_increment = final_octet & 0x1f;
	/* first 3 bits of final_octet: */
	conn_params.sleep_clock_accuracy = (final_octet & 0xe0) >> 5;

	/* Set up channel mapping table */
	for (i = 0; i < 5; ++i)
		remap_arr[i] = *(((uint8_t *)&(conn_params.channel_map)) + i);
	fill_remapping_table(&remap_table, remap_arr,
			     conn_params.hop_increment);

	/* Calculate transmission window parameters */
	conn_params.transmitWindowSize = conn_params.win_size * 1250;
	conn_params.transmitWindowOffset = conn_params.win_offset * 1250;
	conn_params.connInterval = conn_params.interval * 1250;
	/* The following two lines convert ms -> microseconds */
	conn_params.connLatency = 1000 * conn_params.latency;
	conn_params.connSupervisionTimeout = 10000 * conn_params.timeout;
	/* All these times are in microseconds! */

	/* Check for common transmission errors */
	if (conn_params.hop_increment < 5 || conn_params.hop_increment > 16) {
		for (i = 0; i < 5; ++i)
			CPRINTF("ERROR!! ILLEGAL HOP_INCREMENT!!\n");
		return HCI_ERR_Invalid_LMP_Parameters;
	}

	is_first_data_packet = 1;
	return HCI_SUCCESS;
}

/* Allow List */
uint8_t ll_clear_allow_list(void)
{
	if (ble_radio_clear_allow_list() == EC_SUCCESS)
		return HCI_SUCCESS;
	else
		return HCI_ERR_Hardware_Failure;
}

uint8_t ll_read_allow_list_size(uint8_t *return_params)
{
	if (ble_radio_read_allow_list_size(return_params) == EC_SUCCESS)
		return HCI_SUCCESS;
	else
		return HCI_ERR_Hardware_Failure;
}

uint8_t ll_add_device_to_allow_list(uint8_t *params)
{
	if (ble_radio_add_device_to_allow_list(&params[1], params[0]) ==
	    EC_SUCCESS)
		return HCI_SUCCESS;
	else
		return HCI_ERR_Host_Rejected_Due_To_Limited_Resources;
}

uint8_t ll_remove_device_from_allow_list(uint8_t *params)
{
	if (ble_radio_remove_device_from_allow_list(&params[1], params[0]) ==
	    EC_SUCCESS)
		return HCI_SUCCESS;
	else
		return HCI_ERR_Hardware_Failure;
}

/* Connections */
uint8_t ll_read_remote_used_features(uint8_t *params)
{
	uint16_t handle = params[0] | (((uint16_t)params[1]) << 8);

	CPRINTS("Read remote used features for handle %d", handle);
	/* Check handle */
	return HCI_SUCCESS;
}

/* RF PHY Testing */
static int ll_test_packets;

uint8_t ll_receiver_test(uint8_t *params)
{
	int rv;

	ll_test_packets = 0;

	/* See if the link layer is busy */
	rv = ll_state_change_request(TEST_RX);
	if (rv)
		return rv;

	rv = ble_test_rx_init(params[0]);
	if (rv)
		return rv;

	CPRINTS("Start Rx test");
	task_wake(TASK_ID_BLE_LL);

	return HCI_SUCCESS;
}

uint8_t ll_transmitter_test(uint8_t *params)
{
	int rv;

	ll_test_packets = 0;

	/* See if the link layer is busy */
	rv = ll_state_change_request(TEST_TX);
	if (rv)
		return rv;

	rv = ble_test_tx_init(params[0], params[1], params[2]);
	if (rv)
		return rv;

	CPRINTS("Start Tx test");
	task_wake(TASK_ID_BLE_LL);

	return HCI_SUCCESS;
}

uint8_t ll_test_end(uint8_t *return_params)
{
	CPRINTS("End (%d packets)", ll_test_packets);

	ble_test_stop();

	if (ll_state == TEST_RX) {
		return_params[0] = ll_test_packets & 0xff;
		return_params[1] = (ll_test_packets >> 8);
		ll_test_packets = 0;
	} else {
		return_params[0] = 0;
		return_params[1] = 0;
		ll_test_packets = 0;
	}
	return ll_reset();
}

uint8_t ll_set_random_address(uint8_t *params)
{
	/* No checking.  The host should know the rules. */
	memcpy(&ll_random_address, params,
	       sizeof(struct hciLeSetRandomAddress));
	return HCI_SUCCESS;
}

uint8_t ll_set_scan_params(uint8_t *params)
{
	if (ll_state == SCANNING)
		return HCI_ERR_Controller_Busy;

	memcpy(&ll_scan_params, params, sizeof(struct hciLeSetScanParams));

	return HCI_SUCCESS;
}

uint8_t ll_set_advertising_params(uint8_t *params)
{
	if (ll_state == ADVERTISING)
		return HCI_ERR_Controller_Busy;

	memcpy(&ll_adv_params, params, sizeof(struct hciLeSetAdvParams));

	switch (ll_adv_params.advType) {
	case BLE_ADV_HEADER_PDU_TYPE_ADV_NONCONN_IND:
	case BLE_ADV_HEADER_PDU_TYPE_ADV_SCAN_IND:
		if (ll_adv_params.advIntervalMin <
		    (100000 / LL_ADV_INTERVAL_UNIT_US)) /* 100ms */
			return HCI_ERR_Invalid_HCI_Command_Parameters;
	/* Fall through */
	case BLE_ADV_HEADER_PDU_TYPE_ADV_IND:
		if (ll_adv_params.advIntervalMin > ll_adv_params.advIntervalMax)
			return HCI_ERR_Invalid_HCI_Command_Parameters;
		if (ll_adv_params.advIntervalMin <
			    (20000 / LL_ADV_INTERVAL_UNIT_US) || /* 20ms */
		    ll_adv_params.advIntervalMax >
			    (10240000 / LL_ADV_INTERVAL_UNIT_US)) /* 10.24s */
			return HCI_ERR_Invalid_HCI_Command_Parameters;
		ll_adv_interval_us = (((ll_adv_params.advIntervalMin +
					ll_adv_params.advIntervalMax) /
				       2) *
				      LL_ADV_INTERVAL_UNIT_US);
		/* Don't time out */
		ll_adv_timeout_us = -1;
		break;
	case BLE_ADV_HEADER_PDU_TYPE_ADV_DIRECT_IND:
		ll_adv_interval_us = LL_ADV_DIRECT_INTERVAL_US;
		ll_adv_timeout_us = LL_ADV_DIRECT_TIMEOUT_US;
		break;
	default:
		return HCI_ERR_Invalid_HCI_Command_Parameters;
	}

	/* Initialize the ADV PDU */
	ll_adv_pdu.header_type_adv = 1;
	ll_adv_pdu.header.adv.type = ll_adv_params.advType;
	ll_adv_pdu.header.adv.txaddr = ll_adv_params.useRandomAddress;

	if (ll_adv_params.useRandomAddress)
		memcpy(ll_adv_pdu.payload, &ll_random_address,
		       BLUETOOTH_ADDR_OCTETS);
	else
		memcpy(ll_adv_pdu.payload, &ll_public_address,
		       BLUETOOTH_ADDR_OCTETS);

	if (ll_adv_params.advType == BLE_ADV_HEADER_PDU_TYPE_ADV_DIRECT_IND) {
		ll_adv_pdu.header.adv.rxaddr =
			ll_adv_params.directRandomAddress;
		memcpy(&ll_adv_pdu.payload[BLUETOOTH_ADDR_OCTETS],
		       ll_adv_params.directAddr,
		       sizeof(ll_adv_params.directAddr));
		ll_adv_pdu.header.adv.length = 12;
	} else {
		ll_adv_pdu.header.adv.rxaddr = 0;
	}

	/* All other types get data from SetAdvertisingData */

	/* Initialize the Scan Rsp PDU */
	ll_scan_rsp_pdu.header_type_adv = 1;
	ll_scan_rsp_pdu.header.adv.type = BLE_ADV_HEADER_PDU_TYPE_SCAN_RSP;
	ll_scan_rsp_pdu.header.adv.txaddr = ll_adv_params.useRandomAddress;

	if (ll_adv_params.useRandomAddress)
		memcpy(ll_scan_rsp_pdu.payload, &ll_random_address,
		       BLUETOOTH_ADDR_OCTETS);
	else
		memcpy(ll_scan_rsp_pdu.payload, &ll_public_address,
		       BLUETOOTH_ADDR_OCTETS);

	ll_scan_rsp_pdu.header.adv.rxaddr = 0;

	return HCI_SUCCESS;
}

static uint32_t tx_end, rsp_end, tx_rsp_end;
struct ble_pdu ll_rcv_packet;

/**
 * Advertises packet that has already been generated on given channel.
 *
 * This function also processes any incoming scan requests.
 *
 * @param    chan The channel on which to advertise.
 * @returns  EC_SUCCESS on packet reception, otherwise error.
 */
int ble_ll_adv(int chan)
{
	int rv;

	ble_radio_init(BLE_ADV_ACCESS_ADDRESS, BLE_ADV_CRCINIT);

	/* Change channel */
	NRF51_RADIO_FREQUENCY = NRF51_RADIO_FREQUENCY_VAL(chan2freq(chan));
	NRF51_RADIO_DATAWHITEIV = chan;

	ble_tx(&ll_adv_pdu);

	while (!RADIO_DONE)
		;

	tx_end = get_time().le.lo;

	if (ll_adv_pdu.header.adv.type ==
	    BLE_ADV_HEADER_PDU_TYPE_ADV_NONCONN_IND)
		return EC_SUCCESS;

	rv = ble_rx(&ll_rcv_packet, 16000, 1);

	if (rv != EC_SUCCESS)
		return rv;

	while (!RADIO_DONE)
		;

	tx_rsp_end = get_time().le.lo;

	/* Check for valid responses */
	switch (ll_rcv_packet.header.adv.type) {
	case BLE_ADV_HEADER_PDU_TYPE_SCAN_REQ:
		/* Scan requests are only allowed for ADV_IND and SCAN_IND */
		if ((ll_adv_pdu.header.adv.type !=
			     BLE_ADV_HEADER_PDU_TYPE_ADV_IND &&
		     ll_adv_pdu.header.adv.type !=
			     BLE_ADV_HEADER_PDU_TYPE_ADV_SCAN_IND) ||
		    /* The advertising address needs to match */
		    (memcmp(&ll_rcv_packet.payload[BLUETOOTH_ADDR_OCTETS],
			    &ll_adv_pdu.payload[0], BLUETOOTH_ADDR_OCTETS))) {
			/* Don't send the scan response */
			radio_disable();
			return rv;
		}
		break;
	case BLE_ADV_HEADER_PDU_TYPE_CONNECT_REQ:
		/* Don't send a scan response */
		radio_disable();
		/* Connecting is only allowed for ADV_IND and ADV_DIRECT_IND */
		if (ll_adv_pdu.header.adv.type !=
			    BLE_ADV_HEADER_PDU_TYPE_ADV_IND &&
		    ll_adv_pdu.header.adv.type !=
			    BLE_ADV_HEADER_PDU_TYPE_ADV_DIRECT_IND)
			return rv;
		/* The advertising address needs to match */
		if (memcmp(&ll_rcv_packet.payload[BLUETOOTH_ADDR_OCTETS],
			   &ll_adv_pdu.payload[0], BLUETOOTH_ADDR_OCTETS))
			return rv;
		/* The InitAddr address needs to match for ADV_DIRECT_IND */
		if (ll_adv_pdu.header.adv.type ==
			    BLE_ADV_HEADER_PDU_TYPE_ADV_DIRECT_IND &&
		    memcmp(&ll_adv_pdu.payload[BLUETOOTH_ADDR_OCTETS],
			   &ll_rcv_packet.payload[0], BLUETOOTH_ADDR_OCTETS))
			return rv;

		/* Mark time that connect was received */
		time_of_connect_req = NRF51_TIMER_CC(0, 1);

		/*
		 * Enter connection state upon receiving
		 * a connect request packet
		 */
		ll_state = CONNECTION;

		return rv;
		break;
	default: /* Unhandled response packet */
		radio_disable();
		return rv;
		break;
	}

	CPRINTF("ADV %u Response %u %u\n", tx_end, rsp_end, tx_rsp_end);

	return rv;
}

int ble_ll_adv_event(void)
{
	int chan_idx;
	int rv = EC_SUCCESS;

	for (chan_idx = 0; chan_idx < 3; chan_idx++) {
		if (ll_adv_params.advChannelMap & BIT(chan_idx)) {
			rv = ble_ll_adv(chan_idx + 37);
			if (rv != EC_SUCCESS)
				return rv;
		}
	}

	return rv;
}

void print_connection_state(void)
{
	CPRINTF("vvvvvvvvvvvvvvvvvvvCONNECTION STATEvvvvvvvvvvvvvvvvvvv\n");
	CPRINTF("Number of connections events processed: %d\n", ll_conn_events);
	CPRINTF("Recovered from %d bad receives.\n", errors_recovered);
	CPRINTF("Access addr(hex): %x\n", conn_params.access_addr);
	CPRINTF("win_size(hex): %x\n", conn_params.win_size);
	CPRINTF("win_offset(hex): %x\n", conn_params.win_offset);
	CPRINTF("interval(hex): %x\n", conn_params.interval);
	CPRINTF("latency(hex): %x\n", conn_params.latency);
	CPRINTF("timeout(hex): %x\n", conn_params.timeout);
	CPRINTF("channel_map(hex): %llx\n", conn_params.channel_map);
	CPRINTF("hop(hex): %x\n", conn_params.hop_increment);
	CPRINTF("SCA(hex): %x\n", conn_params.sleep_clock_accuracy);
	CPRINTF("transmitWindowOffset: %d\n", conn_params.transmitWindowOffset);
	CPRINTF("connInterval: %d\n", conn_params.connInterval);
	CPRINTF("transmitWindowSize: %d\n", conn_params.transmitWindowSize);
	CPRINTF("^^^^^^^^^^^^^^^^^^^CONNECTION STATE^^^^^^^^^^^^^^^^^^^\n");
}

int connected_communicate(void)
{
	int rv;
	long sleep_time;
	int offset = 0;
	uint64_t listen_time;
	uint8_t comm_channel = get_next_data_channel(&remap_table);

	if (num_consecutive_failures > 0) {
		ble_radio_init(conn_params.access_addr,
			       conn_params.crc_init_val);
		NRF51_RADIO_FREQUENCY =
			NRF51_RADIO_FREQUENCY_VAL(chan2freq(comm_channel));
		NRF51_RADIO_DATAWHITEIV = comm_channel;
		listen_time = last_receive_time + conn_params.connInterval -
			      get_time().val + conn_params.transmitWindowSize;

		/*
		 * This listens for 1.25 times the expected amount
		 * of time. This is a margin of error. This line is
		 * only called when a connection has failed (a missed
		 * packet). The peripheral and the controller could have
		 * missed this packet due to a disagreement on when
		 * the packet should have arrived. We listen for
		 * slightly longer than expected in the case that
		 * there was a timing disagreement.
		 */
		rv = ble_rx(&ll_rcv_packet, listen_time + (listen_time >> 2),
			    0);
	} else {
		if (!is_first_data_packet) {
			sleep_time = receive_time + conn_params.connInterval -
				     get_time().val;
			/*
			 * The time slept is 31/32 (96.875%) of the calculated
			 * required sleep time because the code to receive
			 * packets requires time to set up.
			 */
			usleep(sleep_time - (sleep_time >> 5));
		} else {
			last_receive_time = time_of_connect_req;
			sleep_time = TRANSMIT_WINDOW_OFFSET_CONSTANT +
				     conn_params.transmitWindowOffset +
				     time_of_connect_req - get_time().val;
			if (sleep_time >= 0) {
				/*
				 * Radio is on for longer than needed for first
				 * packet to make sure that it is received.
				 */
				usleep(sleep_time - (sleep_time >> 2));
			} else {
				return EC_ERROR_TIMEOUT;
			}
		}

		ble_radio_init(conn_params.access_addr,
			       conn_params.crc_init_val);
		NRF51_RADIO_FREQUENCY =
			NRF51_RADIO_FREQUENCY_VAL(chan2freq(comm_channel));
		NRF51_RADIO_DATAWHITEIV = comm_channel;

		/*
		 * Timing the transmit window is very hard to do when the code
		 * executing has actual effect on the timing. To combat this,
		 * the radio starts a little early, and terminates when the
		 * window normally should. The variable 'offset' represents
		 * how early the window opens in microseconds.
		 */
		if (!is_first_data_packet)
			offset = last_receive_time + conn_params.connInterval -
				 get_time().val;
		else
			offset = 0;

		rv = ble_rx(&ll_rcv_packet,
			    offset + conn_params.transmitWindowSize, 0);
	}

	/*
	 * The radio shortcuts have been set up so that transmission
	 * occurs automatically after receiving. The radio just needs
	 * to know where to find the packet to be sent.
	 */
	NRF51_RADIO_PACKETPTR = (uint32_t)packet_tb_sent;

	receive_time = NRF51_TIMER_CC(0, 1);
	if (rv != EC_SUCCESS)
		receive_time = last_receive_time + conn_params.connInterval;

	while (!RADIO_DONE)
		;

	last_receive_time = receive_time;
	is_first_data_packet = 0;

	return rv;
}

static uint32_t ll_adv_events;
static timestamp_t deadline;
static uint32_t start, end;

void bluetooth_ll_task(void)
{
	uint64_t last_rx_time = 0;
	CPRINTS("LL task init");

	while (1) {
		switch (ll_state) {
		case ADVERTISING:

			if (deadline.val == 0) {
				CPRINTS("ADV @%p", &ll_adv_pdu);
				deadline.val = get_time().val +
					       (uint32_t)ll_adv_timeout_us;
				ll_adv_events = 0;
			}

			ble_ll_adv_event();
			ll_adv_events++;

			if (ll_state == CONNECTION) {
				receive_time = 0;
				break;
			}
			/* sleep for 0-10ms */
			usleep(ll_adv_interval_us + ll_pseudo_rand(10000));

			if (get_time().val > deadline.val) {
				ll_state = STANDBY;
				break;
			}
			break;
		case STANDBY:
			deadline.val = 0;
			CPRINTS("Standby %d events", ll_adv_events);
			ll_adv_events = 0;
			ll_conn_events = 0;
			task_wait_event(-1);
			connection_initialized = 0;
			errors_recovered = 0;
			break;
		case TEST_RX:
			if (ble_test_rx() == HCI_SUCCESS)
				ll_test_packets++;
			/* Packets come every 625us, sleep to save power */
			usleep(300);
			break;
		case TEST_TX:
			start = get_time().le.lo;
			ble_test_tx();
			ll_test_packets++;
			end = get_time().le.lo;
			usleep(625 - 82 - (end - start)); /* 625us */
			break;
		case UNINITIALIZED:
			ble_radio_init(BLE_ADV_ACCESS_ADDRESS, BLE_ADV_CRCINIT);
			ll_adv_events = 0;
			task_wait_event(-1);
			connection_initialized = 0;
			packet_tb_sent = &tx_packet_1;
			set_empty_data_packet(&tx_packet_1);
			break;
		case CONNECTION:
			if (!connection_initialized) {
				if (initialize_connection() != HCI_SUCCESS) {
					ll_state = STANDBY;
					break;
				}
				connection_initialized = 1;
				last_rx_time = NRF51_TIMER_CC(0, 1);
			}

			if (connected_communicate() == EC_SUCCESS) {
				if (num_consecutive_failures > 0)
					++errors_recovered;
				num_consecutive_failures = 0;
				last_rx_time = get_time().val;
			} else {
				num_consecutive_failures++;
				if ((get_time().val - last_rx_time) >
				    conn_params.connSupervisionTimeout) {
					ll_state = STANDBY;
					CPRINTF("EXITING CONNECTION STATE "
						"DUE TO TIMEOUT.\n");
				}
			}
			++ll_conn_events;

			if (ll_state == STANDBY) {
				CPRINTF("Exiting connection state/Entering "
					"Standby state after %d connections "
					"events\n",
					ll_conn_events);
				print_connection_state();
			}
			break;
		default:
			CPRINTS("Unhandled State ll_state = %d", ll_state);
			ll_state = UNINITIALIZED;
			task_wait_event(-1);
		}
	}
}