summaryrefslogtreecommitdiff
path: root/chip/g/flash.c
blob: 52d74992947cec5ac8fcffc6cce996f08b01dd8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/*
 * The SoC's internal flash consists of two separate "banks" of 256K bytes each
 * (sometimes called "macros" because of how they're implemented in Verilog).
 *
 * Each flash bank contains 128 "blocks" or "pages" of 2K bytes each. These
 * blocks can be erased individually, or the entire bank can be erased at once.
 *
 * When the flash content is erased, all its bits are set to 1.
 *
 * The flash content can be read directly as bytes, halfwords, or words, just
 * like any memory region. However, writes can only happen through special
 * operations, in units of properly aligned 32-bit words.
 *
 * The flash controller has a 32-word write buffer. This allows up to 32
 * adjacent words (128 bytes) within a bank to be written in one operation.
 *
 * Multiple writes to the same flash word can be done without first erasing the
 * block, however:
 *
 * A) writes can only change stored bits from 1 to 0, and
 *
 * B) the manufacturer recommends that no more than two writes be done between
 *    erase cycles for best results (in terms of reliability, longevity, etc.)
 *
 * All of this is fairly typical of most flash parts. This next thing is NOT
 * typical:
 *
 * +--------------------------------------------------------------------------+
 * + While any write or erase operation is in progress, ALL other access to   +
 * + that entire bank is stalled. Data reads, instruction fetches, interrupt  +
 * + vector lookup -- every access blocks until the flash operation finishes. +
 * +--------------------------------------------------------------------------+
 *
 */

#include "common.h"
#include "console.h"
#include "flash.h"
#include "flash_config.h"
#include "registers.h"
#include "timer.h"
#include "watchdog.h"

#define CPRINTF(format, args...) cprintf(CC_EXTENSION, format, ## args)

int flash_pre_init(void)
{
	struct g_flash_region regions[4];
	int i, num_regions;

	num_regions = flash_regions_to_enable(regions, ARRAY_SIZE(regions));

	for (i = 0; i < num_regions; i++) {
		int reg_base;

		/* Region range */
		reg_base = GBASE(GLOBALSEC) +
			GOFFSET(GLOBALSEC, FLASH_REGION2_BASE_ADDR) +
			i * 8;

		REG32(reg_base) = regions[i].reg_base;

		/*
		 * The hardware requires a value which is 1 less than the
		 * actual region size.
		 */
		REG32(reg_base + 4) = regions[i].reg_size - 1;

		/* Region permissions. */
		reg_base = GBASE(GLOBALSEC) +
			GOFFSET(GLOBALSEC, FLASH_REGION2_CTRL) +
			i * 4;
		REG32(reg_base) = regions[i].reg_perms;
	}

	return EC_SUCCESS;
}

int flash_physical_get_protect(int bank)
{
	return 0;				/* Not protected */
}

uint32_t flash_physical_get_protect_flags(void)
{
	return 0;				/* no flags set */
}

uint32_t flash_physical_get_valid_flags(void)
{
	/* These are the flags we're going to pay attention to */
	return EC_FLASH_PROTECT_RO_AT_BOOT |
		EC_FLASH_PROTECT_RO_NOW |
		EC_FLASH_PROTECT_ALL_NOW;
}

uint32_t flash_physical_get_writable_flags(uint32_t cur_flags)
{
	return 0;				/* no flags writable */
}

int flash_physical_protect_at_boot(enum flash_wp_range range)
{
	return EC_SUCCESS;			/* yeah, I did it. */
}

int flash_physical_protect_now(int all)
{
	return EC_SUCCESS;			/* yeah, I did it. */
}


enum flash_op {
	OP_ERASE_BLOCK,
	OP_WRITE_BLOCK,
};

static int do_flash_op(enum flash_op op, int byte_offset, int words)
{
	volatile uint32_t *fsh_pe_control;
	uint32_t opcode, tmp, errors;
	int retry_count, max_attempts, extra_prog_pulse, i;
	int timedelay_us = 100;
	uint32_t prev_error = 0;

	/* Make sure the smart program/erase algorithms are enabled. */
	if (!GREAD(FLASH, FSH_TIMING_PROG_SMART_ALGO_ON) ||
	    !GREAD(FLASH, FSH_TIMING_ERASE_SMART_ALGO_ON)) {
		CPRINTF("%s:%d\n", __func__, __LINE__);
		return EC_ERROR_UNIMPLEMENTED;
	}

	/* Error status is self-clearing. Read it until it does (we hope). */
	for (i = 0; i < 50; i++) {
		tmp = GREAD(FLASH, FSH_ERROR);
		if (!tmp)
			break;
		usleep(timedelay_us);
	}
	/* If we can't clear the error status register then something is wrong.
	 */
	if (tmp) {
		CPRINTF("%s:%d\n", __func__, __LINE__);
		return EC_ERROR_UNKNOWN;
	}

	/* We have two flash banks. Adjust offset and registers accordingly. */
	if (byte_offset >= CONFIG_FLASH_SIZE / 2) {
		byte_offset -= CONFIG_FLASH_SIZE / 2;
		fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
	} else {
		fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL0);
	}

	/* What are we doing? */
	switch (op) {
	case OP_ERASE_BLOCK:
		opcode = 0x31415927;
		words = 0;			/* don't care, really */
		/* This number is based on the TSMC spec Nme=Terase/Tsme */
		max_attempts = 45;
		break;
	case OP_WRITE_BLOCK:
		opcode = 0x27182818;
		words--;		     /* count register is zero-based */
		/* This number is based on the TSMC spec Nmp=Tprog/Tsmp */
		max_attempts = 9;
		break;
	}

	/*
	 * Set the parameters. For writes, we assume the write buffer is
	 * already filled before we call this function.
	 */
	GWRITE_FIELD(FLASH, FSH_TRANS, OFFSET,
		     byte_offset / 4);		  /* word offset */
	GWRITE_FIELD(FLASH, FSH_TRANS, MAINB, 0); /* NOT the info bank */
	GWRITE_FIELD(FLASH, FSH_TRANS, SIZE, words);

	/* TODO: Make sure this function isn't getting called "too often" in
	 * between erases.
	 */
	extra_prog_pulse = 0;
	for (retry_count = 0; retry_count < max_attempts; retry_count++) {
		/* Kick it off */
		GWRITE(FLASH, FSH_PE_EN, 0xb11924e1);
		*fsh_pe_control = opcode;

		/* Wait for completion. 150ms should be enough
		 * (crosbug.com/p/45366).
		 */
		for (i = 0; i < 1500; i++) {
			tmp = *fsh_pe_control;
			if (!tmp)
				break;
			usleep(timedelay_us);
		}

		/* Timed out waiting for control register to clear */
		if (tmp) {
			CPRINTF("%s:%d\n", __func__, __LINE__);
			return EC_ERROR_UNKNOWN;
		}
		/* Check error status */
		errors = GREAD(FLASH, FSH_ERROR);

		if (errors && (errors != prev_error)) {
			prev_error = errors;
			CPRINTF("%s:%d errors %x fsh_pe_control %p\n",
				__func__, __LINE__, errors, fsh_pe_control);
		}
		/* Error status is self-clearing. Read it until it does
		 * (we hope).
		 */
		for (i = 0; i < 50; i++) {
			tmp = GREAD(FLASH, FSH_ERROR);
			if (!tmp)
				break;
			usleep(timedelay_us);
		}
		/* If we can't clear the error status register then something
		 * is wrong.
		 */
		if (tmp) {
			CPRINTF("%s:%d\n", __func__, __LINE__);
			return EC_ERROR_UNKNOWN;
		}
		/* The operation was successful. */
		if (!errors) {
			/* From the spec:
			 * "In addition, one more program pulse is needed after
			 * program verification is passed."
			 */
			if (op == OP_WRITE_BLOCK && !extra_prog_pulse) {
				extra_prog_pulse = 1;
				max_attempts++;
				continue;
			}
			return EC_SUCCESS;
		}
		/* If there were errors after completion retry. */
		watchdog_reload();
	}
	CPRINTF("%s:%d, retry count %d\n", __func__, __LINE__, retry_count);
	return EC_ERROR_UNKNOWN;
}

/* Write up to CONFIG_FLASH_WRITE_IDEAL_SIZE bytes at once */
static int write_batch(int byte_offset, int words, const uint8_t *data)
{
	volatile uint32_t *fsh_wr_data = GREG32_ADDR(FLASH, FSH_WR_DATA0);
	uint32_t val;
	int i;

	/* Load the write buffer. */
	for (i = 0; i < words; i++) {
		/*
		 * We have to write 32-bit values, but we can't guarantee
		 * alignment for the data. We'll just assemble the word
		 * manually to avoid alignment faults. Note that we're assuming
		 * little-endian order here.
		 */
		val = ((data[3] << 24) | (data[2] << 16) |
		       (data[1] << 8) | data[0]);

		*fsh_wr_data = val;
		data += 4;
		fsh_wr_data++;
	}

	return do_flash_op(OP_WRITE_BLOCK, byte_offset, words);
}

int flash_physical_write(int byte_offset, int num_bytes, const char *data)
{
	int num, ret;

	/* The offset and size must be a multiple of CONFIG_FLASH_WRITE_SIZE */
	if (byte_offset % CONFIG_FLASH_WRITE_SIZE ||
	    num_bytes % CONFIG_FLASH_WRITE_SIZE)
		return EC_ERROR_INVAL;

	while (num_bytes) {
		num = MIN(num_bytes, CONFIG_FLASH_WRITE_IDEAL_SIZE);
		ret = write_batch(byte_offset,
				  num / 4,	/* word count */
				  (const uint8_t *)data);
		if (ret)
			return ret;

		num_bytes -= num;
		byte_offset += num;
		data += num;
	}

	return EC_SUCCESS;
}

int flash_physical_erase(int byte_offset, int num_bytes)
{
	int ret;

	/* Offset and size must be a multiple of CONFIG_FLASH_ERASE_SIZE */
	if (byte_offset % CONFIG_FLASH_ERASE_SIZE ||
	    num_bytes % CONFIG_FLASH_ERASE_SIZE)
		return EC_ERROR_INVAL;

	while (num_bytes) {
		/* We may be asked to erase multiple banks */
		ret = do_flash_op(OP_ERASE_BLOCK,
				  byte_offset,
				  num_bytes / 4); /* word count */
		if (ret) {
			CPRINTF("Failed to erase block at %x\n", byte_offset);
			return ret;
		}

		num_bytes -= CONFIG_FLASH_ERASE_SIZE;
		byte_offset += CONFIG_FLASH_ERASE_SIZE;
	}

	return EC_SUCCESS;
}