summaryrefslogtreecommitdiff
path: root/common/ap_ro_integrity_check.c
blob: 16506b96d93559c9ad17f57ccf747995767d90a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/* Copyright 2020 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * Code supporting AP RO verification.
 */

#include "ap_ro_integrity_check.h"
#include "board_id.h"
#include "byteorder.h"
#include "ccd_config.h"
#include "console.h"
#include "crypto_api.h"
#include "extension.h"
#include "extension.h"
#include "flash.h"
#include "flash_info.h"
#include "shared_mem.h"
#include "stddef.h"
#include "stdint.h"
#include "system.h"
#include "timer.h"
#include "tpm_registers.h"
#include "usb_spi.h"
#include "usb_spi_board.h"

#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ##args)
#define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ##args)

/* FMAP must be aligned at 4K or larger power of 2 boundary. */
#define LOWEST_FMAP_ALIGNMENT  (4 * 1024)
#define FMAP_SIGNATURE	       "__FMAP__"
#define FMAP_AREA_NAME	       "FMAP"
#define FMAP_SIGNATURE_SIZE    (sizeof(FMAP_SIGNATURE) - 1)
#define FMAP_NAMELEN	       32
#define FMAP_MAJOR_VERSION     1
#define FMAP_MINOR_VERSION     1

/*
 * A somewhat arbitrary maximum number of AP RO hash ranges to save. There are
 * 27 regions in a FMAP layout. The AP RO ranges should only be from the RO
 * region. It's unlikely anyone will need more than 32 ranges.
 * If there are AP RO hash issues, the team will likely need to look at the
 * value of each range what part of the FMAP it corresponds to. Enforce a limit
 * to the number of ranges, so it's easier to debug and to make people consider
 * why they would need more than 32 ranges.
 */
#define APRO_MAX_NUM_RANGES 32
/* Values used for validity check of the flash_range structure fields. */
#define MAX_SUPPORTED_FLASH_SIZE (32 * 1024 * 1024)
#define MAX_SUPPORTED_RANGE_SIZE (4 * 1024 * 1024)

/* Version of the AP RO check information saved in the H1 flash page. */
#define AP_RO_HASH_LAYOUT_VERSION_0 0
#define AP_RO_HASH_LAYOUT_VERSION_1 1

/* Verification scheme V1. */
#define AP_RO_HASH_TYPE_FACTORY 0
/* Verification scheme V2. */
#define AP_RO_HASH_TYPE_GSCVD	1

/* A flash range included in hash calculations. */
struct ro_range {
	uint32_t flash_offset;
	uint32_t range_size;
};

/* Maximum number of RO ranges this implementation supports. */
struct ro_ranges {
	struct ro_range ranges[APRO_MAX_NUM_RANGES];
};

/*
 * Payload of the vendor command communicating a variable number of flash
 * ranges to be checked and the total sha256.
 *
 * The actual number of ranges is determined based on the actual payload size.
 */
struct ap_ro_check_payload {
	uint8_t digest[SHA256_DIGEST_SIZE];
	struct ro_range ranges[0];
} __packed;

/*
 * Header added for storing of the AP RO check information in the H1 flash
 * page. The checksum is a 4 byte truncated sha256 of the saved payload, just
 * a validity check.
 */
struct ap_ro_check_header {
	uint8_t version;
	uint8_t type;
	uint16_t num_ranges;
	uint32_t checksum;
};

/*
 * Saved AP RO data includes the ap ro check header, the sha digest of the
 * firmware and the RO ranges. Make sure the header, digest, and maximum number
 * of ranges fit in the AP RO space.
 */
BUILD_ASSERT(AP_RO_DATA_SPACE_SIZE >=
	sizeof(struct ap_ro_check_header) + SHA256_DIGEST_SIZE +
	APRO_MAX_NUM_RANGES * sizeof(struct ro_range));
/* Format of the AP RO check information saved in the H1 flash page. */
struct ap_ro_check {
	struct ap_ro_check_header header;
	struct ap_ro_check_payload payload;
};

#ifdef FIND_FMAP
/*****************************************************************************/
/* FMAP structures borrowed from host/lib/include/fmap.h in vboot_reference. */

struct fmap_header {
	char fmap_signature[FMAP_SIGNATURE_SIZE];
	uint8_t fmap_ver_major;
	uint8_t fmap_ver_minor;
	uint64_t fmap_base;
	uint32_t fmap_size;
	char fmap_name[FMAP_NAMELEN];
	uint16_t fmap_nareas;
} __packed;

struct fmap_area_header {
	uint32_t area_offset;
	uint32_t area_size;
	char area_name[FMAP_NAMELEN];
	uint16_t area_flags;
} __packed;
#endif /* FIND_FMAP */

/*****************************************************************************/
/* V1 Factory Support (AP_RO_HASH_TYPE_FACTORY) */

/* One of the AP RO verification outcomes, internal representation. */
enum ap_ro_check_result {
	ROV_NOT_FOUND = 1, /* Control structures not found. */
	ROV_FAILED,	    /* Verification failed. */
	ROV_SUCCEEDED	    /* Verification succeeded. */
};

/* Page offset for H1 flash operations. */
static const uint32_t h1_flash_offset_ =
	AP_RO_DATA_SPACE_ADDR - CONFIG_PROGRAM_MEMORY_BASE;

/* Fixed pointer at the H1 flash page storing the AP RO check information. */
static const struct ap_ro_check *p_chk =
	(const struct ap_ro_check *)AP_RO_DATA_SPACE_ADDR;

/*
 * Track if the AP RO hash was validated this boot. Must be cleared every AP
 * reset.
 */
static enum ap_ro_status apro_result = AP_RO_NOT_RUN;
static uint8_t apro_fail_status_cleared;

/* Clear validate_ap_ro_boot state. */
void ap_ro_device_reset(void)
{
	if (apro_result == AP_RO_NOT_RUN || apro_result == AP_RO_IN_PROGRESS ||
	    ec_rst_override())
		return;
	CPRINTS("%s: clear apro result", __func__);
	apro_fail_status_cleared = 0;
	apro_result = AP_RO_NOT_RUN;
}

/* Erase flash page containing the AP RO verification data hash. */
static int ap_ro_erase_hash(void)
{
	int rv;

	/*
	 * TODO(vbendeb): Make this a partial erase, use refactored
	 * Board ID space partial erase.
	 */
	flash_open_ro_window(h1_flash_offset_, AP_RO_DATA_SPACE_SIZE);
	rv = flash_physical_erase(h1_flash_offset_, AP_RO_DATA_SPACE_SIZE);
	flash_close_ro_window();

	return rv;
}

/*
 * Leaving this function available for testing, will not be necessary in prod
 * signed images.
 */
static enum vendor_cmd_rc vc_seed_ap_ro_check(enum vendor_cmd_cc code,
					      void *buf, size_t input_size,
					      size_t *response_size)
{
	struct ap_ro_check_header check_header;
	const struct ap_ro_check_payload *vc_payload = buf;
	uint32_t vc_num_of_ranges;
	uint32_t i;
	uint8_t *response = buf;
	size_t prog_size;
	int rv;

	*response_size = 1; /* Just in case there is an error. */

	/*
	 * Neither write nor erase are allowed once Board ID type is programmed.
	 *
	 * Check the board id type insead of board_id_is_erased, because the
	 * board id flags may be written before finalization. Board id type is
	 * a better indicator for when RO is finalized and when to lock out
	 * setting the hash.
	 */
#ifndef CR50_DEV
	{
		struct board_id bid;

		if (read_board_id(&bid) != EC_SUCCESS ||
		    !board_id_type_is_blank(&bid)) {
			*response = ARCVE_BID_PROGRAMMED;
			return VENDOR_RC_NOT_ALLOWED;
		}
	}
#endif

	if (input_size == 0) {
		/* Empty payload is a request to erase the hash. */
		if (ap_ro_erase_hash() != EC_SUCCESS) {
			*response = ARCVE_FLASH_ERASE_FAILED;
			return VENDOR_RC_INTERNAL_ERROR;
		}

		*response_size = 0;
		return EC_SUCCESS;
	}

	/* There should be at least one range and the hash. */
	if (input_size < (SHA256_DIGEST_SIZE + sizeof(struct ro_range))) {
		*response = ARCVE_TOO_SHORT;
		return VENDOR_RC_BOGUS_ARGS;
	}

	/* There should be an integer number of ranges. */
	if (((input_size - SHA256_DIGEST_SIZE) % sizeof(struct ro_range)) !=
	    0) {
		*response = ARCVE_BAD_PAYLOAD_SIZE;
		return VENDOR_RC_BOGUS_ARGS;
	}

	vc_num_of_ranges =
		(input_size - SHA256_DIGEST_SIZE) / sizeof(struct ro_range);

	if (vc_num_of_ranges > APRO_MAX_NUM_RANGES) {
		*response = ARCVE_TOO_MANY_RANGES;
		return VENDOR_RC_BOGUS_ARGS;
	}
	for (i = 0; i < vc_num_of_ranges; i++) {
		if (vc_payload->ranges[i].range_size >
		    MAX_SUPPORTED_RANGE_SIZE) {
			*response = ARCVE_BAD_RANGE_SIZE;
			return VENDOR_RC_BOGUS_ARGS;
		}
		if ((vc_payload->ranges[i].flash_offset +
		     vc_payload->ranges[i].range_size) >
		    MAX_SUPPORTED_FLASH_SIZE) {
			*response = ARCVE_BAD_OFFSET;
			return VENDOR_RC_BOGUS_ARGS;
		}
	}

	prog_size = sizeof(struct ap_ro_check_header) + input_size;
	for (i = 0; i < (prog_size / sizeof(uint32_t)); i++)
		if (((uint32_t *)p_chk)[i] != ~0) {
			*response = ARCVE_ALREADY_PROGRAMMED;
			return VENDOR_RC_NOT_ALLOWED;
		}

	check_header.version = AP_RO_HASH_LAYOUT_VERSION_1;
	check_header.type = AP_RO_HASH_TYPE_FACTORY;
	check_header.num_ranges = vc_num_of_ranges;
	app_compute_hash(buf, input_size, &check_header.checksum,
			 sizeof(check_header.checksum));

	flash_open_ro_window(h1_flash_offset_, prog_size);
	rv = flash_physical_write(h1_flash_offset_, sizeof(check_header),
				  (char *)&check_header);
	if (rv == EC_SUCCESS)
		rv = flash_physical_write(h1_flash_offset_ +
						  sizeof(check_header),
					  input_size, buf);
	flash_close_ro_window();

	if (rv != EC_SUCCESS) {
		*response = ARCVE_FLASH_WRITE_FAILED;
		return VENDOR_RC_WRITE_FLASH_FAIL;
	}

	*response_size = 0;
	return VENDOR_RC_SUCCESS;
}
DECLARE_VENDOR_COMMAND(VENDOR_CC_SEED_AP_RO_CHECK, vc_seed_ap_ro_check);

static int verify_ap_ro_check_space(void)
{
	uint32_t checksum;
	size_t data_size;

	if (p_chk->header.type != AP_RO_HASH_TYPE_FACTORY)
		return EC_ERROR_CRC;

	data_size = p_chk->header.num_ranges * sizeof(struct ro_range) +
		    sizeof(struct ap_ro_check_payload);
	if (data_size > CONFIG_FLASH_BANK_SIZE) {
		CPRINTS("%s: bogus number of ranges %d", __func__,
			p_chk->header.num_ranges);
		return EC_ERROR_CRC;
	}

	app_compute_hash(&p_chk->payload, data_size, &checksum,
			 sizeof(checksum));

	if (memcmp(&checksum, &p_chk->header.checksum, sizeof(checksum))) {
		CPRINTS("%s: AP RO Checksum corrupted", __func__);
		return EC_ERROR_CRC;
	}

	return EC_SUCCESS;
}

/*
 * ap_ro_check_unsupported: Returns non-zero value if AP RO verification is
 *                          unsupported.
 *
 * Returns:
 *
 *  ARCVE_OK if AP RO verification is supported.
 *  ARCVE_NOT_PROGRAMMED if the hash is not programmed.
 *  ARCVE_FLASH_READ_FAILED if there was an error reading the hash.
 *  ARCVE_BOARD_ID_BLOCKED if ap ro verification is disabled for the board's rlz
 */
static enum ap_ro_check_vc_errors ap_ro_check_unsupported(int add_flash_event)
{

	if (ap_ro_board_id_blocked()) {
		CPRINTS("%s: BID blocked", __func__);
		return ARCVE_BOARD_ID_BLOCKED;
	}

	if (p_chk->header.num_ranges == (uint16_t)~0) {
		CPRINTS("%s: RO verification not programmed", __func__);
		if (add_flash_event)
			ap_ro_add_flash_event(APROF_SPACE_NOT_PROGRAMMED);
		return ARCVE_NOT_PROGRAMMED;
	}

	/* Are the v1 contents intact? */
	if (verify_ap_ro_check_space() != EC_SUCCESS) {
		CPRINTS("%s: unable to read ap ro space", __func__);
		if (add_flash_event)
			ap_ro_add_flash_event(APROF_SPACE_INVALID);
		return ARCVE_FLASH_READ_FAILED; /* No verification possible. */
	}
	return ARCVE_OK;
}

/**
 * Validate hash of AP flash ranges.
 *
 * Invoke service function to sequentially calculate sha256 hash of the AP
 * flash memory ranges, and compare the final hash with the expected value.
 *
 * @param ranges array of ranges to include in hash calculation
 * @param count number of ranges in the array
 * @param expected_digest pointer to the expected sha256 digest value.
 *
 * @return ROV_SUCCEEDED if succeeded, ROV_FAILED otherwise.
 */
static
enum ap_ro_check_result validate_ranges_sha(const struct ro_range *ranges,
					    size_t count,
					    const uint8_t *expected_digest)
{
	int8_t digest[SHA256_DIGEST_SIZE];
	size_t i;
	struct sha256_ctx ctx;

	usb_spi_sha256_start(&ctx);
	for (i = 0; i < count; i++) {
		CPRINTS("%s: %x:%x", __func__, ranges[i].flash_offset,
			ranges[i].range_size);
		/* Make sure the message gets out before verification starts. */
		cflush();
		usb_spi_sha256_update(&ctx, ranges[i].flash_offset,
				      ranges[i].range_size);
	}

	usb_spi_sha256_final(&ctx, digest, sizeof(digest));
	if (DCRYPTO_equals(digest, expected_digest, sizeof(digest)) !=
	    DCRYPTO_OK) {
		CPRINTS("AP RO verification FAILED!");
		CPRINTS("Calculated digest %ph",
			HEX_BUF(digest, sizeof(digest)));
		CPRINTS("Stored digest %ph",
			HEX_BUF(expected_digest, sizeof(digest)));
		return ROV_FAILED;
	}

	return ROV_SUCCEEDED;
}


#ifdef FIND_FMAP
/**
 * Read AP flash area into provided buffer.
 *
 * Expects AP flash access to be provisioned. Max size to read is limited.
 *
 * @param buf pointer to the buffer to read to.
 * @param offset offset into the flash to read from.
 * @param size number of bytes to read.
 * @param code_line line number where this function was invoked from.
 *
 * @return zero on success, -1 on failure.
 */
static int read_ap_spi(void *buf, uint32_t offset, size_t size, int code_line)
{
	if (size > MAX_SUPPORTED_RANGE_SIZE) {
		CPRINTS("%s: request to read %d bytes in line %d", __func__,
			size, code_line);
		return -1;
	}

	if (usb_spi_read_buffer(buf, offset, size)) {
		CPRINTS("Failed to read %d bytes at offset 0x%x in line %d",
			size, offset, code_line);
		return -1;
	}

	return 0;
}

/*
 * Find the FMAP in RO flash.
 *
 * Iterate through AP flash at 4K intervals looking for FMAP.
 * This isn't used right now. It was used as a part of v2 support. It'll
 * get used to find the gbb in a followup cl.
 *
 * Return ROV_SUCCEEDED if a valid FMAP was found, ROV_FAILED otherwise.
 */
static enum ap_ro_check_result find_fmap(void)
{
	uint32_t offset;

	for (offset = 0; offset < MAX_SUPPORTED_FLASH_SIZE;
	     offset += LOWEST_FMAP_ALIGNMENT) {
		struct fmap_header fmh;

		if (read_ap_spi(fmh.fmap_signature, offset,
				sizeof(fmh.fmap_signature), __LINE__))
			return ROV_FAILED;

		if (memcmp(fmh.fmap_signature, FMAP_SIGNATURE,
			   sizeof(fmh.fmap_signature)))
			continue; /* Not an FMAP candidate. */

		/* Read the rest of fmap header. */
		if (read_ap_spi(&fmh.fmap_ver_major, offset +
				sizeof(fmh.fmap_signature),
				sizeof(fmh) - sizeof(fmh.fmap_signature),
				__LINE__))
			return ROV_FAILED;

		/* Verify fmap validity. */
		if ((fmh.fmap_ver_major != FMAP_MAJOR_VERSION) ||
		    (fmh.fmap_ver_minor != FMAP_MINOR_VERSION) ||
		    (fmh.fmap_size > MAX_SUPPORTED_FLASH_SIZE)) {
			CPRINTS("invalid FMAP contents at %x", offset);
			continue;
		}

		return ROV_SUCCEEDED;
	}

	return ROV_FAILED;
}
#endif /* FIND_FMAP */

/*
 * A hook used to keep the EC in reset, no matter what keys the user presses,
 * the only way out is the Cr50 reboot, most likely through power cycle by
 * battery cutoff.
 *
 * Cr50 console over SuzyQ would still be available in case the user has the
 * cable and wants to see what happens with the system. The easiest way to see
 * the system is in this state to run the 'flog' command and examine the flash
 * log.
 */
static void keep_ec_in_reset(void);

DECLARE_DEFERRED(keep_ec_in_reset);

static void keep_ec_in_reset(void)
{
	disable_sleep(SLEEP_MASK_AP_RO_VERIFICATION);
	assert_ec_rst();
	hook_call_deferred(&keep_ec_in_reset_data, 100 * MSEC);
}

static void release_ec_reset_override(void)
{
	hook_call_deferred(&keep_ec_in_reset_data, -1);
	deassert_ec_rst();
	/* b/229974371 Give AP_FLASH_SELECT at least 500us to discharge */
	delay_sleep_by(1 * SECOND);
	enable_sleep(SLEEP_MASK_AP_RO_VERIFICATION);
}

/* Only call this through a key combo. */
void ap_ro_clear_ec_rst_override(void)
{
	if (!ec_rst_override())
		return;
	apro_fail_status_cleared = 1;
	release_ec_reset_override();
	ap_ro_add_flash_event(APROF_FAIL_CLEARED);
	CPRINTS("%s: done", __func__);
}

int ec_rst_override(void)
{
	return !apro_fail_status_cleared && apro_result == AP_RO_FAIL;
}


static uint8_t do_ap_ro_check(void)
{
	enum ap_ro_check_result rv;

	apro_result = AP_RO_IN_PROGRESS;
	apro_fail_status_cleared = 0;
	if (ap_ro_check_unsupported(true) != ARCVE_OK ||
	    p_chk->header.type != AP_RO_HASH_TYPE_FACTORY) {
		apro_result = AP_RO_UNSUPPORTED_TRIGGERED;
		ap_ro_add_flash_event(APROF_CHECK_UNSUPPORTED);
		return EC_ERROR_UNIMPLEMENTED;
	}

	enable_ap_spi_hash_shortcut();

	rv = validate_ranges_sha(p_chk->payload.ranges,
				 p_chk->header.num_ranges,
				 p_chk->payload.digest);

	disable_ap_spi_hash_shortcut();

	/* Failure reason has already been reported. */
	if (rv != ROV_SUCCEEDED) {
		CPRINTS("AP RO FAILED!");
		apro_result = AP_RO_FAIL;
		ap_ro_add_flash_event(APROF_CHECK_FAILED);
		keep_ec_in_reset();
		/*
		 * Map failures into EC_ERROR_CRC, this will make sure
		 * that in case this was invoked by the operator
		 * keypress, the device will not continue booting.
		 *
		 * Both explicit failure to verify OR any error if
		 * cached descriptor was found should block the
		 * booting.
		 */
		return EC_ERROR_CRC;
	}
	apro_result = AP_RO_PASS_UNVERIFIED_GBB;
	ap_ro_add_flash_event(APROF_CHECK_SUCCEEDED);
	CPRINTS("AP RO PASS!");
	release_ec_reset_override();
	return EC_SUCCESS;
}

/*
 * Invoke AP RO verification on TPM task context.
 *
 * Verification functions calls into dcrypto library, which requires large
 * amounts of stack, this is why this function must run on TPM task context.
 *
 */
static enum vendor_cmd_rc ap_ro_check_callback(struct vendor_cmd_params *p)
{
	uint8_t *response = p->buffer;

	p->out_size = 0;

	if (!(p->flags & VENDOR_CMD_FROM_ALT_IF) &&
	    !(ccd_is_cap_enabled(CCD_CAP_AP_RO_CHECK_VC)))
		return VENDOR_RC_NOT_ALLOWED;

	p->out_size = 1;
	response[0] = do_ap_ro_check();

	return VENDOR_RC_SUCCESS;
}
DECLARE_VENDOR_COMMAND_P(VENDOR_CC_AP_RO_VALIDATE, ap_ro_check_callback);

void validate_ap_ro(void)
{
	struct {
		struct tpm_cmd_header tpmh;
		/* Need one byte for the response code. */
		uint8_t rv;
	} __packed pack;

	/* Fixed fields of the validate AP RO command. */
	pack.tpmh.tag = htobe16(0x8001); /* TPM_ST_NO_SESSIONS */
	pack.tpmh.size = htobe32(sizeof(pack));
	pack.tpmh.command_code = htobe32(TPM_CC_VENDOR_BIT_MASK);
	pack.tpmh.subcommand_code = htobe16(VENDOR_CC_AP_RO_VALIDATE);

	tpm_alt_extension(&pack.tpmh, sizeof(pack));
}

void ap_ro_add_flash_event(enum ap_ro_verification_ev event)
{
	struct ap_ro_entry_payload ev;

	ev.event = event;
	flash_log_add_event(FE_LOG_AP_RO_VERIFICATION, sizeof(ev), &ev);
}

static enum vendor_cmd_rc vc_get_ap_ro_hash(enum vendor_cmd_cc code,
					    void *buf, size_t input_size,
					    size_t *response_size)
{
	int rv;
	uint8_t *response = buf;

	*response_size = 0;
	if (input_size)
		return VENDOR_RC_BOGUS_ARGS;

	rv = ap_ro_check_unsupported(false);
	if (rv) {
		*response_size = 1;
		*response = rv;
		return VENDOR_RC_INTERNAL_ERROR;
	}
	*response_size = SHA256_DIGEST_SIZE;
	memcpy(buf, p_chk->payload.digest, *response_size);

	return VENDOR_RC_SUCCESS;
}
DECLARE_VENDOR_COMMAND(VENDOR_CC_GET_AP_RO_HASH, vc_get_ap_ro_hash);

static int ap_ro_info_cmd(int argc, char **argv)
{
	int rv;
	int i;
#ifdef CR50_DEV
	int const max_args = 2;
#else
	int const max_args = 1;
#endif

	if (argc > max_args)
		return EC_ERROR_PARAM_COUNT;
#ifdef CR50_DEV
	if (argc == max_args) {
		if (strcasecmp(argv[1], "erase"))
			return EC_ERROR_PARAM1;
		ap_ro_erase_hash();
	}
#endif
	rv = ap_ro_check_unsupported(false);
	ccprintf("result    : %d\n", apro_result);
	ccprintf("supported : %s\n", rv ? "no" : "yes");
	if (rv == ARCVE_FLASH_READ_FAILED)
		return EC_ERROR_CRC; /* No verification possible. */
	/* All other AP RO verificaiton unsupported reasons are fine */
	if (rv)
		return EC_SUCCESS;

	ccprintf("sha256 hash %ph\n",
		 HEX_BUF(p_chk->payload.digest, sizeof(p_chk->payload.digest)));
	ccprintf("Covered ranges:\n");
	for (i = 0; i < p_chk->header.num_ranges; i++) {
		ccprintf("%08x...%08x\n", p_chk->payload.ranges[i].flash_offset,
			 p_chk->payload.ranges[i].flash_offset +
				 p_chk->payload.ranges[i].range_size - 1);
		cflush();
	}

	return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(ap_ro_info, ap_ro_info_cmd,
#ifdef CR50_DEV
			     "[erase]", "Display or erase AP RO check space"
#else
			     "", "Display AP RO check space"
#endif
);

static enum vendor_cmd_rc vc_get_ap_ro_status(enum vendor_cmd_cc code,
					      void *buf, size_t input_size,
					      size_t *response_size)
{
	uint8_t rv = apro_result;
	uint8_t *response = buf;

	CPRINTS("Check AP RO status");

	*response_size = 0;
	if (input_size)
		return VENDOR_RC_BOGUS_ARGS;

	if ((apro_result != AP_RO_UNSUPPORTED_TRIGGERED) &&
	    (ap_ro_check_unsupported(false) != ARCVE_OK))
		rv = AP_RO_UNSUPPORTED_NOT_TRIGGERED;

	*response_size = 1;
	response[0] = rv;
	return VENDOR_RC_SUCCESS;
}
DECLARE_VENDOR_COMMAND(VENDOR_CC_GET_AP_RO_STATUS, vc_get_ap_ro_status);