summaryrefslogtreecommitdiff
path: root/chip/g/upgrade_fw.c
blob: 299c355e79cd7d6079d3b8b13ea6f44c38ecc2d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* Copyright 2016 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "byteorder.h"
#include "console.h"
#include "dcrypto/dcrypto.h"
#include "extension.h"
#include "flash.h"
#include "hooks.h"
#include "include/compile_time_macros.h"
#include "memory.h"
#include "system.h"
#include "registers.h"
#include "uart.h"

#include "upgrade_fw.h"
#include "cryptoc/sha.h"

#define CPRINTF(format, args...) cprintf(CC_EXTENSION, format, ## args)

/*
 * This structure defines flash offset ranges of the RO and RW images which
 * are not currently active and as such could be overwritten with an update.
 */
struct {
	uint32_t ro_base_offset;
	uint32_t ro_top_offset;
	uint32_t rw_base_offset;
	uint32_t rw_top_offset;
} valid_sections;

/* Pick sections where updates can go to based on current code addresses. */
static void set_valid_sections(void)
{
	 switch (system_get_ro_image_copy()) {
	 case SYSTEM_IMAGE_RO:
		 valid_sections.ro_base_offset = CHIP_RO_B_MEM_OFF;
		 break;
	 case SYSTEM_IMAGE_RO_B:
		 valid_sections.ro_base_offset = CONFIG_RO_MEM_OFF;
		 break;
	 default:
		 CPRINTF("Failed to set RO image offsets\n");
		 return;
	 }

	switch (system_get_image_copy()) {
	case SYSTEM_IMAGE_RW:
		valid_sections.rw_base_offset = CONFIG_RW_B_MEM_OFF;
		break;
	case SYSTEM_IMAGE_RW_B:
		valid_sections.rw_base_offset = CONFIG_RW_MEM_OFF;
		break;
	default:
		CPRINTF("Failed to set RW image offsets\n");
		return;
	}

	valid_sections.ro_top_offset = valid_sections.ro_base_offset +
		CONFIG_RO_SIZE - 0x800; /* 2K for certs! */

	valid_sections.rw_top_offset = valid_sections.rw_base_offset +
		CONFIG_RW_SIZE;
}

/* Verify that the passed in block fits into the valid area. */
static int valid_upgrade_chunk(uint32_t block_offset, size_t body_size)
{
	 /* Is this an RW chunk? */
	 if (valid_sections.rw_top_offset &&
	     (block_offset >= valid_sections.rw_base_offset) &&
	     ((block_offset + body_size) <= valid_sections.rw_top_offset))
		return 1;

	 /* Is this an RO chunk? */
	 if (valid_sections.ro_top_offset &&
	     (block_offset >= valid_sections.ro_base_offset) &&
	     ((block_offset + body_size) <= valid_sections.ro_top_offset))
		 return 1;
	 return 0;
}

/* Enable write access to the backup RO section. */
static void open_ro_window(uint32_t offset, size_t size_b)
{
	GREG32(GLOBALSEC, FLASH_REGION6_BASE_ADDR) =
		offset + CONFIG_PROGRAM_MEMORY_BASE;
	GREG32(GLOBALSEC, FLASH_REGION6_SIZE) = size_b - 1;
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, EN, 1);
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, RD_EN, 1);
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, WR_EN, 1);
}

void fw_upgrade_command_handler(void *body,
				size_t cmd_size,
				size_t *response_size)
{
	struct upgrade_command *cmd_body = body;
	void *upgrade_data;
	uint8_t *error_code = body;  /* Cache the address for code clarity. */
	uint8_t sha1_digest[SHA_DIGEST_SIZE];
	size_t body_size;
	uint32_t block_offset;

	*response_size = 1; /* One byte response unless this is a start PDU. */

	if (cmd_size < sizeof(struct upgrade_command)) {
		CPRINTF("%s:%d\n", __func__, __LINE__);
		*error_code = UPGRADE_GEN_ERROR;
		return;
	}
	body_size = cmd_size - sizeof(struct upgrade_command);

	if (!cmd_body->block_base && !body_size) {
		struct first_response_pdu *rpdu = body;
		uint32_t base;
		uint32_t size;

		/*
		 * This is the connection establishment request, the response
		 * allows the server to decide what sections of the image to
		 * send to program into the flash.
		 */

		/* First, prepare the response structure. */
		memset(rpdu, 0, sizeof(*rpdu));
		*response_size = sizeof(*rpdu);
		rpdu->protocol_version = htobe32(UPGRADE_PROTOCOL_VERSION);

		/*
		 * Determine the valid upgrade sections.
		 */
		set_valid_sections();

		/*
		 * If there have been any problems when determining the valid
		 * secitons offsets/sizes - return an error code.
		 */
		if (!valid_sections.ro_top_offset ||
		    !valid_sections.rw_top_offset) {
			rpdu->return_value = htobe32(UPGRADE_GEN_ERROR);
			return;
		}

		/*
		 * No problems - let's erase the backup sections and return
		 * their descriptions to the server.
		 */
		base = valid_sections.ro_base_offset;
		size = valid_sections.ro_top_offset - base;

		/* backup RO write access needs to be enabled. */
		open_ro_window(base, size);
		if (flash_erase(base, size) != EC_SUCCESS) {
			CPRINTF("%s:%d erase failure of 0x%x..+0x%x\n",
				__func__, __LINE__, base, size);
			rpdu->return_value = htobe32(UPGRADE_ERASE_FAILURE);
			return;
		}

		/* Now the RW backup section. */
		base = valid_sections.rw_base_offset;
		size = valid_sections.rw_top_offset - base;
		if (flash_erase(base, size) != EC_SUCCESS) {
			CPRINTF("%s:%d erase failure of 0x%x..+0x%x\n",
				__func__, __LINE__, base, size);
			rpdu->return_value = htobe32(UPGRADE_ERASE_FAILURE);
			return;
		}

		rpdu->vers3.backup_ro_offset =
			htobe32(valid_sections.ro_base_offset);

		rpdu->vers3.backup_rw_offset =
			htobe32(valid_sections.rw_base_offset);

		return;
	}

	/* Check if the block will fit into the valid area. */
	block_offset = be32toh(cmd_body->block_base);
	if (!valid_upgrade_chunk(block_offset, body_size)) {
		*error_code = UPGRADE_BAD_ADDR;
		CPRINTF("%s:%d %x, %d base %x top %x\n", __func__, __LINE__,
			block_offset, body_size,
			valid_sections.rw_base_offset,
			valid_sections.rw_top_offset);
		return;
	}

	/* Check if the block was received properly. */
	DCRYPTO_SHA1_hash((uint8_t *)&cmd_body->block_base,
			  body_size + sizeof(cmd_body->block_base),
			  sha1_digest);
	if (memcmp(sha1_digest, &cmd_body->block_digest,
		   sizeof(cmd_body->block_digest))) {
		*error_code = UPGRADE_DATA_ERROR;
		CPRINTF("%s:%d sha1 %x not equal received %x at offs. 0x%x\n",
			__func__, __LINE__,
			*(uint32_t *)sha1_digest, cmd_body->block_digest,
			block_offset);
		return;
	}

	CPRINTF("%s: programming at address 0x%x\n", __func__,
		block_offset + CONFIG_PROGRAM_MEMORY_BASE);
	upgrade_data = cmd_body + 1;
	if (flash_physical_write(block_offset, body_size, upgrade_data)
	    != EC_SUCCESS) {
		*error_code = UPGRADE_WRITE_FAILURE;
		CPRINTF("%s:%d upgrade write error\n",	__func__, __LINE__);
		return;
	}

	/* Verify that data was written properly. */
	if (memcmp(upgrade_data, (void *)
		   (block_offset + CONFIG_PROGRAM_MEMORY_BASE),
		   body_size)) {
		*error_code = UPGRADE_VERIFY_ERROR;
		CPRINTF("%s:%d upgrade verification error\n",
			__func__, __LINE__);
		return;
	}

	*error_code = UPGRADE_SUCCESS;
}